
978-1-5386-3534-6/17/$31.00 ©2017 IEEE

The Best of Both: High-performance and
Deterministic Real-Time Executive by
Application-Specific Multi-Core SoCs

Steffen Vaas∗, Peter Ulbrich†, Marc Reichenbach∗ and Dietmar Fey∗
Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany

∗Chair of Computer Science 3 - Computer Architecture
†Chair of Computer Science 4 - Distributed Systems and Operating Systems

{steffen.vaas, peter.ulbrich, marc.reichenbach, dietmar.fey}@fau.de

Abstract—Embedded multi-core processors improve perfor-
mance significantly and are desirable in many application-fields.
This in particular includes safety-critical real-time systems, which
typically require a deterministic temporal behavior. However,
even tasks without dependencies running on different cores can
interfere due to, sometimes hidden, shared hardware resources,
such as common memories or buses. Consequently, only a
pessimistic assumption of the worst-case execution time (WCET)
that incorporates interference can be given. Hence, the aspired
performance gain fizzles out in the poor temporal analyzability.

Based on the fact that in safety-critical systems all tasks
and their dependencies are known at compile-time, this
paper presents an approach to generate application-specific,
deterministic multi-core processor architectures for these
systems. Thereby safety-critical tasks are executed on dedicated
Deterministic Execution Units (DEUs) including lightweight,
deterministic processor cores, bus systems, memories and
peripherals. The remaining soft real-time tasks are executed on
a general purpose multi-core processor that offers performance
over determinism. Consequently, timing analysis for hard real-
time tasks is significantly simplified, since interferences caused
by shared resources and scheduling are effectively eliminated.
To show the benefits of our approach, an application-specific
architecture for a flight controller was generated and compared
to an ARM Cortex-A9 dual-core as reference. Overall, we
were able to significantly improve temporal properties of
safety-critical tasks while preserving the overall performance
for soft real-time tasks.

Index Terms—Safety-Critical, Reconfigurable, Reliable, Deter-
ministic, Distributed, NoC, SoC

I. INTRODUCTION

A characterizing feature of real-time systems is that they
have to react to physical events within given deadlines. These
can be more or less strict, for which reason real-time systems
are typically classified into hard and soft real-time (i.e., high
and low criticality). In a car, for example, the airbag always
has to meet hard timing constraints, whereas missed deadlines
in the navigation system are ultimately just annoying.

Therefore, a fundamental requirement in real-time system
engineering is the sound estimation of worst-case execution

This work is partially supported by the German Research Foundation (DFG)
under grants no. SCHR 603/9-2 and the Bavarian Ministry of State for
Economics under grant no. 0704/883 25 (EU EFRE funds).

Core 1 Core 2 Core 3 Core 4
L1 Cache

UART

SPI

IIC

GPIO

SRIO

PCIE

L2 Cache

L1 Cache L1 Cache L1 Cache

Memory
Controller

DMA

Fig. 1. The structure of an exemplary multi-core processor architecture: tasks
running on different cores share hardware resources, as the common memory
controller, which leads to contention. Even if tasks do not access to same
peripherals, interferences occur caused by the common bus system.

times (WCETs) for safety-critical, hard real-time tasks. How-
ever, contemporary processors typically pack a whole series
of performance-enhancing measures, such as pipelines, out-of-
order execution, and tiered memory architectures jeopardizing
this aim. To give an example, a simple addition may take
between 3 (best) and 321 cycles (worst case) in a 2001
PowerPC 755 [1]. Consequently, any sound WCET analysis
will be pessimistic to a certain extent and provide only over-
approximations (upper bounds) of the actual WCET. In the
past, real-time applications of different criticality (i.e., hard
and soft) where either treated equally according to the higher
criticality or partitioned on dedicated execution platforms.
For example, in a car each function is rendered by a single
electronic control unit (ECU), which made it relatively easy
to isolate and satisfy timing and safety requirements. Recently
two important factors have changed: On the one hand, au-
tonomous driving is just around the corner, making software
much more complex as well as more parts safety-critical. On
the other hand, multi-core embedded processors have hit the
market, supplying an amount of processing power unthinkable
in the past. Market pressure forces the industry to seize this
opportunity by consolidating ECUs. Therefore, software of
lower safety requirements now co-resides with applications of
high safety demands, thus increasing interference, complexity
and the certification hurdle occur at the same time.

