
Noname manuscript No.
(will be inserted by the editor)

Application-Specific Tailoring of Multi-Core SoCs for
Real-Time Systems with Diverse Predictability Demands

Steffen Vaas · Peter Ulbrich · Marc Reichenbach · Dietmar Fey

Received: date / Accepted: date

Abstract Embedded multi-core processors improve

performance significantly and are desirable in many

application-fields. This development, in particular,

includes safety-critical real-time systems, which

typically require a deterministic temporal behavior.

However, even tasks without dependencies running

on different cores can interfere due to, sometimes

hidden, shared hardware resources, such as memory or

communication buses. Consequently, only a pessimistic

assumption of the worst-case execution time (WCET)

that incorporates interference can be given. The

This work is supported by the German Research
Foundation (DFG) under grants no. SCHR 603/9-2,
the Transregional Collaborative Research Centre “Invasive
Computing” (SFB/TR89, Project C1), the Bavarian Ministry
of State for Economics under grant no. 0704/883 25 (EU
EFRE funds) and by the Bavarian Research Foundation
(BFS) as part of their research project “FORMUS3IC”.

Steffen Vaas
Friedrich-Alexander-University (FAU) Erlangen-Nürnberg,
Martensstr 3., 91058 Erlangen, Germany
Chair of Computer Science 3 - Computer Architecture
Tel.: +49-9131-85-27028
Fax: +49-9131-85-27912
E-mail: steffen.vaas@fau.de

Peter Ulbrich
Friedrich-Alexander-University (FAU) Erlangen-Nürnberg
Chair of Computer Science 4 - Distributed Systems and
Operating Systems
E-mail: peter.ulbrich@fau.de

Marc Reichenbach
Friedrich-Alexander-University (FAU) Erlangen-Nürnberg
Chair of Computer Science 3 - Computer Architecture
E-mail: marc.reichenbach@fau.de

Dietmar Fey
Friedrich-Alexander-University (FAU) Erlangen-Nürnberg
Chair of Computer Science 3 - Computer Architecture
E-mail: dietmar.fey@fau.de

desired performance gain therefore evaporates in the

poor temporal analyzability.

Safety-critical real-time systems are typically

composed of multiple tasks with varying criticality

levels and requirements on predictability and

performance, respectively. In this paper, we present an

approach that generates an application-specific,

deterministic multi-core architecture for such

mix-critical systems, thus eliminating the

aforementioned hardware-induced interferences in the

first place. Safety-critical tasks with stringent temporal

requirements are mapped to dedicated Deterministic

Execution Units (DEUs) while the remaining soft

real-time tasks co-reside on a general purpose

multi-core processor that offers performance over

determinism. Just as well, predictable interconnections

between DEUs are generated to satisfy dependencies

and precedence constraints. Consequently, timing

analysis for hard real-time tasks is significantly

simplified, since interferences caused by shared

resources and scheduling are finally eliminated. To show

the benefits of our approach, an application-specific

architecture for a flight controller was generated

and compared to an ARM Cortex-A9 dual-core as

a reference. Overall, we were able to significantly

improve temporal properties of safety-critical tasks

while preserving the overall performance for soft

real-time tasks.

1 Introduction

A characterizing feature of real-time systems is that

they have to react to physical events within given

deadlines. These can be more or less strict, for which

2 Steffen Vaas et al.

GPIO

SRIO
L2 Cache

Memory
Controller

L1 Cache

Core 1
L1 Cache

Core 2
L1 Cache

Core 3
L1 Cache

Core 4

DMA
UART

SPI

I2CPCIE

Fig. 1 The structure of an exemplary multi-core processor
architecture: tasks running on different cores share hardware
resources, as the common memory controller, which leads to
contention. Even if tasks do not access to same peripherals,
interferences occur caused by the common bus system.

reason real-time systems are typically classified into

hard and soft real-time (i.e., high and low criticality).

In a car, for example, the airbag always has to meet

hard timing constraints, whereas missed deadlines in

the navigation system are ultimately just annoying.

Therefore, a fundamental requirement in real-time

system engineering is the sound estimation

of worst-case execution times (WCETs) for

safety-critical, hard real-time tasks. However,

contemporary processors typically pack a whole

series of performance-enhancing measures, such

as pipelines, out-of-order execution, and tiered

memory architectures jeopardizing this aim. To give

an example, a simple addition may take between

3 (best) and 321 cycles (worst case) in a 2001

PowerPC 755 [6]. Consequently, any sound WCET

analysis will be pessimistic to a certain extent and

provide only over-approximations (upper bounds) of

the actual WCET. In the past, real-time applications

of different criticality (i.e., hard and soft) were either

treated equally according to the higher criticality or

partitioned on dedicated execution platforms. For

example, in a car, each function is rendered by a

single electronic control unit (ECU), which made it

relatively easy to isolate and satisfy timing and safety

requirements. Recently two important factors have

changed: On the one hand, autonomous driving is

just around the corner, making software much more

complex as well as more parts safety-critical. On the

other hand, multi-core embedded processors have hit

the market, supplying an amount of processing power

unthinkable in the past. Market pressure forces the

industry to seize this opportunity by consolidating

ECUs. Therefore, software of lower safety requirements

now co-resides with applications of high safety

demands, thus increasing interference, complexity and

the certification hurdle occur at the same time.

Although considerable progress has been made in

WCET and especially hardware analysis for single

core real-time systems, multi and many-core systems

still represent an unresolved challenge to be tackled.

Main issues are interferences caused by inter-task

dependencies as well as shared resources and, even

worse, hidden yet inherent interdependencies within

the actual hardware architecture, as illustrated in

Fig. 1. Overall, these massively increased interferences

typically bloat analysis estimates to the point where

they become unfeasible in practice.

Consequently, the real-time community pursues

various other ways to deal with the problem:

with partitioning, novel scheduling techniques, and

deterministic hardware being the most prominent

representatives. The first, partitioning, indeed is the

most intuitive and widespread approach. It is, for

example, state-of-the-art in the automotive domain,

where individual functions are tied to dedicated

cores. This works well, as long as the problem

fits the hardware granularity. Another approach is

to pigeonhole the cumbersome WCET over-estimates

by resorting to mixed-criticality scheduling. Here,

optimistic WCET estimates are used as long as

budgets are not exceeded. Otherwise, the system

gradually switches to hard upper bounds for critical

tasks with hard deadlines by omitting less critical

tasks to mobilize resources. Although being a captive

concept, it requires multiple WCET estimates per

task, which can be tricky to acquire, and restricts the

verifiability in practice due to the added scheduling

complexity. Finally, deterministic architectures, such as

PATMOS or PRET, can be used to simplify the WCET

analysis again. However, this is also accompanied

by a substantial loss in performance due to the

absence of performance-enhancing hardware techniques

as mentioned earlier.

1.1 Problem Statement

Recent developments in field programmable gate

arrays (FPGAs) and systems on a chip (SoCs)

allow for a further approach: Instead of relying

on commercial off-the-shelf (COTS) hardware, the

architecture can be specifically tailored to meet

the system’s needs. In earlier work [21,22], we

have investigated the automated partitioning and

tailoring of automotive real-time systems on dedicated,

deterministic soft-cores within contemporary FPGAs

to the benefit of determinism and analyzability.

