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Abstract—Predictable and analyzable 1/O is one of the consid-
erable challenges in the design of multi-core real-time systems.
A common approach to tackle this issue is to partition and
schedule I/O transactions such that interference between tasks is
minimized. While this works for packet-oriented interfaces with
deterministic blocking times, such as ethernet, these techniques
are inapplicable to a whole range of I/O devices with non-
deterministic behavior that is commonly found in embedded
applications. Interfaces, such as SPI, do not allow for fine-grained
scheduling and thus exhibit uncontrolled blocking times. Even
worse, their configuration and use must be considered as indepen-
dent transactions requiring costly synchronization between tasks.
The resulting detrimental effects are, in particular, pronounced
in settings with mixed task requirements on predictability and
determinism. All this makes the temporal analysis of such systems
cumbersome and overly pessimistic.

To solve these issues, we present L.OW}p, an approach to
eliminate the interference of low-level non-deterministic I/0
interfaces for real-time tasks with high predictability demands
(i.e., critical task) while preserving flexibility for tasks with
lower requirements (i.e., uncritical tasks). Therefore, we leverage
knowledge about the application-specific 1/0 usage patterns,
obtained by static analysis, to derive a tailored hardware ar-
chitecture. Its key feature is the anticipatory reservation of
individual time slots for critical tasks and to mimic preemptivity
of I/O units for the remaining system. We have implemented
our approach as a toolchain for OSEK-based real-time systems
that automatically generates an application-specific SoC design
along with a hardware and timing model for subsequent WCET
analysis. Our experimental results prove predictable timing for
critical tasks with limited impact on uncritical tasks.

I. INTRODUCTION

One of the primary challenges in real-time systems’ design
is determining the worst-case execution time (WCET) and
latencies of tasks. In this context, the execution platform’s
complexity and predictability are decisive as they ultimately
impact analysis accuracy and resulting overapproximation.
Consequently, this is a vivid research area in which much
progress has been made to leverage the potential of modern
multi-core architectures in hard real-time settings [1]—[3]. For
example, memory and caches can be tamed by smart schedul-
ing or partitioning. The situation is very similar to another
fundamental shared resource: communication and interaction
with the physical world by means of I/O interfaces. In many

 Technische Universitit Dortmund
peter.ulbrich@tu-dortmund.de

respects, the same concepts of partitioning and scheduling can
be applied here [4], [5]. This partitioning is intuitively plausi-
ble for packet-switched communication (e.g., ethernet), where
larger transactions are composed of individual packets [6]. If
memory is predictable, then the (memory mapped) access to a
network adapter is predictable as well [7]-[9]. Building on the
packet-orientation, appropriate scheduling can be employed to
facilitate real-time communication even for concurrent tasks.
We will elaborate on all this related work in Section II.

In this paper, we focus on a class of low-level commu-
nication and periphery that is often neglected but ubiquitous
in a wide range of embedded real-time systems: low-level,
transaction-based 1/O with variable transaction length. By
this, we mainly refer to low-level serial communication inter-
faces (i.e., I>*C [10], SPI [11], RS232/485 [12]) for interfacing
with sensors, actuators, or tertiary storage as well as general-
purpose I/O used for signal analysis and generation. As for
any periphery, the available I/O units and pins constitute the
limiting factor while the availability of embedded multi-core
platforms fosters the colocation of application and thus sharing
I/O between tasks. For example, embedded platforms rarely
offer more than two SPI units, leaving multiple sensors and
actuators attached to a single bus. Likewise, a limited number
of signal analysis and generation (e.g., ADC/DAC) units is
multiplexed to a larger number of I/O pins. We argue that low-
level I/0O will continue its importance in interfacing peripherals
while increasing application complexity implies their sharing.

A. Problem Statement

The fundamental problem with low-level peripherals is
their poor predictability once they become a shared resource.
Figure 1 illustrates this effect by the example of a SPI bus
master with three devices. The previously mentioned concepts
for (re)obtaining the predictability fail of this shared low-level
periphery for the following reasons: (1) Transactions are non-
preemptable, that is, an allocation once granted to one of
the tasks cannot be revoked. However, unlike packet-switched
communication, the transaction size is variable, application-
dependent (e.g., message size), and very slow compared to
computation. Specifically, on our target platform used for the
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Figure 1: Peripheral devices are often connected to a shared
bus. The specific characteristics of buses (e.g., two-stage
and transaction-based communication) demand for hardware
support to guarantee timeliness of critical tasks.

evaluation (see Section V), transmitting a single byte requires
1,600 processor cycles on the SPI bus. (2) The configuration
(e.g., multiplexing and addressing) is decoupled from the
actual data, that is, a transaction involves a two-step process:
First, the respective peripheral unit must be configured for the
correct multiplexer setting or device ID. Second, the actual
transmission is initiated by reading or writing data. Conse-
quently, the assumption that communication can be abstracted
by a sequence of self-contained and freely schedulable entities
(i.e., memory accesses) is inapplicable to most low-level
peripherals; thus, deriving sound WCET bounds on blocking
times quickly becomes infeasible.