Although considerable progress has been made in WCET
and especially hardware analysis for single core real-time

systems, multi and many-core systems still represent an unre-
solved challenge to be tackled. Here, the major show-stoppers
are interferences caused by inter-task dependencies as well
as shared resources and, even worse, hidden yet inherent
interdependencies within the actual hardware architecture,
as illustrated in Fig. 1. Overall, these massively increased
interferences typically bloat analysis estimates to the point
where they become unfeasible in practice.

Consequently, the real-time community pursues various
other ways to deal with the problem: with partitioning, novel
scheduling techniques, and deterministic hardware being the
most prominent representatives. The first, partitioning, cer-
tainly is the most intuitive and widespread approach. It is,
for example, state-of-the-art in the automotive domain, where
individual functions are tied to dedicated cores. This works
well, as long as the problem fits the hardware granularity. An-
other approach is to pigeonhole the cumbersome WCET over-
estimates by resorting to mixed-criticality scheduling. Here,
optimistic WCET estimates are used as long as budgets are not
exceeded. Otherwise, the system gradually switches to hard
upper bounds for critical tasks with hard deadlines by omitting
less critical tasks to mobilize resources. Although being a
captive concept it requires multiple WCET estimates per task,
which can be tricky to acquire, and restricts the verifiability
in practice due to the added scheduling complexity. Finally,
deterministic architectures, such as PATMOS or RISC-V, can
be used to again simplify the WCET analysis. However, this
is also accompanied by a substantial loss in performance due
to the absence of the aforementioned hardware techniques.

A. Problem Statement

Recent developments in field programmable gate arrays
(FPGAs) and systems on a chip (SoCs) allow for a further ap-
proach: Instead of relying on commercial off-the-shelf (COTS)
hardware, the architecture can be specifically tailored to meet
the application’s needs while maintaining determinism and
analyzability. In earlier work [2], we have therefore investi-
gated the automated partitioning and tailoring of automotive
real-time systems on dedicated, deterministic soft-cores within
contemporary FPGAs. However, this approach comes at the
cost of flexibility and performance as the entire hardware
architecture is synthesized within the FPGA. As mentioned
earlier, real-time systems are heterogeneous in practice, with
performance and safety requirements varying between indi-
vidual tasks. We assume that the predominant part of real-
time systems is of low criticality (e.g., comfort and diagnost
functionality). Moreover, tasks typically exhibit substantial
dependencies and precedence constraints, for example between
sensing, computing and actuating. Consequently, synthesis of
dedicated soft cores for individual tasks quickly reaches its
limits and is not generally applicable.

To leverage FPGAs in heterogeneous settings a combina-
tion of performance-oriented general-purpose cores and task-
exclusive real-time cores is missing that allows for interde-
pendencies and precedence constraints between critical and

non-critical tasks and, at the same time, prevents harmful
interference by strong isolation concepts.

B. Our Contribution

In this paper, we present the reconfigurable, reliable, de-
terministic, distributed (R2-D2) toolchain, an approach for
the automated generation of application-specific multi-core
architectures for heterogeneous real-time systems. We claim
the following key contributions to improve:

• Improved scalability by an automated mapping of soft
and hard real-time tasks to COTS processors and Deter-
ministic Execution Units (DEUs), respectively.

• Enhanced performance due to an optimized utilization of
the available FPGA resources.

• Strong isolation between deterministic and non-
deterministic execution units by tailored data exchange
and synchronization mechanisms.

The remainder of this paper is structured as follows: First,
we detail our R2-D2 approach, the automated architecture
generation and shared resources in Sec. II. Subsequently,
we exemplify our approach by a flight control showcase in
Sec. III and IV before discussing related work in Sec. V and
concluding the paper in Sec. VI.

II. THE R2-D2 APPROACH

This section introduces our R2-D2 approach: starting with
basic design principles, we subsequently detail our approach
to automated architecture generation. Finally, we tackle the
challenging issue of unavoidable intra-task dependencies and
shared resources.