In principle, FPGAs permit various architectural

approaches as illustrated in Fig. 2: in this example, a

task set is composed of safety-critical and non-critical

Application-Specific Tailoring of Multi-Core SoCs for Real-Time Systems with Diverse Predictability Demands 3

Tasks

C
h
ip

 U
ti

liz
a
ti

o
n

Safety-Critical Non-Safety-Critical

In
te

rf
e
re

n
ce

 R
a
ti

o

100% 100%

0%0%

General-Purpose Multi-Core Processor

Tasks

C
h
ip

 U
ti

liz
a
ti

o
n

Safety-Critical Non-Safety-Critical

In
te

rf
e
re

n
ce

 R
a
ti

o

100% 100%

0%0%

System Architecture with DEUs

Tasks

C
h
ip

 U
ti

liz
a
ti

o
n

Safety-Critical Non-Safety-Critical

In
te

rf
e
re

n
ce

 R
a
ti

o

100% 100%

0%0%

Mixed Design

Fig. 2 Illustrative comparison of architectural approaches to mixed-criticality real-time systems. In this example, task priorities
decrease from left to right, with subsets for critical and non-critical tasks. Relying on general-purpose (left) or deterministic
cores (middle) only violates predictability and performance requirements, respectively. The proposed mixed design approach
(right) combines both aspects.

tasks with high and low requirements on hardware

determinism, respectively. By utilizing the entire FPGA

to implement a general-purpose multi-core processor

(right graph), a large number of tasks can be executed.

However, tasks increasingly suffer from interference

with decreasing criticality and priority. In our example,

the predictability requirements are violated for a

subset of safety-critical tasks. Resorting to predictable

Deterministic Execution Units (DEUs) (middle graph)

as proposed in our previous work solves this issue;

however, it is accompanied by an inadequate utilization

of the chip area. Moreover, tasks typically exhibit

substantial dependencies and precedence constraints,

for example between sensing, computing and actuating.

Consequently, synthesis of dedicated soft cores for

individual tasks quickly reaches its limits and is not

generally applicable.

As mentioned earlier, real-time systems are

heterogeneous in practice, with performance and

safety requirements varying between individual

tasks. We assume that the predominant part of

real-time systems is of low criticality (e.g., comfort

and diagnostic functionality). To leverage FPGAs

in such heterogeneous settings a combination of

performance-oriented general-purpose cores and

task-exclusive real-time cores is missing that allows for

interdependencies and precedence constraints between

critical and non-critical tasks and, at the same time,

prevents harmful interference by strong isolation

concepts. Such an approach, as illustrated in Fig. 2

(right graph) would solve both the performance and

the predictability issue, while applying to a broad

range of application scenarios.

1.2 Our Contribution

In this paper, we present an extended work of

the reconfigurable, reliable, deterministic, distributed

(R2-D2) toolchain. Critical and uncritical tasks are

now automatically mapped to an application-specific

SoC including a combination of hardwired COTS

multi-cores and deterministic soft-core processors. We

claim the following key contributions to improve:

– Improved scalability by an automated mapping

of soft and hard real-time tasks to COTS

processors and Deterministic Execution Units

(DEUs), respectively.

– Enhanced performance due to an optimized

utilization of the available FPGA resources.

– Strong isolation between deterministic and

non-deterministic execution units by tailored data

exchange and synchronization mechanisms.

The remainder of this paper is structured as follows:

First, we detail our R2-D2 approach, the automated

architecture generation and shared resources in

Sec. 3, followed by an scalability analysis in Sec. 4.

Subsequently, we exemplify our approach by a flight

control showcase in Sec. 5 and 6 before discussing

related work in Sec. 7 and concluding the paper in

Sec. 8.

2 System Model

Our approach demands three fundamental properties

from the real-time system: (1) All allocation and

scheduling-relevant system objects (threads, ISRs,

resources, etc.) and their configuration are known

ahead of time; either provided by some configuration

file or statically extractable from the source code.

(2) Precedence constraints and dependencies are

explicitly implemented or modeled as dedicated tasks

and resources. (3) A deterministic scheduling policy,

such as fixed-priority preemptive scheduling.

Without loss of generality, we based our

approach on the system model mandated by the

AUTOSAR/OSEK-OS standard [15]. The AUTOSAR

standard defines a widely used class of fixed-priority

real-time operating systems (RTOSs) and has been

the dominant industry standard for automotive

4 Steffen Vaas et al.

applications for the last two decades. For a specific

application, the developer declares all system objects

and their parameters in a domain-specific configuration

file.

Furthermore, we make the following assumptions

about the applications and the resulting task set:

(1) The latter consists of critical and non-critical

tasks with high and low demands on predictability

and timing-analysis accuracy, respectively. (2) For

a given FPGA, the combined computational load

cannot be met by deterministic hardware cores.

(3) The predominant pattern of synchronization

between critical tasks is either a producer/consumer

relationship or mutual exclusion. (4) Critical tasks do

not depend on non-critical tasks.

3 The R2-D2 Approach

This section introduces our R2-D2 approach: starting

with basic design principles, we subsequently detail

our approach to automated architecture generation.

Finally, we tackle the challenging issue of unavoidable

intra-task dependencies and shared resources.

3.1 The Basic Approach

COTS multi-core architectures are designed and

optimized for general-purpose applications. To execute

arbitrary code, processor features including shared

resources, as common memories or bus systems are

necessary. If multiple tasks attempt to access them

at the same time, it results in interference between

these tasks. To avoid this issue from the first, we

propose an application-specific processor architecture

with dedicated, spatially separated hardware resources

for safety-critical tasks. The detailed structure of

an exemplary architecture generated by the R2-D2

toolchain is illustrated in Fig. 3. Every safety-critical

task is exclusively executed by one DEU that includes

all required components to run as an independent basic

microcontroller system. The corresponding CPU core

is customizable, different architectures from 8-bit to

64-bit can be selected. Additionally, some designs are

parameterizable, thus, for example floating point units

or hardware dividers can be optionally instantiated.

The core is connected as sole master on one AXI bus

to the corresponding slave peripherals. By default, a

timer for periodical execution of code, a watchdog

as a fail-safe option, a controller for inter-processor

communication (IPC) and memory are instantiated.

The abolition of a common memory for all processor

cores furthermore eliminates a well-known bottleneck

of COTS multi-core systems. Moreover, the distributed,

spatially separated memories of safety-critical tasks

increase the reliability of the system. Corrupt write

accesses from uncritical tasks are inhibited by design.

Thus, a memory protection or management unit

(MPU/MMU) can be omitted. Since only one task

is executed on one DEU, no additional scheduling

mechanisms are required. As a consequence, an

operating system is not necessary any longer. Tasks

can run on bare-metal. This reduces the complexity of

the system drastically because no preemption of tasks

with higher priority can occur. Only the source code

itself and data dependencies between tasks have to be

regarded for timing analysis of the safety-critical tasks.