In many cases, application complexity is accompanied by
varying predictability demands of individual tasks and 1/O
accesses. Consequently, a recognized approach to minimize
unnecessary overestimates is to subdivide the workload into
tasks of low and high criticality (i.e., safety-critical or conve-
nience). In such mixed-criticality settings [3], [13], the analysis
pessimism can usually be hidden by adaptive scheduling: in
the rare event that a task exceeds its average budget, the
uncritical workload is preempted and deferred to guarantee
sound estimates of critical tasks. Again, the indivisibility
and irrevocability of the transactions disallow the operating
system to offer meaningful abstractions to implement such an
approach for low-level I/O: if a task puts a too large message
on the SPI bus, a deadline violation of a critical message may
be unavoidable.
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Figure 2: Communication over the low-level SPI bus is a two-
stage transaction. First, the configuration is transmitted and,
subsequently, the data.

B. Contribution

Starting from the idea of varying task requirements on
the predictability (e.g., analysability, latencies, jitter) of low-
level 1/0, we address the problem in a slightly different
way. Since the considered I/O transactions are indivisible, we
propose a tailored partition into a predictable part with static
allocation and one with dynamic schedulability. Therefore, we
leverage the availability of FPGAs in contemporary embedded
SoCs [14] to provide a tailored hardware architecture that fa-
cilitates high predictability for critical tasks while maintaining
full flexibility to share the peripherals with uncritical tasks.

This approach, named LOW), is based on and extends
R2-D2 [15], [16], an existing technique for co-design of
heterogeneous real-time SoC architectures. Here, critical tasks
are allocated to dedicated, deterministic computing cores while
uncritical tasks are executed on a powerful but indeterministic
multi-core processor. To extend this selective predictability to
low-level I/O, we identified the following challenges:

Challenge #1: Predictable Low-Latency I/0. Considering
I/O transactions as critical sections, a sound upper bound
is required for all transactions (high and low) to derive the
resulting blocking times. Still, the latter is at least as long as
the largest of all sections causing jitter and jeopardize deadline
adherence. Reconsider, for instance, the previous example
of critical sensors with short but frequent communication
and an uncritical tertiary memory with few long transac-
tions. In the absence of preemptivity, time-division multiple
access (TDMA) is an adequate solution that, however, fails
due to priority-driven scheduling of uncritical tasks and their
unpredictability communication behavior.

Our Approach: To reduce access latency to zero for critical
transactions, we propose an anticipatory reservation of I/O.
In other words, sporadic low-criticality transactions may only
be allowed to occupy I/O if they do not conflict with critical
transactions during their execution. For this purpose, we intro-
duce 10-Guards, dedicated hardware units that coordinate the
access to individual I/O units among the different cores. These
IO0-Guards utilize the critical tasks’ access patterns determined
by static analysis to isolate critical and uncritical accesses,
without the need for more in-depth knowledge or sound upper
bounds on low-criticality tasks and transactions.

Challenge #2: Two-stage Transactions (i.e., configuration).
Another problem arises from the two-stage nature of the I/O
transactions, which is illustrated in Figure 2. The timing-
related problem here is that configuration and the actual data
transfer can either be combined to a single critical section,



which further aggravates the analysis problem or is seen as two
separate actions. However, the latter requires that periphery
configuration, analogous to the processor context, must be
accounted to the currently running task. We are unaware of
existing operating-system support and preemption mechanisms
to support such an extended context switch. Moreover, it
would be extremely inefficient to implement in software due
to the often high number of configuration registers. Even more
severe: On real-world hardware platforms, read-only configu-
ration registers exist. Such read-only registers can never be
restored by software, but require dedicated hardware support.

Our Approach: Our systematic isolation of the individual
peripheral units by 10-Guards at their interface with the I/O
bus allows for efficient preemption of their configuration. We
achieve this by employing scan chains and shadow registers
for context saving.

Challenge #3: Platform Co-Design and System Integration.
Besides the isolation and coordination mechanisms provided
by the I0-Guard concept, the actual co-design of a given
real-time application and architecture is a major challenge.
Manually partitioning the available resources on an SoC-based
platform is a labor-intensive task and, therefore, requires a high
degree of automation.

Our Approach: In the LOW,y, approach, we use an inte-
gration of a code-analysis framework along with a framework
for tailored hardware generation. For the software-related
aspects, the static analysis framework reveals all communi-
cation patterns. This tooling support allows us to partition
hardware resources in a way that guarantees interference-
free communication of critical tasks, while uncritical tasks are
scheduled with a best-effort strategy.