A. The Basic Approach

COTS multi-core architectures typically include shared re-
sources such as common memories or buses. Multiple tasks
may attempt to access them at the same time, which results in
interference between these tasks. To avoid this issue from the
first, we propose an application-specific processor architecture
with dedicated, spatially separated hardware resources for
safety-critical tasks. The detailed structure of an exemplary
architecture generated by the R2-D2 toolchain is illustrated in
Fig. 2. Every safety-critical task is exclusively executed by
one DEU that includes all required components to run as an
independent basic microcontroller system. The corresponding
CPU core is customizable, different architectures from 8-bit
to 64-bit can be selected. Additionally, some architectures
are parametrizable, thus for example floating point units or
hardware dividers can be optionally instantiated. The core is
connected as sole master on one AXI bus to the corresponding
slave peripherals. By default a timer for periodical execution
of code, a watchdog as fail-safe option, a controller for inter-
processor communication (IPC) and a memory are instantiated.
The abolition of a common memory for all processor cores fur-
thermore eliminates a well-known bottleneck of COTS multi-
core systems. Moreover, the distributed, spatially separated
memories of safety-critical tasks increase the reliability of
the system. Corrupt write accesses from uncritical tasks are

inhibited by design. Thus, a memory protection or manage-
ment unit (MPU/MMU) can be omitted. Since only one task is
executed on one DEU, no additional scheduling mechanisms
are required. As a consequence, an operating system is not
necessary any longer. Tasks can run on bare-metal. This
reduces the complexity of the system drastically, because no
preemption of tasks with higher priority can occur. Only the
source code itself and data dependencies between tasks have
to be regarded for timing analysis of the safety-critical tasks.
Therefore, tasks running on dedicated DEUs have the same
behaviour as they would be executed on bare-metal single-
core systems. For such single-core systems there exist a range
of scientific [3] and commercial [4] static timing analysis
methods, which can now be applied to this application-specific
multi-core system. Hence, the verification of the system can
be simplified significantly.

However, implementing a complete DEU for every task is
inconvertible for large systems with a considerable amount
of tasks due to limited chip area. Since for uncritical tasks
within a system deterministic behaviour is not necessary, all
non-safety-critical tasks can be executed on a COTS multi-core
processor architecture, which is only loosely coupled with the
DEUs for data transfers. Empiric studies show [5] that only a
few tasks within an application system are safety-relevant, so
only a low number of dedicated DEUs will be required.

B. Automated Architecture Generation

In most cases safety-critical applications consist solely of
static software code, so all tasks within a system are already
known at compile time. To design such systems as a top-
down approach and to decouple dependencies of hardware and
software developments, system specifications as AUTOSAR for
automotive applications and ARINC 653 in the domain of
avionics are applied. Typical information, which are stored in
such system descriptions are number, priorities, dependencies,
shared variables, stimulus and allocations of tasks. Usually
system specifications have a similar structure, in which all
properties and dependencies are stored in an XML file. To re-
ceive a better compatibility, the open source system description
format of APP4MC [6] was taken as input format to generate
the processor architecture.

For an automated application-specific hardware generation
the parameters of the application system have to be extracted
from the corresponding APP4MC description. The detailed
stages of the toolchain are illustrated in Fig. 3.

1) APP4MC Hardware Description: In the first step, pa-
rameters of the software system stored in the APP4MC de-
scription are extracted. Therefrom, additional parameters con-
figuring the hardware architecture and the allocation of tasks
were derived and added to the system specification. For each
safety-critical task a complete DEU gets instantiated and the
task gets exclusively allocated to it. The architecture of every
DEU can be optionally configured. Various processor cores are
available and further peripherals can be added. Uncritical tasks
get allocated to the COTS multi-core processor and will be
scheduled by a real-time operating system (RTOS). Currently

the toolchain is limited to Xilinx Zynq and Zynq UltraScale+
devices, low-priority tasks can therefore be scheduled on an
ARM Cortex-A9 dual-core, an ARM Cortex-R5 or ARM Cortex-
A53 quad-core.

2) Hardware Generation with Vivado TCL: After the
APP4MC system description is updated with hardware-specific
parameters, a set of TCL commands for Xilinx Vivado can
be derived from the XML system description. Therefrom, an
instance of this application-specific architecture gets imple-
mented in Vivado.

At first, all DEUs defined in the APP4MC were generated
successively. Each one includes a customized processor core
and default peripherals, as well as further ones that were
custom-added in the system description. The related periph-
erals are connected by a dedicated AXI bus system with the
processor core as only bus master, as shown in Fig. 2. At
this stage, the DEUs are completely isolated, which results
in a deterministic structure, so every DEU can be regarded
and analyzed independently. However, data exchange between
tasks running on the DEU is mandatory, so in the following
step, the communication links were implemented.