Therefore, tasks running on dedicated DEUs have the

same behavior as they would be executed on bare-metal

single-core systems. For such single-core systems there

exist a range of scientific [14] and commercial [1] static

timing analysis methods, which can now be applied to

this application-specific multi-core system. Hence, the

verification of the system can be simplified significantly.

However, a dedicated DEU instance for all tasks is

inconvertible for multiple reasons. Large systems with

a considerable amount of critical and uncritical tasks

may not be feasible due to limited FPGA resources.

Some tasks require large memory space for example to

log data values or to display and plot system states. For

such tasks, which are predominantly at a low criticality

level, access to external storage is essential. Another

point is the missing performance of soft-core processors

to execute compute-intensive tasks, which also require

OS services, for example, webserver applications. These

tasks may be integrated into large systems, but do not

belong to the safety-relevant part.

These disadvantages of the R2-D2 approach

can be wiped out by extending the architecture

by performance aware COTS processor cores and

corresponding memory controllers. To preserve the

application-specific, deterministic behavior of the tasks

executed on the DEUs, the COTS processor cores

are only loosely coupled with the deterministic part

of the system. Data exchange between the COTS

and the deterministic cores is realized by dedicated

hardware components, so the DEUs stay isolated

and can be analyzed separately. Since for uncritical

tasks deterministic behavior is not necessary, all

non-safety-critical tasks can be executed on a COTS

multi-core processor architecture. Empiric studies

show [9] that only a few tasks within an application

system are safety-relevant, so just a low number of

dedicated DEUs will be required. As a consequence,

with the extension of the R2-D2 toolchain by COTS

cores more complex systems can be implemented and

Application-Specific Tailoring of Multi-Core SoCs for Real-Time Systems with Diverse Predictability Demands 5

Programmable Logic

Deterministic
Execution Unit

CPU
Timer Watchdog RAM

I/O

Core 1 Core 2

L1 CacheL1 Cache
L2 Cache

DMA

DDR Controller

Timers

SPI, I2C, UART, ...

IPC

Processing System

Deterministic
Execution Unit

Shared Variable

Deterministic
Execution Unit

Inter-Processor-
Communication

Deterministic
Execution Unit

Message Queue

Fig. 3 The structure of an application-specific multi-core
architecture is implemented on a SoC with an FPGA
part and a firm multi-core processor. Safety-critical tasks
were allocated on dedicated Deterministic Execution Units.
The inter-processor communication is realized by hardware
registers.

their real-time behavior can be guaranteed by timing

analysis tools.

3.2 Automated Architecture Generation

Safety-critical applications, which have to be certified

by authorities, must be developed according to defined

standards, as AUTOSAR for automotive applications

and ARINC 653 in the domain of avionics. All

these standards have in common that all hardware

properties and the executed software have to be

known and defined beforehand. Typical information,

which is stored in such system descriptions are

number, priorities, dependencies, shared variables,

stimulus, and allocations of tasks. Execution of

unknown software is forbidden by the applied

standards. This fact is exploited by the R2-D2

approach. The system description is the basis for

a multi-core architecture with a highly optimized,

application-specific inter-core-communication system

to avoid non-deterministic shared hardware resources.

Usually, system specification descriptions have

a similar structure, in which all properties and

dependencies are stored in an XML file. To receive

a better compatibility, the open source system

description format of APP4MC [2] was taken as input

format to generate the processor architecture. For

an automated application-specific hardware generation,

the parameters of the application system have to be

APP4MC SW Description

APP4MC SW + HW Description

VIVADO ECLIPSE

Firmware Software

XML

XML

TCL TCL

BIT ELF

Fig. 4 The tool-flow for the automated hardware generation.
An APP4MC system description is required as input and
will be extended by additional parameters defining the
application-specific hardware. Then TCL instructions for
Xilinx Vivado and Eclipse are created to generate a hardware
architecture instance and raw task frames for the application.

extracted from the APP4MC description. An overview

of the different stages of the R2-D2 toolchain to

generate an application-specific hardware architecture

and the corresponding software system is illustrated in

Fig. 4. The implementation details are described below.

3.2.1 APP4MC XML Description

In the first step, parameters of the software system

stored in the APP4MC XML description are extracted.

From there, additional parameters configuring the

hardware architecture and the allocation of tasks were

derived and added to the XML system specification.

For each entry of a safety-critical task, which is

classified as safety-critical if it has assigned a higher

priority than a watermark level, an entry of a complete

DEU gets instantiated. It includes information about

a parametrizable processor core, a dedicated memory

with the required size, the necessary peripherals, and

the isolated bus system. Furthermore, the safety-critical

task gets allocated to its application-specific DEU.

Uncritical tasks get allocated to the COTS multi-core

processor and will be scheduled by an RTOS. The

system description stays compliant with the APP4MC

standard and can be exchanged if further tools

are necessary. Existing projects developed with an

APP4MC compliant XML structure already include

information about hardware and task allocation. In this

case, only the information about the tasks is used, and

the other entries in the XML file will be replaced.

Moreover, processor type and core properties, as

well as required peripherals of every DEU can be

configured to get sufficient performance and saving

valuable FPGA resources. Thus, additional DEUs

can be implemented, or smaller FPGA devices can

be selected. All available processor cores with their

performance values and required FPGA logic are

listed in Tab. 1. As default configuration of a DEU

6 Steffen Vaas et al.

Table 1 Required space of various processor architectures on the Xilinx Zynq-7020 FPGA device. An additional limitation
is the internal memory of 560 KB, which has to be segmented for all DEUs.

Architecture Bits LUTs Registers DSPs max. Frequency (MHz)
Microblaze min. 32 1893 (3.6%) 1660 (1.6%) 0 (0%) 148.0
Microblaze max. 32 3543 (6.7%) 3018 (2.8%) 6 (2.7%) 138.9
Picoblaze 8 189 (0.4%) 145 (0.1%) 0 (0%) 123.1
NEO430 16 833 (1.6%) 567 (0.5%) 0 (0%) 62.2
Custom MIPS I 32 2918 (5.5%) 2373 (2.2%) 0 (0%) 91.2
Rocket RISC-V 64 29640 (53.8%) 13484 (12.7%) 24 (10.9%) 28.6
PicoRV32 RISC-V 32 1467 (2.8%) 825 (0.8%) 4 (1.8%) 159.8

core, a Microblaze 32-bit processor including a JTAG

debugging interface in minimum configuration without

integer divider, barrel shifter, caches and floating

point unit is selected. The processor configuration

can be modified later in the Xilinx Vivado Design

Suite to implement those additional hardware features,

or other processor architectures can be chosen and

parametrized. If only a minimum of computing power

is needed, the Picoblaze can be selected. It is an

8-bit architecture, which requires less than 200 Lookup

Tables (LUTs) and less than 200 registers on a

Xilinx Zynq-7020 FPGA device. With the NEO430,

an implementation of the 16-bit MSP430 architecture

is provided. Furthermore, a royalty-free custom 32-bit

MIPS I implementation can be selected. Other cores

that are available as open source are two RISC-V

cores: the Rocket core is a 64-bit architecture with

additional non-deterministic hardware features. This

processor is not designed to execute safety-critical tasks

but might be an option if another powerful COTS

core is needed. The PicoRV32 is one of many uprising

open source lightweight RISC-V 32-bit cores. It is

optimized for FPGA devices, and its instruction set

architecture (ISA) is configurable. Besides the basic

instructions, the compressed instruction set and the

multiplication/division subset can be implemented.