II. RELATED WORK

The topic of tailored SoC platforms for guaranteed time-
liness of I/O operations is well-explored in the real-time—
systems community. However, to the best of our knowledge,
no existing hardware-tailoring approach targets low-level com-
munication buses (such as I?C or SPI) that are shared between
highly critical tasks and tasks of lower criticality, while the
communication transactions are non-preemptable. Regarding
the research on communication and shared resources in SoC-
based systems, we refer to the review on mixed-criticality real-
time systems [3].

Pellizzoni et al. [17]-[20] addressed numerous hardware-
related aspects in multi- and many-core (FPGA-based) real-
time systems, such as I/O transactions, resource allocation/ar-
bitration, and interferences with peripheral components. How-
ever, none of these works addresses the unique properties
in low-level communication buses, such as the two-stage
communication procedure consisting of a configuration and
an atomic transmission phase.

Due to the assumption of non-preemptive I/O transactions
with variable length, our presented work does not benefit from
existing work on (mixed-criticality) memory controllers [7]-
[9], [21], [22]. Communication with memory-mapped opera-
tions allows preemptions during the use of the memory bus.

In the context of I/O for mixed-criticality systems, exist-
ing works are subdivided into TDMA-based [6], [23]-[27],
virtualization-based [4], [23], and TrustZone-based communi-
cation systems [28]. LOWj,, chooses the approach of TDMA-
based communication to guarantee the timely completion of
highly critical I/O transactions. Similar to LOW,’s approach,
Cilku et al. presented a TDMA-based method with a two-
layer arbitration scheme [23]. In their work, the first layer
targets critical tasks, whereas uncritical I/O communications
are executed on the second layer based on a round-robin
scheme. However, this approach only targets the memory bus
in contrast to LOW),, with its focus on low-level com-
munication interfaces. A further drawback of a round-robin
scheme is that such an approach potentially leads to scenarios
where time slots for low-criticality tasks remain unused. To
mitigate this issue of low bus utilization, LOW}, makes use of
these slots by possibly reordering the workloads. Additionally,
LOWjo has the possibility to inform the system developer
about response times of messages based on the assumption that
the low-criticality estimates (i.e., CT9) do not overshoot the
given budget during runtime. In any case, LOW,, guarantees
the completion of high-criticality tasks by its hardware design.

Chip manufacturers have also recognized the problem and
provide an individual, lightweight MPU for each periph-
eral [29]. Although this prevents unauthorized access by
uncritical tasks, this mechanism does not allow anticipatory
reservation of non-preemptive I/O transactions.

Several researchers address the aspect of exploiting stat-
ically determined knowledge for tailoring hardware plat-
forms [30], [31]. LOWp similarly utilizes application-
specific properties for the goal of predictability on the level
of embedded communication buses. Our previous work in the
area of exploiting application-specific knowledge introduced
the concept of deterministic execution units (DEUs) [15], [16]
in systems with different criticality levels. These units are
the platform of highly critical tasks where (due to the design
with reduced complexity) static timing analyses are possible
with a comparably small degree of pessimism. DEUs are
timing-anomaly—free processors with the property of timing
compositionality. At the same time, LOW),, does not restrict
the performance cores for executing non-critical tasks in any
way. Our previous work uses the concept of direct commu-
nication links between critical tasks in the system. Both the
deterministic execution units and the direct links are achieved
with the SoC-based design approach. In contrast to these
existing techniques, LOW/ is the first approach that tackles
low-level communication interfaces with a similar strategy of
exploiting SoC platforms and static analyses.

Despite the huge body of related work, no existing
hardware-tailoring approach targets low-level communication
buses (i.e., I?C, SPI) that are shared between highly critical
tasks and tasks of lower criticality. A major differentiation
is that LOW),y targets non-preemptable I/O operations with
separated configuration and data-transmission phases.



III. SYSTEM MODEL & BACKGROUND

The following Section III-A first outlines our system model,
including the assumptions on the targeted applications, and the
subsequent Sections III-B/III-C provide necessary background
information on the infrastructure used for whole-system anal-
yses and hardware generation.

A. System Model

Our approach demands three fundamental properties from
the real-time system: (1) For the tasks with high criticality,
all allocation and scheduling-relevant system objects (threads,
ISRs, resources, etc.) and their configuration are known ahead
of time; either provided by some configuration file or statically
extractable from the source code. (2) Precedence constraints
and dependencies are explicitly implemented or modeled as
dedicated tasks and resources. (3) A deterministic scheduling
policy, such as fixed-priority preemptive scheduling.