The R2-D2 toolchain supports two communication types:
shared variables providing common access to specific val-
ues and message queues, which include a FIFO storage for
buffered data transfers. Moreover, data transfers between non-
critical tasks executed on a general-purpose multi-core and
data transfers with safety-critical tasks have to be distin-
guished. Uncritical tasks running on the COTS multi-core
processor can simply share data by the common memory.
Message queues are realized in software by an RTOS. For
safety-critical tasks running on an DEU, a common mem-
ory between all cores in the system is not an option. This
would result in a bottleneck when accessing shared data and
reduce the performance. Furthermore, it would destroy the
gained reliability by the spatially separated execution of tasks.
As all data transfers between tasks are already defined in
the system description, dedicated communication links can
be implemented in hardware. Shared variables are realized
as dedicated hardware registers. To transfer data, one task
writes values in the dedicated register. The DEUs of all tasks
requiring read access to this variable are physically connected
to the corresponding register. This principle is realized in the
IPC peripheral of the system, as illustrated in Fig. 2. Message
queues are realized by hardware FIFO blocks, which can
either be mapped to RAM blocks or registers in the FPGA,
depending on the buffer size of the message queues. Moreover,
message queues own two AXI slave ports, which are directly
connected to the bus system of the corresponding DEUs. Thus,
exclusive access for the involved tasks is provided.

After the automated implementation of the architecture
instance in Vivado, further post configurations can be done,
as pinout and timing constraints. In a final step, the hardware
bitstream is generated.

3) Task Frames with Eclipse TCL: As the decentralized,
irregular structured multi-core architecture instance owns sep-
arated DEUs with different processor cores, different memory

maps and no common memory, each safety-critical task has to
be treated as separated software project. Every task executed
on a corresponding DEU requires a dedicated linker script
and has to be compiled with a customized compiler toolchain.
However, one software project per task causes poor usabil-
ity. To simplify the programmability of the system, a TCL
script for the Eclipse IDE from Xilinx is derived from the
APP4MC system description. Thereby one software project
is generated for every DEU. Each one includes a basic bare-
metal application and the software drivers for all connected
peripherals. For the general-purpose multi-core processor an
RTOS project with raw task frames is generated. To keep all
source files in a common folder structure, the code sections
for the different tasks running on various DEUs have to be
delimited by define symbols. Thus, the different compiler
toolchains from various projects generate binaries for all DEUs
from a common source-code base. Furthermore, all shared
variables have globally the same addresses, so the usage of
the shared variables behaves the same as on a single project.

C. Shared Hardware Resources

The basic principle of the presented approach is to avoid
shared hardware resources by an application-specific multi-
core architecture to prevent interferences between tasks.
Shared hardware resources, as common SPI controllers of
multiple cores, can be resolved by instantiating DEUs ex-
plicitly for managing shared peripherals. Thus, no locking
mechanisms are necessary. Tasks requiring access to this
common resource can transfer data via message queues to the
DEU maintaining the peripheral. However, if legacy designs
shall be ported or there is not enough space on the FPGA
device for additional DEUs, it is also possible to connect a
shared hardware peripheral to multiple DEUs. To keep the
spatial separation of the DEUs, an additional bus in a lower
hierarchy level is implemented, as shown in Fig. 4. This bus
has only one slave port, which is connected to the peripheral,
and several master ports. The master ports are connected to
the bus systems of the DEUs. Hence, tasks only influence each
other during read/write accesses on the shared peripheral.

To control shared peripheral devices, further locking mech-
anisms are required. Therefore one semaphore unit is imple-
mented in hardware for each shared resource. This hardware
component has one AXI slave port for each DEU, that requires
access to the shared peripheral. To send a lock request to the
semaphore, tasks can set a flag in the control register of the
semaphore unit. Since only one task is executed on a DEU, no
scheduling takes place and the status register can simply be
polled until the task obtains access to the critical section. The
slave ports of the semaphore own static priorities to guarantee
a correct real-time behaviour.

III. QUADCOPTER CONTROLLER SHOWCASE

To show the advantages of the R2-D2 toolchain practically
on an use case, an architecture of a quadcopter flight controller
was generated and implemented on a Xilinx Zynq 7020 device.
The structure is shown in Fig. 5. The flight controller combines

multiple functionalities: data acquisition from sensors, position
estimation in space and motor control. For more complex
flight operations the Mission Control task can navigate the
quadcopter by GPS coordinates. The MAVLink task provides
an interface over the identically named widespread UAV com-
munication protocol to configure settings, as PID parameters.
Additionally an image processing unit is implemented that
scans the ground for landing marks and automatically activates
a landing sequence.