The PicoRV32 does not provide a debug interface, but

tracing options are available. As COTS processors all

ARM cores on the Xilinx Zynq and Zynq UltraScale+

devices can be selected since the toolchain requires

the Vivado Design Suite from Xilinx. Uncritical tasks

can, therefore, be scheduled on an ARM Cortex-A9

dual-core, an ARM Cortex-R5 or ARM Cortex-A53

quad-core.

3.2.2 Hardware Generation using Vivado Design Suite

After the APP4MC system description is updated

with hardware-specific parameters, a set of TCL

commands for Xilinx Vivado can be derived from the

XML system description. Thereof, an instance of this

application-specific architecture gets implemented in

Vivado.

At first, all DEUs defined in the APP4MC

XML were generated successively. For each one, the

corresponding processor core and peripherals were

instantiated. Subsequently, those components were

connected by a dedicated AXI bus system with the

processor core as a single bus master, as shown in Fig.

3. At this stage, the DEUs are completely isolated,

which results in a deterministic structure so that every

DEU can be regarded and analyzed independently.

However, data exchange between tasks running on

different DEUs is mandatory, so in the following step,

the communication links were implemented.

The R2-D2 toolchain supports two communication

types: shared variables providing common access to

specific values and message queues, which include a

FIFO storage for buffered data transfers. Moreover,

data transfers between non-critical tasks executed

on a general-purpose multi-core and data transfers

with safety-critical tasks have to be distinguished.

Uncritical tasks running on the COTS multi-core

processor can simply share data by the common

memory. Message queues are realized in software
by an RTOS. For safety-critical tasks running on

DEUs, a common memory between all cores in the

system is not an option. This would result in a

bottleneck when accessing shared data and reduce

the performance. Furthermore, it would destroy the

gained isolation of DEUs by the spatially separated

execution of tasks. As all data transfers between

tasks are already defined in the system description

file, dedicated communication links between DEUs can

be implemented in an application-specific hardware.

Shared variables are realized as dedicated hardware

registers. To transfer data, one task writes values in

the dedicated register. The DEUs of all tasks requiring

read access to this variable are physically connected

to the corresponding register. This principle is realized

in the IPC peripheral of the system, as illustrated in

Fig. 3. Message queues are realized by hardware FIFO

blocks, which can either be mapped to RAM blocks or

registers in the FPGA, depending on the buffer size

of the message queues. Moreover, message queues own

Application-Specific Tailoring of Multi-Core SoCs for Real-Time Systems with Diverse Predictability Demands 7

two AXI slave ports, which are directly connected to the

bus system of the corresponding DEUs. Thus, exclusive

access for the involved tasks is provided.

After the automated implementation of the

architecture instance in Vivado, further post

configurations can be done, as pinout and timing

constraints. In a final step, the hardware bitstream is

generated.

3.2.3 Generation of Raw Task Frames using Eclipse

As the decentralized, irregular structured multi-core

architecture instance owns isolated DEUs with different

processor cores, different memory maps and without

common memory, each safety-critical task has to be

treated as a separated embedded software project.

Every task executed on a corresponding DEU requires

a dedicated linker script and has to be compiled with

a customized compiler toolchain. This causes a poor

usability. Systems with several connected DEUs cannot

be handled anymore, as the software structure gets

too complex. Moreover, the programmability and the

debugging options are inconvenient to use. To avoid

these issues an additional software infrastructure layer

gets created for every individual project, so from the

programmers point of view it has the same behaviour

as a single bare-metal c-code project. Therefore, a

TCL script for the Eclipse IDE from Xilinx is derived

from the APP4MC XML. Thereby one software project

is generated for every DEU. Each one includes a

basic bare-metal application and the software drivers

for all connected peripherals. For the general-purpose

multi-core processor, a FreeRTOS project with raw task

frames is generated. To keep all source files in a common
folder structure, the code sections for the different tasks

running on various DEUs have to be delimited by define

symbols. Thus, the different compiler toolchains from

various projects generate binaries for all DEUs from

a common source-code base. Furthermore, all shared

variables have globally the same addresses, so the usage

of the shared variables behaves the same as on a single

software project.

3.3 Shared Hardware Resources

The basic principle of the presented approach is to avoid

shared hardware resources by an application-specific

multi-core architecture to prevent interferences between

tasks. Shared hardware resources, for example, common

SPI controllers of multiple cores, can be resolved

by instantiating DEUs explicitly for managing shared

peripherals. Thus, no locking mechanisms are necessary.

Tasks requiring access to this common resource

Shared
Peripheral

AXI-Bus

Semaphore

Status
lock lock

lock ID

S S

CORE

Timer RAMWD

AXI-Bus
M

SSS

M

S

CORE

Timer RAMWD

AXI-Bus
M

SSSS S

M S

MMaster Port

Slave Port

In Out

Fig. 5 To support shared peripherals and to avoid a common
bus system between DEUs, shared hardware resources are
connected by a bus system with a lower hierarchy. Thus,
the DEUs stay spatially separated. For correct execution of
applications, locking mechanisms are required. Therefore, a
semaphore unit is implemented in hardware.

can transfer data via message queues to the DEU

maintaining the peripheral. However, if legacy designs

shall be ported or there is not enough space on the

FPGA device for additional DEUs, it is also possible

to connect a shared hardware peripheral to multiple

DEUs. To keep the spatial separation of the DEUs, an

additional bus in a lower hierarchy level is implemented,

as shown in Fig. 5. This lower hierarchy bus has

only one slave port, which is connected to the shared

peripheral, and several master ports. Those master

ports, which are illustrated in Fig. 5, are connected to

the slave interfaces of the DEUs’ buses. In the lower

hierarchy bus, a deterministic round-robin scheduling

algorithm arbiter is realized. Therefore it is possible

to determine the exact number of clock cycles for a

data access on the shared peripheral. All other bus

accesses of cores to their dedicated peripherals within

a DEU cannot be influenced by other cores. The bus

system of the DEUs itself stay isolated. However, most

operations on shared peripherals cannot be handled

with a single data access. To take up the example

of the shared SPI controller again, several bytes need

to be transferred to send a complete package of a

communication protocol. During this time an exclusive

access over a certain time on the shared peripheral

is mandatory. To realize this exclusive access on a

shared peripheral device, a further locking mechanism

is necessary, which must be accessible by all DEUs,

which require access to the shared peripheral. Therefore

another dedicated hardware block was designed, which

implements the functionality of a semaphore. This

IP-core gets instantiated for every shared resource. It

provides one AXI slave port for all DEUs, which need

to access the shared peripheral. Thereby the spatial

separation of the DEUs gets not affected. All connected

cores can read the common state of the hardware

semaphore but have only write access to a dedicated

8 Steffen Vaas et al.

register for lock requests. If a task needs to lock a

semaphore, it can access the semaphore hardware unit

and set a flag in its dedicated control register within

the IP block. Each of those control registers owns

a unique, static priority. An internal state machine

checks all control flags, for incoming locking requests.