Without loss of generality, we based our approach on
the system model mandated by the AUTOSAR/OSEK-OS
standard [32]. This standard defines a widely used class of
fixed-priority real-time systems and has been the dominant
industry standard for automotive applications for the last two
decades. For a specific application, the developer declares
all system objects and their parameters in a domain-specific
configuration file, written in OSEK’s interface language (OIL).

Furthermore, we make the following assumptions about the
applications and the resulting taskset: (1) The latter consists
of critical and uncritical tasks with high and low demands
on predictability and timing-analysis accuracy, respectively.
For the critical tasks, safe (and possibly pessimistic) worst-
case execution-time estimates are available (i. e., CHT), while
uncritical are scheduled based on an optimistic timing esti-
mate (i.e., C*9). (2) For a given FPGA, the combined com-
putational load cannot be met by deterministic hardware cores
alone. (3) The predominant pattern of synchronization between
critical tasks is either a producer/consumer relationship or
mutual exclusion. In this relationship, all communication is
issued explicitly via system calls, and thus the communication
patterns can be extracted from static analysis. (4) Critical tasks
do not depend on uncritical tasks. Regarding our terminology
in view of mixed-criticality systems (MCS), LOW, expects
settings with varying predictability demands and droppable
workload. Our approach guarantees high-critical transactions
and aborts uncritical transactions if CL© is exceeded. (i.e.,
does not prevent overloading the available non-critical band-
width). LOW,, supports multiple levels by its runtime re-
configurability; however, only the highest-level guarantees
predictability.

Motivating Example Applications: Examples of applica-
tions that are suitable targets for the LOW), approach are
robotic arms (to support surgeries) or prosthetic hands [33].
Due to the goal of reducing cables in such cyber-physical
systems to mitigate the risk of cable break, the sensors in these
scenarios are ideally connected via one shared SPI bus. Further
reasons for a shared SPI bus are that only a single SPI bus is
available in the target platform or that SPI cables need to be

reduced due to space limitations. In the example applications,
I/O messages for position control are of higher criticality, and
their timely completion needs to be guaranteed. In contrast,
messages for the systems’ condition monitoring [34] are of
minor criticality, since degradation processes due to aging in
such systems undergo a slower process. Thus, missing a few
of such messages is comparably uncritical, and scheduling
their related tasks with best effort is a suitable strategy. A
dual-criticality approach is sufficient for the design of such
systems where usually only few highly critical tasks exist. All
mentioned design constraints are supported by the LOW,,
approach with regard to low-level communication.

B. Whole-System Analysis with ABB Graphs

In this Section, we outline existing work to derive pre-
dictable hardware architectures that are tailored to the appli-
cations’ specific requirements from existing implementations.
For an utmost generic approach, it is necessary to infer
I/O usage and message length independently of the actual
software development process. This necessitates a comprehen-
sive toolchain spanning from software analysis to hardware
tailoring.

In the first step, we employ the Real-Time Systems Com-
piler (RTSC) [35] to decompose the system’s source code by
static analysis into Afomic Basic Blocks (ABBs) [36], [37],
which gives us a platform-agnostic intermediate representation
of the system. Internally, the RTSC exploits the LLVM com-
piler infrastructure with its intermediate representation (LLVM
IR) [38]. ABBs have the property of being single-entry single-
exit regions of code. A system call in the code constitutes
a terminator of an ABB. Regarding the I/O transactions of
tasks, this means that communication patterns are explicitly
expressed in the source code and, as a consequence thereof,
are available to the static analysis for generating the hardware
support for I/O on the SoC platform.

Based on the system’s representation as an ABB graph,
LOW o generates both a tailored timing model (see Figure 3)
as well as an FPGA bitstream describing the hardware. We
show the process of synthesizing application-specific multi-
core hardware platforms in Section III-C.

Finally, the machine model obtained from this synthesizing
process is fed back to the compiler and the WCET ana-
lyzer. Thereof, the RTSC generates the target binaries, whose
WCETs are derived from the platform’s specific properties.

C. Automated Hardware Generation

As described in the R2-D2 approach [15], [16], [39],
existing system definition files, as OSEK OIL files, include all
necessary information to derive application-specific hardware
architectures that are highly improved towards predictability.
For each critical task defined in the system description, a
dedicated microcontroller subsystem, a deterministic execution
unit (DEU), gets instantiated. All DEUs contain a highly
predictable processor, such as an ARM Cortex-MO or Cortex-
M3, for which static WCET-analysis support is available [40],
[41]. Furthermore, DEUs own an internal SRAM, an exclusive
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Figure 3: The integration of a static code-analysis frame-
work (RTSC) and a hardware generation framework (R2-D2)
allows for a tailored target platform that guarantees timeliness
of communication over shared low-level buses.