The tasks of the system are partitioned in real-time critical
and non-critical sections, as it is proposed in [7]. Main
critical section of the flight controller is the control loop
consisting of sensor-, position- and motor control. Therefore
these three tasks are executed on isolated DEUs. Data between
the Sensor Control, IMU and PID Control tasks are exchanged
by shared variables, so all calculations are executed with the
latest sensor data available, which is common practice to
avoid synchronization locks. Since sensors and tasks deliver
continuous values, deviations caused by delayed data updates
are negligible. The tasks Mission Control and MAVLink have
no hard deadline requirements, but they are classified as safety-
critical, as their outputs directly influence the control loop.
Therefore, those tasks are also executed on DEUs. The non-
critical part of the system includes the detection of the landing
mark, since it is an optional feature and the landing sequence
can also be started manually. Therefore the related tasks were
executed on the ARM Cortex-A9 dual-core. Furthermore, this
image processing application is comparably compute intensive,
so it benefits from the performance of the firm implemented
dual-core. Due to the combination of multi-core and FPGA on
one chip, the landing application can be additionally improved
by a hardware accelerator for the Sobel algorithm, which
processes the edge detection of an image. The feature detection
is described in [8]. Detected landing sections are signaled to
the mission control task, which will start the landing sequence.

The deterministic structure of the generated architecture
simplifies the later verification of safety-critical sections with
static timing analysis tools. The control loop can be considered
separately without influences of an RTOS or non-critical tasks,
which were spatially separated. Uncritical parts can further be
developed completely separated, since the DEUs executing the
safety-critical tasks do not have the same code base.

IV. RESULTS

To show the performance values of the architecture gener-
ated in III, the execution times of the 5 critical and 25 further
non-critical tasks were measured. In Fig. 6 the minimum,
maximum and average execution times of all tasks are shown.
Task 1 to 5 have to fulfill a deadline of 1 ms. The other
uncritical tasks were executed with a periodical repetition
of 1 ms ∗ Task #. To compare the results, two reference
systems have been implemented. In the first one all tasks were
implemented on the ARM Cortex-A9 dual-core. Tasks with
odd ID are allocated on core 1, the others on core 2. On the
second reference system all tasks were executed on DEUs.

TABLE I
REQUIRED SPACE OF VARIOUS PROCESSOR ARCHITECTURES ON THE Xilinx
Zynq-7020 FPGA DEVICE. AN ADDITIONAL LIMITATION IS THE INTERNAL

MEMORY OF 560 KB, WHICH HAS TO BE SEGMENTED FOR ALL DEUS.

Architecture Bits LUTs Registers DSPs MHz
Microblaze min. 32 1893 (3.6%) 1660 (1.6%) 0 (0%) 148.0
Microblaze max. 32 3543 (6.7%) 3018 (2.8%) 6 (2.7%) 138.9
Picoblaze 8 189 (0.4%) 145 (0.1%) 0 (0%) 123.1
NEO430 16 833 (1.6%) 567 (0.5%) 0 (0%) 62.2
Rocket RISC-V 64 29640 (53.8%) 13484 (12.7%) 24 (10.9%) 28.6
Custom MIPS I 32 2918 (5.5%) 2373 (2.2%) 0 (0%) 91.2

During the measurements all deadlines were met. Safety-
critical tasks executed on DEUs have a larger, but deterministic
execution time with less jitter, which increases the quality of
the control loop. Moreover, the jitter of the uncritical tasks
running on the Cortex-A9 could be reduced by outsourcing the
tasks with higher priority to DEUs. However, for non-critical
tasks the execution on DEUs is not convenient. The execution
time gets increased, which is mainly caused by the lower
clock frequency of soft-core processors. Moreover, the selected
device did not provide enough programmable logic resources
to implemented one DEU for every task. It was only possible
to implement 13 DEUs with a Microblaze core in extended
configuration including a floating-point unit. Nontheless, the
number of DEUs strongly depends on the selected architecture
of the core. Therefore, the required resources for the different
architectures are shown in Table I.