Simultaneous requests are handled considering the

static priorities so that a correct real-time behavior

can be guaranteed. To check if the task obtains access

to a shared peripheral, the status register of the

hardware semaphore can simply be polled. In contrast

to COTS cores executing multiple tasks by an RTOS,

no scheduling is required on the DEUs, which simplifies

the timing analysis of the tasks obvious. For increased

reliability, the semaphore can only be unlocked by the

core, that locked the semaphore.

4 Scalability

4.1 Resource Estimation

To show the scalability of the application-specific

multi-core architecture, in the following an estimation

of the FPGA resource utilization, as well as an

comparison to the results of the corresponding

implementations are given. Since the limiting factor in

all tests was the number of available LUTs within an

FPGA, flip-flops and RAM blocks were not considered

for simplification.

Each generated architecture instance can be

described in a similar way to a Petri net model as a

triple I (1) with a task set T , shared data values S and

the connection links L between tasks.

I := (T, S, L) (1)

Each task Ti ∈ T with a higher priority Pi

than the critical priority level Pc is part of the

set of safety-critical tasks TSC ⊆ T (2). For each

safety-critical task one DEU has to be generated as a

hardware unit.

TSC := {Ti|Pi ≥ Pc} (2)

The resource usage of each DEU configuration RDEUi

including a core, peripherals and the local bus system

can be determined by implementation reports of the

applied components. For the following estimation, all

DEUs consist of aMicroblaze core with a dedicated AXI

bus system and further periperhals, which are listed in

Table 2.

Moreover, safety-critical shared data values SSC ∈
S must be considered, as they have to be implemented

Table 2 This table lists the required FPGA LUTs for one
DEU in the selected configuration, which was used for the
following utilization tests in this section.

Component LUTs FFs BRAMs
MicroBlaze Core 1087 965 0
AXI Bus 283 61 0
Memory 224 213 1
Timer 283 215 0
UART 99 89 0
Watchdog Timer 74 94 0
Total 2050 1637 1

in hardware. Those can be identified by detecting the

links L (3), which connect shared data values with

safety-critical tasks (4).

L ⊆ (T × S) ∪ (S × T) (3)

SSC := {Si|((Si, Tj) ∈ L ∨ (Tj , Si) ∈ L) ∧ ∃Tj ∈ TSC}
∀i, j ∈ N

(4)

A shared data value Si can be of type FIFO,

semaphore, shared variable or shared peripheral

Si := {SFIFO, SSemaphore, SV ariable, SPeripheral}.
Those types have to be distinguished for resource

estimation function f :

f : Si 7→ f(Si) := Ri, ∀Si ∈ SSC (5)

SFIFO: Buffered data between tasks can only be

realized by a 1:1 connection. The size of the buffer

register has influence on the number of flip-flops, but no

relevant impact on the utilized LUTs, as the conrol logic

stays the same. Therefore, every FIFO block requires

only a constant size of LUTs RC FIFO.

∀Si = SFIFO :

f(Si) = RC FIFO

(6)

SSemaphore: Semaphores implemented as hardware

blocks are variable in number of connected DEUs.

Beside a constant overhead RC Semaphore for the

control logic, the number of connected DEUs has to be

considered for calculating the utilized LUTs.

∀Si = SSemaphore :

f(Si) = RC Semaphore + |TSC × Si| ∗RC Sem Port

(7)

SV ariable: A shared variable has a fixed size and no

further constant overhead. The resulting dedicated

hardware registers can be linked as a 1:n connection.

Application-Specific Tailoring of Multi-Core SoCs for Real-Time Systems with Diverse Predictability Demands 9

Table 3 This are the selected parameter values for the
estimation test.

Parameter Value / LUTs
PC 0
NRegs 16
RC FIFO 375
RC Semaphore 163
RC Sem Port 36
RC V arWrite 7
RC V arRead 6

One DEU has a write access and an arbitrary number

of DEUs are connected as read only. The LUTs required

for write accesses RC V arWrite and the overhead for

read accesses RC V arRead have to be distinguished.

∀Si = SV ariable :

f(Si) = RC V arWrite + |Si ×D| ∗RC V arRead
(8)

SPeripheral: The resource usage of a shared peripheral

strongly depends on the size of the peripheral itself

(RC Peripheral). Additionally an AXI bus system has

to be implemented to control the data access. For its

size, the number of connected DEUs has to be taken

into account.

∀Si = SPeripheral :

f(Si) = RC Peripheral + |TSC × Si| ∗RC Per Port

(9)

The resource usage Total LUTs of the whole design

can now be estimated by adding the resources of each

DEU RDEUi
and all safety-critical shared values SSC ,

which were determined by (6)-(9).

Total LUTs =

|TSC |∑
i=1

RDEUi
+

|SSC |∑
i=1

Ri (10)

4.2 Estimated and Measured Resource Usage

To review the resource estimation functions, 4 scenarios

with different amount of cores, FIFOs, semaphores

and shared variables have been selected. The DEU

configuration is the one described in Table 2, further

required paramters were described in Table 3. The

graph of Fig. 6 shows the estimations compared to the

implementation results of four scenarios. Even if there

is an FPGA utilization of 86% the deviation between

the estimation and the LUTs utilized in a implemented

design is less than 1%.

 0

 10000

 20000

 30000

 40000

 50000

4

C
o
re
s
,
4

F
IF
O
s
,

4

S
e
m
a
p
h
o
re
s
,

3
2

S
h
a
re
d

V
a
ri
a
b
le
s

8

C
o
re
s
,
8

F
IF
O
s
,

8

S
e
m
a
p
h
o
re
s
,

6
4

S
h
a
re
d

V
a
ri
a
b
le
s

1
2

C
o
re
s
,
1
2

F
IF
O
s
,

1
2

S
e
m
a
p
h
o
re
s
,

9
6

S
h
a
re
d

V
a
ri
a
b
le
s

1
6

C
o
re
s
,
1
6

F
IF
O
s
,

1
6

S
e
m
a
p
h
o
re
s
,

1
2
8

S
h
a
re
d

V
a
ri
a
b
le
s

 0

 20

 40

 60

 80

 100

L
U
T
s

U
til
iz
a
tio
n

(%
)

Scenarios

Estimated LUTs
Placed LUTs

Fig. 6 In this graph the accuration of the estimation function
for 4 scenarios is illustrated. The scenarios include 4 to 16
cores, FIFOs semaphores and 32 to 128 shared variables.

4.3 Limitations of Estimation

Beside the resource utilization of placed LUTs, FIFOs

and RAM blocks also the routing nets are a delimiting

factor. Depending on the kind of shared data values, a

different amount of routing resources is required. Fig. 7

illustrates, that every design filled up with FIFOs can

utilize the FPGA capacities to more than 90%, where in

a design with 1000 shared variables only 75% of LUTS

and 51% of flip-flops can be applied.