AXI4-Lite bus system, and standard peripheral units, such as
timers. The exclusive execution of a single task in combination
with their isolated hardware structure makes the execution
of the critical tasks highly predictable. Moreover, DEUs are
customized for the corresponding critical tasks. For example,
the memory internal to the DEUs is tailored to a reduced
but sufficient size. The flexibility of an application-specific
hardware design also provides the possibility to add further
accelerator cores or dedicated peripheral controllers, if a criti-
cal task owns static, exclusive access. The hardware structure
made up of several isolated DEUs prevents interferences
between tasks running in parallel by hardware design. For
communication between critical tasks on the DEUs, dedicated
communication channels, which are implemented as physical
direct links between the DEUs, are instantiated for each pair
of DEUs.

LOW)y extends this strategy by taking information about
shared access to peripheral devices into account. As shown
in Figure 4, additional hardware elements get instantiated to
maintain the isolated structure of the computing units while
providing controlled access to the shared peripherals.

IV. APPROACH

This Section gives details on the LOW),, approach: Sec-
tion IV-A introduces an example of a hardware platform.
Section IV-B highlights how LOW/ ensures selective guar-
antees by means of 10-Guards, which enforce anticipatory I/O
reservations. Splitting the configurations and transactions is a
major concern of LOW, and discussed in IV-C. LOW/, de-
mands for minimal code changes in existing applications (see
Section IV-D). The final outcome of LOW/y is a timing model
on instruction level, which eventually yields precise timing
bounds by the use of WCET-analysis tools (see Section IV-E).

A. Running Example

Figure 4 shows our running example of a system with
two deterministic single-core processors (i.e., DEUs running
critical tasks in a time-triggered manner), an ARM Cortex-
A9 dual-core (COTS) processor (i. e., running uncritical tasks
with priority-based scheduling), and a shared SPI controller.
Except for the hardwired A9, the entire SoC architecture was
synthesized with LOW), based on a static code analysis
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Figure 4: Running example of an application-specific system
with two DEUs and one shared SPI, generated by LOW,y.

of the critical tasks. In this example, all processors require
access to the SPI and are thus linked by a dedicated AXI4-
Lite. To achieve the SPI’s intended predictability, LOW has
generated an IO-Guard along with its associated infrastructure
to control bus configuration and access. In this example, the
SPI was run at 2 MHz and the DEUs operated at 100 MHz.
Furthermore, we assume upper bounds on the message length
and the execution time of the critical tasks. The transaction
sizes generated by the non-critical tasks are assumed to be
schedulable and do not lead to a bus overload on average.

B. Selective Predictability by Anticipatory I/O Reservations

At the heart of our approach is the I0-Guard, whose
primary purpose is the arbitration of physical access times to a
shared low-level peripheral according to varying predictability
demands. The underlying mechanism is the anticipatory reser-
vation of communication windows for critical tasks executed
in a time-triggered manner on the DEUs.

At design time, LOWj, leverages the functional (e.g.,
access patterns) and temporal information (e. g., WCET, max-
imum transaction size) inferred by our static analysis to tailor
and synthesize one IO-Guard for each shared peripheral unit.
This process results in the structure shown in Figure 5: (1) a
schedule table to hold the next access window of each critical
task, (2) a gateway control that manages access to the I/O unit
and implements the unit’s configuration switching. (3) The
I0-Guard features a dedicated interface for uncritical tasks
(i. e., indeterministic cores) that intercepts transaction requests,
checks their (estimated) transaction length against the next
critical transaction window, and, in case of a conflict, defers
the allocation.

At configuration time, task parameters (i.e., offset, period,
WCET) are set in the I0-Guard’s schedule table. Reconfig-
uration at runtime is possible, for example, to implement
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Figure 5: 10-Guard’s application-specific hardware structure

different criticality levels or operating modes. Note that our
approach factors in all overheads (e.g., context switching);
thus, execution times subsume the total (max.) transaction
time, providing a safe upper bound.

a) Critical Operations: Our design results in an entirely
predictable I/O access for critical tasks: DEUs and 10-Guards
share a common time base (i.e., system timer). The IO-
Guard continuously updates all offset registers to indicate the
tasks’ next I/O cycles. A minimum value search identifies
the next transaction windows by a (deterministic) comparison
of all offset registers. When reaching a transaction window
(i.e., start of the transaction minus all overheads), the control
logic issues a context switch (i.e., saves current context and
restores the correct configuration) and connects the respective
DEU, thereby granting the critical task exclusive access to
the resource. The stop signal is triggered if the WCET was
exceeded (i.e., a fault occurred) or the transaction underran
its window (i. e., better than worst-case).

b) Uncritical Operations: To recall, I/O transactions are
generally not preemptable; accordingly, interference by uncrit-
ical tasks must be avoided. Our application-aware synthesis
of the I0-Guards and the predictability of the critical tasks’
transaction windows enable an anticipatory reservation of the
I/O unit. Therefore, uncritical requests are checked by their
(estimated) transaction time: if there is a large enough free
slot, the uncritical transaction is granted. Here, we exploit
that the transaction length is already part of the usual I/O
interface in many cases (e.g., buffer length) and therefore
readily available; we discuss our approach’s transparency
aspects in Section IV-D. Contrarily, when too large, the request
is rejected by pretending a busy unit, which is signaled by the
appropriate interrupt. Note that the available time can also be
queried to optimize the overall I/O utilization (e. g., to adjust
the message length or prioritize shorter transactions).