Furthermore, this approach profits from the fact that real-
time critical tasks require rather low latencies than computing
power and because of the high repetition rates they only
need a few of KB memory for instructions. This favours
the use of small soft-core processors, which have only a
low performance in comparison to firm implemented cores.
However the overhead of an RTOS for scheduling is not
required, so low latencies can be realized. The instruction code
is small enough to fit into the internal memory of the chip, so
the dedicated memory can be realized.

V. RELATED WORK

There are various classes of approaches determining the
timing behaviour of real-time systems [9], as simulation
techniques, software analysis and deterministic hardware ap-
proaches. All of them take shared hardware units into account.
Those completely different approaches have pros and cons.

Simulation techniques, as shown in [10], estimate the
WCET by a large number of simulation runs. Different pa-
rameter values at the beginning of each simulation trigger
interferences between tasks executed in parallel. Simulators
deliver results in short time, but the systems are too complex
to simulate all existing states. This is not relevant for non-
safety-critical real-time applications, but for safety-critical
applications, which have to be certified, approaches employing
simulation techniques cannot be applied. Simulation results
rely on statistical assumptions for the absence of failures,
which is not an acceptable argument for authorities [11].

A further approach is the static timing analysis of applica-
tions at system level. All possible interferences between tasks
caused by shared hardware resources have to be considered.
The advantage here is that the determined WCET does not rely
on statistics. However, the resulting WCET has pessimistic
assumptions. All possible interferences are considered, even if
most of them might never occur concurrently. The detection of
interferences, which cannot occur at the same time, takes a lot
of effort. Thus, plenty approaches consider only specific prob-
lems within real-time systems, as caches [12], contention of
bus resources [13], optimized allocation of tasks to cores [14]
or scheduling techniques [15]. Main problem always remains
a too pessimistic WCET. Hence, there are publications with
hybrid approaches trying to combine measured or simulated
results with static timing analysis [16].

Further approaches use deterministic processor architec-
tures. A comparison of various approaches is discussed in [2].
Often those architectures provide only low performance or
create new issues, as complex data transfers between cores
with low communication bandwidth by a regular network-
on-chip (NoC) structure. Therefore the presented approach
combines architectural parts of general-purpose and determin-
istic multi-core processors to gain deterministic behaviour for
safety-critical tasks and more performance for uncritical code
sections.

VI. CONCLUSION

In this paper we presented an approach to execute safety-
critical and uncritical tasks in parallel on one chip by generat-
ing an application-specific multi-core architecture. The safety-
critical tasks of a demonstration system were isolated and
executed on dedicated, deterministic hardware units. Hence,
timing analysis for those tasks get simplified significantly,
as hardware interferences were avoided by design. Further
measurements have shown that the selected FPGA device does
not provide enough resources to implement all tasks on DEUs,
so a combination of COTS multi-cores and DEUs is required.
Thereby the jitter of the tasks was reduced, as well as the
average execution time of the uncritical tasks executed on the
COTS multi-core.

REFERENCES

[1] C. Ferdinand et al., “Towards model-driven development of hard real-
time systems,” in Model-Driven Development of Reliable Automotive
Services. Springer, 2008, pp. 145–160.

[2] S. Vaas et al., “The R2-D2 toolchain – Automated porting of safety-
critical applications to FPGAs,” in 2016 International Conference on
ReConFigurable Computing and FPGAs (ReConFig).

[3] P. Montag and S. Altmeyer, “Precise WCET calculation in highly variant
real-time systems,” in 2011 Design, Automation Test in Europe, pp. 1–6.

[4] “AbsInt aiT.” [Online]. Available: https://www.absint.com/ait/
[5] S. Fürst, “BMW 20151005.pdf.” [Online]. Available: http://image.

mdstec.com/mail/SES/BMW 20151005.pdf
[6] “APP4MC.” [Online]. Available: http://www.eclipse.org/app4mc/
[7] S. Schreiner et al., “Autonomous Flight Control Meets Custom Pay-

load Processing: A Mixed-Critical Avionics Architecture Approach
for Civilian UAVs,” in 2014 IEEE 17th International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing,
pp. 348–357.

[8] B. Pfundt et al., “Teaching heterogeneous computer architectures using
smart camera systems,” in 2016 11th European Workshop on Microelec-
tronics Education (EWME).

[9] G. Fernandez et al., “Contention in Multicore Hardware Shared
Resources: Understanding of the State of the Art,” in 14th
International Workshop on Worst-Case Execution Time Analysis, ser.
OpenAccess Series in Informatics (OASIcs). Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, pp. 31–42. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2014/4602

[10] P. K. Valsan, H. Yun, and F. Farshchi, “Taming Non-Blocking Caches to
Improve Isolation in Multicore Real-Time Systems,” in 2016 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS).