5 Quadcopter Controller Showcase

To show the advantages of the R2-D2 toolchain

practically on an use case, an architecture of

a quadcopter flight controller was generated and

implemented on a Xilinx Zynq 7020 device. The

structure is shown in Fig. 8. The flight controller

combines multiple functionalities: data acquisition

from sensors, position estimation in space and motor

control. For more complex flight operations the

Mission Control task can navigate the quadcopter

by GPS coordinates. The MAVLink task provides an

interface over the identically named widespread UAV

10 Steffen Vaas et al.

 50

 60

 70

 80

 90

 100

 12 16 20 24

#

F
P
G
A

L
U
T
s

U
til
iz
a
tio
n

(%
)

Cores

flled up with Shared Variables
flled up with Semaphores

flled up with FIFOs
DEU Resource Usage

64
40

20

4

96

64

36

8

1000

700

400

100

Fig. 7 This plot shows the maximum FPGA utilization when
implementing a maximum number of FIFOs, semaphores and
shared variables in a design with 12 to 24 cores. Due to
routing limitations not all FPGA resources can be used.

communication protocol to configure settings, as PID

parameters. Additionally, an image processing unit is

implemented that scans the ground for landing marks

and automatically activates a landing sequence.

The tasks of the system are partitioned into time

critical and non-critical sections, as it is proposed

in [18]. Main critical section of the flight controller

is the control loop consisting of sensor-, position- and

motor control. Therefore these three tasks are executed

on isolated DEUs. Data between the Sensor Control,

IMU and PID Control tasks are exchanged by shared

variables, so all calculations are executed with the latest

sensor data available, which is common practice to

avoid synchronization locks. Since sensors and tasks

deliver continuous values, deviations caused by delayed

data updates are negligible. The tasks Mission Control

and MAVLink have no hard deadline requirements, but

they are classified as safety-critical, as they directly

influence the control loop. Therefore, those tasks are

also executed on DEUs. The non-critical part of the

system includes the detection of the landing mark since

it is an optional feature and the landing sequence

can also be started manually, so the corresponding

tasks were executed on the ARM Cortex-A9 dual-core.

Data transmissions between the DEUs and the COTS

multi-core has to be reviewed in particular, as data

dependencies or corrupt data transmissions jeopardize

the reliability of the DEUs. Data transmitted from

safety-critical tasks on DEUs to uncritical tasks running

on the COTS multi-core are robust by design, since

DEU
Sensor Control

DEU
PID Control

DEU
Mission Control

PWM 3

PWM 4

PWM 2

PWM 1

ARM
Cortex-A9

Buzzer

LEDs

SD-Card

Zynq
Sobel

MAG

ATT

ACC

GYRO

GPS

UART

RADIO

CAMERA

DEU
IMU

DEU
MAVLink

Fig. 8 A generated application-specific architecture for
a flight-controller of a quadcopter, which is implemented
on a Xilinx Zynq 7020 device including five DEUs for
safety-critical tasks and a firm ARM Cortex-A9 dual-core
processor for uncritical tasks.

those uncritical tasks only have read access to the

shared registers and therefore cannot manipulate their

safety-critical content. In some cases also data transfers

from uncritical tasks to the DEUs are necessary. In this

application, the coordinates of a detected landing mark

have to be transmitted. As corrupt data could engender

damage on the quadcopter, additional mechanisms to

increase the reliability of the system have to be added.

Here this is realized by a CRC checksum, which is

generated over transmitted coordinates. Furthermore,

a plausibility check is implemented. Detected landing

marks have to be within a radius of 10 meters. To

avoid correctly and incorrectly detected landing marks,

information from the ARM cores can also be ignored

by the Mission Control DEU, if a flag is set by

the MAVLink DEU. Moreover, this image processing

application is comparably compute-intensive, so it

benefits from the performance of the firm implemented

dual-core. Due to the combination of multi-core and

FPGA on one chip, the landing application can be

additionally improved by a hardware accelerator for the

Sobel algorithm, which processes the edge detection of

an image. The feature detection is described in [16].

Detected landing sections are signaled to the mission

control task, which will start the landing sequence.

The deterministic structure of the generated

architecture with its isolated DEUs simplifies the

later verification of safety-critical sections with static

timing analysis tools. The control loop can be

considered separately without influences of an RTOS

or non-critical tasks, which were spatially separated.

Uncritical parts can further be developed independently

since the DEUs executing the safety-critical tasks do

not share their code base.

Application-Specific Tailoring of Multi-Core SoCs for Real-Time Systems with Diverse Predictability Demands 11

10
3

10
4

10
5

10
6

10
7

10
8

 5 10 15 20 25 30

#

E
x
e
c
u
tio
n

C
y
c
le
s

Task #

ARM Cortex-A9 (667 MHz)
DEUs only (100 MHz)

Combined (Tasks 1-5 on DEUs)

Fig. 9 In this graph the execution cycles of the 5 safety-critical tasks from the flight controller application and 25 further
non-safety critical tasks are shown. The DEUs have a highly deterministic behavior, but the FPGA device does not provide
enough space for 30 of them. By applying only the COTS dual-core, all task could be accommodated on the price of determinism.
A combination of both architectures unifies the advantages.

6 Results

As hardware models to analyze the WCET of the

lightweight DEU cores do not exist yet, we evaluted the

system by measurements. The tasks of the application

in Section 5 were implemented with a minimum amount

of branches and all loops unrolled to emulate a constant,

deterministic load for the cores. Thus interferences

caused by hardware design can be revealed. In Fig. 9 the

minimum, maximum and average number of execution

cycles for the 5 critical tasks and 25 further non-critical

tasks are shown. Task 1 to 5 have to fulfill a deadline of

1ms. The other uncritical tasks were executed with a

periodical repetition of 1 ms∗Task #. To compare the

results, two reference systems have been implemented.
In the first one, all tasks were implemented on the ARM

Cortex-A9 dual-core. Tasks with odd ID are allocated

on core 1, those with even ID on core 2. On the second

reference system, all tasks were executed on DEUs.

The applied DEUs include Microblazes in extended

configuration with, floating-point unit, integer divider,

barrel shifter, stack protection and debug unit. The

required FPGA resources for the core can be found in

Table 1, the resources for the applied peripherals in

Table 2. During the measurements, all deadlines were

met.

The measured results show that the number

of required execution cycles varies on the COTS

multi-core even for safety-critical tasks. This is caused

by task- interference and scheduling overhead of the

RTOS. In contrast to that, the execution cycles of tasks

running on the DEUs stay constant. The worst-case

observed values of safety-critical tasks on the COTS are

already higher than the corresponding execution cycles

on the DEUs. A timing analysis would deliver even

more pessimistic values for the multi-cores. The ARM

cores benefit from a more extensive ISA. Especially the

double precision FPU compared to the single precision

FPU on the DEUs reduce the number of instructions.

Therefore the average values of task number 1 and 2

on the COTS multi-core are lower than on the DEUs.