If the uncritical transaction exceeds the allotted time frame,
the 10-Guard aborts the transaction. This is signaled by the
ordinary error flags and interrupts of the respective I/O unit.
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C. Context Saving and Preemptability

While I/O transactions are indivisible, preempting the con-
figuration is an inherent aspect of LOWj, and key to
application-transparent and anticipatory I/O reservations. Note
that configuration and (start of) transaction do not represent a
contiguous critical section execution-wise. Therefore, interfer-
ence due to disrupted configurations is hard to bound. Further-
more, a configuration may involve indeterministic polling of
status bits (e. g., bus rest), which is plagued by large WCET
bounds. Consequently, we provide hardware mechanisms to
save and restore a unit’s complete hardware state.

Therefore, we infer the relevant state by analyzing the unit’s
hardware model and synthesizing so-called scan chains to save
the context. Scan chains are commonly used as a design for
test (DFT) strategy to check manufactured ICs. They can be
generated automatically in many EDA tools: all conventional
flip-flops are replaced by flip-flops with scan chain ports, so
each flip-flop has an additional scan_enable, scan_input and
scan_output port. In the second step, the added inputs and
outputs are wired as a chain. In our application-specific design,
we statically determine the number of replaced flip-flops, and
thus the length of the chain, which is an essential parameter for
the hardware generation and the resulting timing model (e. g.,
cycle-accurate triggering of control signals). In LOW,, we
opt for a parallel approach with 32 chains to minimize laten-
cies. Thus, switching the periphery controller’s configuration
in our running example is reduced from 299 to 10 clock cycles.
Further improvements with higher parallelization are possible
at increasing costs.

Figure 6 details the scan chain controller: Upon access, the
IO-Guard sends the respective task ID and a trigger signal
to start the context switch. Consequently, the configuration
is shifted word by word from and to the I/O unit with the
input data words stored in the internal memory. Finally, the
loaded task ID is stored in the Current Task ID register. The
internal memory layout is application-specific and contains
one configuration for each critical task. The uncritical tasks
share one common configuration, as their multiplexing is
already in the OS’s responsibility.

As DEUs and COTS cores run in parallel, context switches
must be synchronized between the two domains. Consequently,
the I0-Guard closes the gateways for uncritical operations and
decouples all ports using the Decoupler (cf. Figure 4). The
latter keeps all input and output signals to a constant level,
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so that no data transfers or interrupts are triggered while the
configuration is switched.

a) Critical Configurations: The configuration of critical
transactions is stored in the IO-Guard as part of the system
initialization or reconfiguration. Accordingly, no further action
is required during normal operation.

b) Uncritical Configurations: The COTS cores are con-
nected by default, leaving register accesses of uncritical tasks
to a shared periphery unaltered. Whenever a critical transaction
is active, the COTS gateway is closed. Subsequently, all
register accesses get trapped by the gateway to avoid incon-
sistencies or bus errors. A specific trap is therefore issued,
which must be handled by the operating system. In particular,
the instruction addressing the peripheral register must be re-
executed when the unit becomes available again.

c) Timing Aspects and Latency Hiding: Providing deter-
ministic base mechanisms is a vital aspect of our approach.
Figure 7 details our timing model by the example of a context
switch: First, all gateways are closed @, for which, in the
worst-case, the I0-Guard must wait for active AXI transfers
for up to 5 clock cycles. At this point, in the worst case,
an uncritical task has exceeded its budget and just managed to
write one last character into the SPI output buffer. Accordingly,
the guard at instant & must first wait for the bus to come to
rest. In our running example, this takes up to 1,600 cycles.
Before activating the context switch, all output ports must
be put into tristate mode @ by the decoupler costing one
cycle. After that, the context switch is executed ©. Its duration
depends on the number of registers to be saved and the degree
of parallelism. In our example, the SPI comprises 299 registers
handled by 32 scan chains in 10 cycles. Subsequently, one
cycle is necessary to reconnect the outputs and open the
gateway for the DEU @. From then on, the critical task can
access the unit unhindered. In sum, the worst-case overhead
is 1741,600 clock cycles in this example. Note that these
numbers can automatically be inferred from static analysis.