[11] “Position Paper CAST-32A,” certification Authorities Software
Team (CAST). [Online]. Available: https://www.faa.gov/aircraft/air
cert/design approvals/air software/cast/cast papers/media/cast-32A.pdf

[12] N. Guan et al., “FIFO cache analysis for WCET estimation: A quantita-
tive approach,” in 2013 Design, Automation Test in Europe Conference
Exhibition (DATE), pp. 296–301.

[13] D. Dasari and V. Nelis, “An Analysis of the Impact of Bus Contention on
the WCET in Multicores,” in 2012 IEEE 14th International Conference
on High Performance Computing and Communication 2012 IEEE 9th
International Conference on Embedded Software and Systems.

[14] M. Panić et al., “RunPar: An allocation algorithm for automotive
applications exploiting runnable parallelism in multicores,” in 2014
International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS).

[15] T. Kelter, H. Borghorst, and P. Marwedel, “WCET-aware scheduling
optimizations for multi-core real-time systems,” in 2014 International
Conference on Embedded Computer Systems: Architectures, Modeling,
and Simulation (SAMOS XIV), pp. 67–74.

[16] J. Nowotsch et al., “Multi-core Interference-Sensitive WCET Analysis
Leveraging Runtime Resource Capacity Enforcement,” in 2014 26th
Euromicro Conference on Real-Time Systems, pp. 109–118.

Programmable Logic

Deterministic
Execution Unit

CPU
Timer Watchdog RAM

I/O

Inter-Processor-
Communication

Core 1 Core 2

L1 CacheL1 Cache
L2 Cache

DMA

DDR Controller

Timers

SPI, I2C, UART, ...

Inter-Processor-
Communication

Processing System

Deterministic
Execution Unit

Deterministic
Execution Unit

Fig. 2. The structure of an application-specific multi-core architecture is
implemented on an SoC with an FPGA part and a firm multi-core processor.
Safety-critical tasks were allocated on dedicated Deterministic Execution
Units. The inter-processor communication is realized by hardware registers.

APP4MC SW Description

APP4MC SW + HW Description

VIVADO ECLIPSE

Firmware Software

XML

XML

TCL TCL

BIT ELF

Fig. 3. The tool-flow for the automated hardware generation. An APP4MC
system description is required as input and will be extended by additional
parameters defining the application-specific hardware. Then TCL instructions
for Xilinx Vivado and Eclipse are created to generate a hardware architecture
instance and raw task frames for the application.

Shared
Peripheral

CORECORE

Semaphore

Fig. 4. To support shared peripherals and to avoid a common bus system
between DEUs, shared hardware resources are connected by a bus system
with a lower hierarchy. Thus, the DEUs stay spatially separated. For correct
execution of applications, locking mechanisms are required. Therefore, a
semaphore unit is implemented in hardware.

MAG

ATT

UART

RADIO

CAMERA

DEU
Sensor Control

DEU
IMU

DEU
PID Control

DEU
MAVLink

DEU
Mission Control

PWM 3

PWM 4

PWM 2

PWM 1

ARM
Cortex-A9

Buzzer

LEDs

SD-Card

Zynq

ACC

GYRO

GPS

Sobel

Fig. 5. A generated application-specific architecture for a flight-controller of a
quadcopter, which is implemented on a Xilinx Zynq 7020 device including five
DEUs for safety-critical tasks and a firm ARM Cortex-A9 dual-core processor
for uncritical tasks.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 2 3 4 5

E
x
e
c
u
tio
n

T
im
e

(m
s
)

Task #
 10 15 20 25 30

 0

 5

 10

 15

 20

 25

 30

E
x
e
c
u
tio
n

T
im
e

(m
s
)

Task #

ARM Cortex-A9 (667 MHz)
DEUs only (100 MHz)

Combined (Tasks 1-5 on DEUs)

Fig. 6. In this graph the execution times of the 5 safety-critical tasks from the flight controller application and 25 further non-safety critical tasks are shown.
The DEUs have a highly deterministic behaviour, but the FPGA device does not provide enough space for 30 of them. By applying the COTS dual-core only,
non-deterministic behaviour is not excluded. A combination of both architectures unifies the advantages of them and further reduces the jitter of all tasks.