The scheduling overhead and therefore the increased

number of memory accesses lead in the worst-case to a

higher amount of required clock cycles than the same

tasks executed on DEUs. For the safety-critical tasks

with the ID 3 to 5 the task-interference has further

increased. More scheduling events and so an increased

number of memory accesses is required. This leads to

better results on the DEUs for those tasks, but due

to limited FPGA resources the complete system is not

realizable solely with DEUs. With this architecture only
13 tasks could be realized. The results of the combined

architecture of ARM cores and DEUs shows, that the

usage of DEUs for critical tasks unloads the ARM cores

and also the scheduling overhead. Moreover, it reduces

interferences, which is presented in Fig. 10.

Furthermore, this approach benefits from the fact

that real-time critical tasks require rather low latencies

than computing power and because of the high

repetition rates they only need a few of KB memory

for instructions. This favors the use of small soft-core

processors, which have only a low performance in

comparison to firm implemented cores. However the

overhead of an RTOS for scheduling is not required,

so low latencies can be realized. The instruction code

is small enough to fit into the internal memory of the

chip, so the principle of dedicated memory for all DEUs

can be realized.

12 Steffen Vaas et al.

 0

 2

 4

 6

 8

 10

 12

 14

 5 10 15 20 25 30

In
te
rf
e
re
n
c
e

R
a
tio

(W

o
rs
t-
C
a
s
e

O
b
s
e
rv
e
d

T
im
e

/
B
e
s
t-
C
a
s
e

O
b
s
e
rv
e
d

T
im
e
)

Task #

ARM Cortex-A9 (667 MHz)
Combined (Tasks 1-5 on DEUs)

DEUs only (100 MHz)

Fig. 10 This plot represents the ratio of the worst-case to
the best-case observed execution times, as well as the FPGA
utilization for the 3 implemented architectures.

7 Related Work

To certificate safety-critical systems several widespread

domains have to be considered. Functional safety

of the applications has to be proven by extensive

testbenches taking every possible malfunction into

account [3]. In terms of reliability, risk management is

required. Redundant hardware platforms and software

implementations guarantee the robustness of the

system. Deterministic behaviour is one further relevant

aspect for safety-critical systems, which affects various

fields as hardware architectures, scheduling, compilers

and WCET analysis tools [7,5].

Approaches that aim a deterministic behaviour on

embedded multi-core systems either rely on COTS or

on self-designed deterministic hardware architectures.

The benefit of COTS hardware is the high performance,

the availability of low-cost chips and the existing

software infrastructure. There are various toolchains

and operating systems, which can be applied. The

challenge when using COTS multi-cores is to guarantee

deterministic behaviour on partly non-deterministic

hardware. An increasing trend to tackle this problem

is the mixed-criticality WCET approach [13]. The key

idea is that a mixed critical system consists of different

modes of operation. In each mode a set of tasks and

corresponding deadlines are defined. If a critical task

seem to miss its deadline, the mode changes to a

higher criticality level. Now low-critical tasks were

not scheduled anymore and it can be guaranteed,

that the critical tasks meet their deadlines. Therefore,

this approach leads to a higher core utilization when

executing uncritical and critical tasks on shared

resources. However, the main problem remains: the

analyzed WCET for critical tasks on multi-cores stay

too pessimistic.

To avoid those pessimistic assumptions, other

approaches focus on deterministic multi-core

architectures, which are optimized for a low WCET.

The PATMOS core [17] therefore provides separated

caches for instructions, data and stack. Furthermore,

scratchpads are available to control the contention

for local memory. On the other hand this requires

a complete redesign of existing applications and a

tailored software for this processor to benefit from

this design-specific improvements. PRET [12,23,11] is

designed to reduce the effort of static timing analysis.

Key concept is an architecture with repeatable timing,

that is realized by thread interleaved pipelines. Thus,

pipeline hazards are avoided by design. However, the

performance of the core gets drastically reduced, if

only one or two threads are active. Nonetheless, there

is a need for such processor architectures, which are

for example implemented in the XMOS xCORE family

[4].

The cores of a deterministic multi-core design are

either connected by a common deterministic bus [20,

8], or by a NoC to provide a scalable architecture. The

required isolation between the cores is created by time

division multiple access (TDMA). Thus, especially on

NoCs the bandwidth for a single core decreases, if cores

need random access to other ones. Round robin arbiters

only achieve a low bus utilization, so several approaches

try to improve the core communication bandwidth. In

[10] for example a benes-based NoC structure is used.

The IDAMC [19] focuses on reliable routing of critical

and uncritical data on one NoC.

The R2-D2 approach avoids the disadvantages

of WCET-specific hardware. Established single-core

processors are used, so no additional instructions

are required. Data dependencies between cores are

realized by lightweight communication links, so no NoC

structure with TDMA bottleneck is necessary. This

results in a application-specific, scalable system at the

expense of flexibility.

8 Conclusion

In this paper, we presented an approach to execute

safety-critical and uncritical tasks in parallel on

one chip by generating an application-specific

multi-core architecture. The safety-critical tasks of a

demonstration system were isolated and executed on

dedicated, deterministic hardware units. Hence, timing

Application-Specific Tailoring of Multi-Core SoCs for Real-Time Systems with Diverse Predictability Demands 13

analysis for those tasks gets simplified significantly,

as hardware interferences were avoided by design.

Further measurements have shown that the selected

FPGA device does not provide enough resources to

implement all tasks on DEUs, so a combination of

COTS multi-cores and DEUs is required. Thereby the

jitter of the tasks was reduced, as well as the average

execution time of the uncritical tasks executed on the

COTS multi-core.

References

1. AbsInt aiT. URL https://www.absint.com/ait/

2. APP4MC. URL http://www.eclipse.org/app4mc/

3. Position Paper CAST-32A. URL https://www.faa.

gov/aircraft/air_cert/design_approvals/air\

_software/cast/cast_papers/media/cast-32A.pdf.
Certification Authorities Software Team (CAST)

4. XMOS xCORE-200. Tech. rep. URL http://www.xmos.

com/products/silicon/xcore-200

5. Castrillon, J., Sheng, W., Jessenberger, R., Thiele, L.,
Schorr, L., Juurlink, B., Alvarez-Mesa, M., Pohl, A.,
Reyes, V., Leupers, R.: Multi/many-core programming:
Where are we standing? In: 2015 Design, Automation
Test in Europe Conference Exhibition (DATE), pp.
1708–1717 (2015). DOI 10.7873/DATE.2015.1129

6. Ferdinand, C., Heckmann, R., Wolff, H.J., Renz,
C., Parshin, O., Wilhelm, R.: Towards model-driven
development of hard real-time systems. In: Model-Driven
Development of Reliable Automotive Services, pp.
145–160. Springer (2008)

7. Fernandez, G., Abella, J., Quiñones, E., Rochange, C.,
Vardanega, T., Cazorla, F.J.: Contention in Multicore
Hardware Shared Resources: Understanding of the
State of the Art. In: 14th International Workshop
on Worst-Case Execution Time Analysis, OpenAccess
Series in Informatics (OASIcs), pp. 31–42. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik. DOI http://
dx.doi.org/10.4230/OASIcs.WCET.2014.31. URL http:

//drops.dagstuhl.de/opus/volltexte/2014/4602

8. Fernández, M., Gioiosa, R., Quiñones, E., Fossati, L.,
Zulianello, M., Cazorla, F.J.: Assessing the Suitability
of the NGMP Multi-core Processor in the Space
Domain. In: Proceedings of the Tenth ACM International
Conference on Embedded Software, EMSOFT ’12, pp.
175–184. ACM, New York, NY, USA (2012). DOI 10.
1145/2380356.2380389. URL http://doi.acm.org/10.