To eliminate the enormous impact of bus latencies from
the critical tasks’ timing model, we hide these costs at the
uncritical side. The issue is in the uncontrolled overrun of
the assumed budget by uncritical tasks, which we prevent by
initiating the context switch for a critical transaction just this
latency earlier. Still, the uncritical task can fully utilize its
budget.

D. Application Transparency and Implementation Aspects

For the uncritical tasks and their I/O transactions, LOWo is
easy to integrate into existing settings with only two additional
events to be handled: (1) An uncritical transaction is aborted
by the guard due to exceeding its assumed budget. A bus
error generated by the I0-Guard indicates this event, which
we consider to be handled by the driver anyway. Ultimately,
this corresponds to a communication error. However, attention
should be paid to the application logic, which should be
designed with retransmission in mind.

(2) Preemption of an active uncritical configuration with
the respective transaction not yet started. This occasion is
indicated by a special memory trap, which must be handled by
a generic interrupt handler: The OS must suspend the current
task (i.e., driver) and reactivate it upon guard release. Note
that the instruction pointer must be decremented such that
the last register access is executed again. For processors with
an out-of-order execution pipeline, the sequence of executed
instructions must be observed and restored. For the ARM
Cortex-A9 processor in Figure 4, a Data Synchronization
Barrier can be used. Overall, we consider these extensions
easy to implement.

Out of this paper’s scope is further optimization of the
average utilization and response times for uncritical I/O trans-
actions. This includes, in particular, the previously described
facilities for querying the available free transaction slots as
well as the signaling of free resources by the IO-Guard. These
require extensions to the I/O subsystem of the operating sys-
tem to prioritize appropriate transaction lengths, for example.

E. Instruction-level Timing Model

The primary outcome from LOWp, is an automatically
generated instruction-level timing model. Due to the hardware-
generation approach, this model is tight; that is, it does
not involve unnecessary pessimism, which is likely when
documentation on the bus controller and/or bus accesses is
limited. This model then serves as input to an existing WCET
analysis tool, such as AbsInt’s aiT [40] or Platin [41] from
the T-CREST project [42]. Using the correct-by-construction
model, the LOW,,, approach re/enables tight WCET/WCRT
bounds for critical tasks by standard schedulability analyses.

V. EVALUATION

Reducing the request to acquisition latency to zero for
critical tasks comes at the expense of increased hardware
resources and enlarged latencies for uncritical tasks. This chap-
ter evaluates our approach focusing on hardware overhead,
functionality, and effect on uncritical tasks.

A. Utilization of FPGA Logic

The LOW), approach requires a hardware extension of
existing peripheral components. This Section analyzes an im-
plementation of the example illustrated in Figure 4 on a Xilinx
Zyng 7020 SoC device to give an overview of required FPGA
resources for these hardware extensions. The Zynq 7020 is a
lower-end device with 53200 available lookup tables (LUTSs)



and 106000 registers. Table I lists the total number of applied
LUTs and registers.

The relative numbers show that only a small amount of
FPGA resources are needed compared to the whole chip size.

Furthermore, the resource usage of some parts (see Figure 4)
depends on the number and tasks’ parameters that require
access to the shared peripheral (colored brown). Others depend
on the parameters of the shared peripheral (i.e., number of
pins/registers, colored green). The number of critical tasks
requiring access to the shared peripheral defines the number
of gateways and consequently their resources. Moreover, the
peripheral access parameters of each critical task have to be
stored within the IO-Guard (see Figure 5). Therefore, the 10-
Guard’s register utilization depends on the number of critical
tasks with access to this peripheral. In our example (two
DEUs, see Figure 4) implemented on the Zynq 7020, the 10-
Guard’s application-depended hardware occupies about 1.7%
of the available LUTs and about 0.4% of the registers.

The peripheral’s extension by the scan chain depends on
the peripheral’s number of registers that will be replaced by
special scan-chain registers with additional control and data
ports. This correlation also applies to the scan-chain controller,
which holds the contexts of the different tasks. Furthermore,
the resource usage of the decoupler is determined by the
number of input and output pins of the peripheral, which
is negligible in comparison to the other components. While
scan-chain registers need to be emulated on FPGAs at the
cost of additional LUTS, these registers can be implemented
efficiently in ASIC designs.

In total, our example requires 906 additional LUTs (1.7%
of the total available LUTs), primarily used for control logic
and the 10-Guard’s context memory.

B. Delay on Uncritical Tasks

LOW,, proactively reserves an I/O unit for critical tasks
to eliminate latencies when accessing the communication
hardware. Uncritical tasks might temporarily be denied access
to the I/O unit in case their transmission cannot be guaranteed
to finish in time to achieve the reservation of the I/O unit.
While this approach cuts latencies on critical tasks, uncritical
tasks suffer additional delays. In this Section, we exemplarily
evaluate these additional delays by comparing the time be-
tween request and acquisition of the SPI bus for both a system
without I/O Guard, as well as the corresponding system with
I/O Guard.

Table I: Required hardware resources of the shared SPI exam-
ple on a Xilinx Zynqg 7020 device.

LUTs Registers
10Guard 284 (0.5%) | 391 (0.4%)
Gateways 28 (0.1%) 8 (0.0%)
Peripheral Extension by Scan Chain 257 (0.5%) 0 (0.0%)
Context Memory in Scan Chain Controller | 331 (0.6%) 57 (0.1%)
Decoupler 6 (0.0%) 0 (0.0%)

[ Total [ 906 (1.7%) [ 456 (0.4%) ]

Due to the high number of evaluation runs required, this
evaluation is based on a simulation of our FPGA prototype
system made up of two A9 cores executing the uncritical
tasks and three DEUs. The simulated system uses, just like
the FPGA hardware platform, DEUs running at a frequency
of 100MHz and an SPI bus with a data transmission rate
of 2Mbit/s. To verify the correctness of the simulator and
the significance of the simulation results, we compared the
simulation results of a schedule against the values obtained
from the measurement of the same schedule on our prototype
platform. Figure 8 illustrates the latencies of the uncritical
tasks between request and acquisition of the communication
bus as histogram plots. The simulated and measured results
show a similar distribution. The maximum latencies differ by
about 7%, confirming the validity of our simulation results.

The systems under evaluation are generated randomly with
varying SPI utilizations of both DEUs and A9 cores. For
every pair of DEU/A9-utilization values not exceeding 100%
utilization, we randomly generate and simulate ten systems
whose average delay (in DEU cycles) between request and
acquisition of the SPI bus is eventually plotted in Figure 9.
For this evaluation, we assume that the critical tasks exhibit a
communication pattern that resembles the behavior of typical,
deeply-embedded hard real-time systems: Communication re-
quests occur at high frequency but have a short duration, which
is common for interacting with, for instance, sensors. This
communication pattern also implies that the DEUs’ overall SPI
utilization is minor; therefore, we only simulate configurations
with the DEUs using up to 30% of the available commu-
nication time. Each hyperperiod of the generated systems
lasts 1000 000 000 DEU cycles (equaling 10s with our DEUs
running at 100 MHz), and every simulation comprises ten
hyperperiods (i.e., 100s for every simulation).

Figures 9a and 9b show the values for systems without I/O
Guard: Without I/O Guard, we assume that the critical tasks’
requests are configured to have a higher priority than requests
issued by the uncritical tasks running on the A9 cores. The
latencies on such critical tasks primarily depend on the A9
communication utilization, as the critical tasks are planned
such that they do not overlap with other critical tasks and,
by that, are primarily delayed by ongoing transmission by
uncritical tasks. For uncritical tasks’ delays (see Figure 9b)
essentially increase with increasing utilization of the commu-
nication bus.

When enabling the I/O Guard, the critical tasks’ commu-
nication requests are executed immediately with guaranteed
latency of zero, see Figure 9c. This strong guarantee of
determinism, however, is at the expense of the communica-
tion requests issued by the uncritical tasks, as illustrated in
Figure 9d: One source of additional delays on the uncritical
tasks is the additional overhead of context switching induced
by LOWy (see Section IV-C). The other, more prominent
source of delays is the reservation of the communication
bus: Increasing the DEU communication utilization and, by
that, increasing the time the A9 cores are prohibited access
to the communication bus drastically increases the delay on
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A9 communication requests when the DEUs reach 30 % of
the available communication time. These increasing delays
are caused by the rising number of non-preemptable periods
with reserved communication bus, which subdivide the time
the communication bus remains idle in slots of fixed sizes.
Communication requests exceeding most of these slots suffer
potentially long delays, especially when the overall utilization
is uncommonly close to 100 %.

From this simulation, we conclude that LOWp, is able
to guarantee zero-latency communication requests for critical
tasks running on the highly predictable DEUs while retaining
increased but practically feasible delays on the communication
requests issued by uncritical tasks. LOW/ requires additional
hardware units to be synthesized, whose implementation only
occupies a tiny fraction of the resources available on even
lower-end FPGA systems, making LOW/,, suitable for prac-
tical use.

VI. CONCLUSION

While much effort has been made in the area of memory-
centric or packet-switched I/O for real-time systems with
mixed criticalities, a significant aspect has been left unad-
dressed: low-level and transaction-based communication in-
terfaces, such as SPI or I’C. In this paper, we presented
LOW)p, an approach that exploits target-specific knowledge
of communicating tasks on SoC-based hardware platforms.
This knowledge is used for tailoring an SoC-based hardware
platform that guarantees the timely completion of highly
critical tasks and serves tasks of minor criticality with the
best effort. Our evaluation results validate the interference-free
communication with an acceptable hardware effort.
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