1145/2380356.2380389

9. Fürst, S.: BMW 20151005.pdf. URL http://image.

mdstec.com/mail/SES/BMW_20151005.pdf

10. Kerrison, S., May, D., Eder, K.: A Benes Based NoC
Switching Architecture for Mixed Criticality Embedded
Systems. In: 2016 IEEE 10th International Symposium
on Embedded Multicore/Many-core Systems-on-Chip
(MCSOC), pp. 125–132 (2016). DOI 10.1109/MCSoC.
2016.50

11. Lee, E., Reineke, J., Zimmer, M.: Abstract PRET
Machines. In: 2017 IEEE Real-Time Systems Symposium
(RTSS), pp. 1–11 (2017). DOI 10.1109/RTSS.2017.00041

12. Liu, I., Reineke, J., Lee, E.A.: A PRET architecture
supporting concurrent programs with composable timing
properties. In: 2010 Conference Record of the Forty
Fourth Asilomar Conference on Signals, Systems and

Computers, pp. 2111–2115 (2010). DOI 10.1109/ACSSC.
2010.5757922

13. Mollison, M.S., Erickson, J.P., Anderson, J.H., Baruah,
S.K., Scoredos, J.A.: Mixed-Criticality Real-Time
Scheduling for Multicore Systems. In: 2010 10th
IEEE International Conference on Computer and
Information Technology, pp. 1864–1871 (2010).
DOI 10.1109/CIT.2010.320

14. Montag, P., Altmeyer, S.: Precise WCET calculation
in highly variant real-time systems. In: 2011 Design,
Automation Test in Europe, pp. 1–6. DOI 10.1109/
DATE.2011.5763149

15. OSEK/VDX Group: Operating system specification
2.2.3. Tech. rep., OSEK/VDX Group (2005). http:

//portal.osek-vdx.org/files/pdf/specs/os223.pdf,
visited 2014-09-29

16. Pfundt, B., Reichenbach, M., Hartmann, C., Häublein,
K., Fey, D.: Teaching heterogeneous computer
architectures using smart camera systems. In: 2016
11th European Workshop on Microelectronics Education
(EWME). DOI 10.1109/EWME.2016.7496484

17. Schoeberl, M., Pezzarossa, L., Sparsø, J.: A Multicore
Processor for Time-Critical Applications. IEEE Design
Test 35(2), 38–47 (2018). DOI 10.1109/MDAT.2018.
2791809

18. Schreiner, S., Grüttner, K., Rosinger, S., Rettberg,
A.: Autonomous Flight Control Meets Custom
Payload Processing: A Mixed-Critical Avionics
Architecture Approach for Civilian UAVs. In:
2014 IEEE 17th International Symposium on
Object/Component/Service-Oriented Real-Time
Distributed Computing, pp. 348–357. DOI 10.1109/
ISORC.2014.28

19. Tobuschat, S., Axer, P., Ernst, R., Diemer, J.: IDAMC:
A NoC for mixed criticality systems. In: 2013 IEEE 19th
International Conference on Embedded and Real-Time
Computing Systems and Applications, pp. 149–156
(2013). DOI 10.1109/RTCSA.2013.6732214

20. Ungerer, T., Cazorla, F., Sainrat, P., Bernat, G., Petrov,
Z., Rochange, C., Quinones, E., Gerdes, M., Paolieri, M.,
Wolf, J., Casse, H., Uhrig, S., Guliashvili, I., Houston,
M., Kluge, F., Metzlaff, S., Mische, J.: Merasa: Multicore
Execution of Hard Real-Time Applications Supporting
Analyzability. IEEE Micro 30(5), 66–75 (2010). DOI 10.
1109/MM.2010.78

21. Vaas, S., Reichenbach, M., Margull, U., Fey, D.: The
R2-D2 toolchain – Automated porting of safety-critical
applications to FPGAs. In: 2016 International
Conference on ReConFigurable Computing and FPGAs
(ReConFig). DOI 10.1109/ReConFig.2016.7857192

22. Vaas, S., Ulbrich, P., Reichenbach, M., Fey, D.: The best
of both: High-performance anc deterministic real-time
executive by application-specific multi-core socs. In: 2017
Conference on Design and Architectures for Signal and
Image Processing (DASIP) (2017). DOI 10.1109/DASIP.
2017.8122107

23. Zimmer, M., Broman, D., Shaver, C., Lee, E.A.:
FlexPRET: A processor platform for mixed-criticality
systems. In: 2014 IEEE 19th Real-Time and Embedded
Technology and Applications Symposium (RTAS), pp.
101–110 (2014). DOI 10.1109/RTAS.2014.6925994

14 Steffen Vaas et al.

Steffen Vaas received his

master degree in Information

and Communication

Technology at the

Friedrich-Alexander-University

(FAU) Erlangen-Nürnberg in

2015. Currently he is a research

fellow at FAU at the chair of

computer architecture. There

he focuses on heterogeneous,

application-specific and

deterministic multi-core

architectures.

Peter Ulbrich is research

associate and lecturer at the

Chair of Distributed Systems

and Operating Systems at

FAU Erlangen-Nürnberg,

Germany. He received his

diploma from FAU in 2007 and

joined the group of Wolfgang

Schröder-Preikschat at FAU,

where he received his Ph.D. in

2014. He research focuses on

real-time and dependable systems. Dr. Ulbrich is a

member of GI, ACM, and IEEE.

Marc Reichenbach

received his Diploma

Degree in Computer Science

at the Friedrich-Schiller

University Jena in 2010

and his PhD in 2017 at

Friedrich-Alexander-University

Erlangen-Nürnberg (FAU). He

works now as a postdoctoral

researcher at FAU at the chair

of Computer Architecture. His research interests

are embedded systems, especially smart sensor

architectures for different application fields.

Dietmar Fey holds

a diploma degree in

Computer Science from

Friedrich-Alexander-University

(FAU) Erlangen-Nürnberg,

Germany. In 1992 he received

a Ph.D. from FAU with a

work on an investigation about

Using Optics in Computer

Architectures. From 1994 to

1999 he researched at Friedrich-Schiller-University

Jena where he made his habilitation. From 1999 to

2001 he worked as lecturer at University Siegen

before he became a Professor for Computer

Engineering at University Jena. Since 2009 he

leads the Chair for Computer Architecture at

Friedrich-Alexander-University Erlangen-Nürnberg

(FAU). His research interests are in parallel computer

architectures, parallel programming environments,

parallel embedded systems, and memristive computing.

