
Using MARTE in Code-centric Real-time Projects Providing Evolution Support

Peter Ulbrich∗, Christoph Elsner†, Martin Hoffmann∗, Reiner Schmid†, Wolfgang Schröder-Preikschat∗
∗ Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
{ulbrich,wosch}@cs.fau.de, martin.hoffmann@e-technik.stud.uni-erlangen.de
† Siemens Corporate Technology & Research, Erlangen/Munich, Germany

{christoph.elsner.ext,reiner.schmid}@siemens.com

Abstract

The MARTE UML profile targets specification and anal-
ysis of real-time systems. It has been used both, in model-
driven development (MDD) approaches incorporating code-
generation and in approaches that manually reengineered
existing systems. The first option is not possible in many
cases, as certain regulations, the preferences of the develop-
ers, or substantial legacy code may impede it. The second
option, in contrast, constantly involves the risk that code
and models drift apart during system evolution, necessitating
expensive, manual code-model resynchronisation and imped-
ing the day-to-day analysis of the evolving system.

In this paper we present an approach for modelling
existing real-time systems with MARTE. It provides semi-
automated support for synchronous evolution of code base
and model without the need to switch to a code-generation–
based MDD approach. We illustrate our approach by de-
scribing several evolution scenarios and discuss the most
critical issues.

1. Introduction

The MARTE UML [7] profile is a de facto standard
that provides a specification and analysis model format for
safety-critical, real-time, and embedded systems.

One way to use MARTE is to consider model-driven
development (MDD) right from the start applying a top-
down approach [1], [5], which includes automatic model-
to-code transformation. This way, functional as well as
non-functional properties of the system are covered within
models and analyses can be performed on a day-to-day basis,
minimising the impact of bugs and design errors.

However real-world real-time systems often have to con-
sider legacy code, domain-specific models (e.g., Matlab
Simulink), or certification standards [4]. Equally, the skills
and preferences of the involved system experts may impede
the use of MDD. Driving top-down MDD approaches from
the start, or even redesigning code-centric development
approaches to MDD, for example by using tools such as

This work is supported by the Embedded Systems Institute (ESI) – http:
//www.esi.uni-erlangen.de

Fujaba 1 that allow for keeping Java code and UML models
in synchronization semi-automatically, are therefore often
not possible.

One possibility to cope with this is to reengineer crucial
parts of existing systems manually with UML and MARTE
without switching to MDD [2]. This means extracting the
system structure and non-functional properties, such as the
worst-case execution times (WCETs) or resource usage,
from the code and from specifications and thus making
them explicit. However, the code base is under constant
change. Consequently, the model either goes out of sync
with the code base or has to be adapted. We are not aware
of any approach using UML MARTE for reengineering that
actually broaches this issue. We assume that, up to now,
existing reengineering approaches bring model and code to
sync at specific moments in time only (e.g., prior to a new
release). As model and code then already may have drifted
apart considerably, those approaches then cannot provide
comprehensive support for resynchronisation.

Keeping models and code in sync has remarkable benefits:
the current system can be analysed on a day-to-day basis,
and programming and design errors may be discovered
early. If code and models are not too much out of sync, it
is possible to give semi-automated support to the usually
manual and tedious resynchronisation tasks, for example
by extracting information from the code into the model or
by reproducing simple refactorings (e.g., method signature
changes). Other changes may require human intervention; it
is however possible to detect that this is the case.

In this paper we will follow exactly this approach: An
existing real-time project shall constantly benefit from the
options that MARTE offers, in consideration of an evolving
code base and without having to use model-driven develop-
ment.

In this paper, we present our approach, illustrate it with
several some evolution scenarios, discuss it, and report on
our ongoing implementation.

2. Approach

In this section we present our approach for using MARTE
in non-model-driven real-time settings, thereby supporting

1. The Fujaba Project - http://www.fujaba.de/

http://www.esi.uni-erlangen.de
http://www.esi.uni-erlangen.de
http://www.fujaba.de/


the synchronous evolution of models and code base. Unlike
MDD, it only requires minimal changes to existing, code-
centric development practices and aims at giving semi-
automated support for synchronising structural, functional,
and non-functional properties of the system.

We see the source code base as our central informa-
tion repository and therefore drive a bottom-up approach
(Figure 1). First (Step 1) we reengineer the UML model
and enrich it with MARTE data provided by automated
analysis tools working on the code base or the binary data,
respectively. In Step 2, we model the MARTE data, that
cannot be retrieved automatically, manually in a separate
model and merge this with the enriched UML model. Finally,
in Step 3, we are able to run analyses such as a schedulability
analysis on the resulting, integrated MARTE model. In the
following, we describe the three necessary steps in detail:

DSL

Tool Analysis Data

T

Code

Binary Code Base

DSL

Tool Analysis Data

Analysis tools
e.g., Schedulability 

T
.uml DSL

Reverse Model Tool Analysis Artefacts

R T1

.uml

Refined Reverse Model

R‘ .uml

Real-Time Expert Model

E

M
A

R
TE

M
A

R
TE

C
o

n
figu

ratio
n

 (e.g. En
try-P

o
in

ts)

.uml

Final Reverse Model

R‘‘

M
A

R
TE

Expert Trafo

To
o

l Trafo

Tool Trafo

Analysis tools
e.g., WCET Analysis

Code Reverse 
Engineering

St
ep

 1
St

ep
 2

St
ep

 3

DSLM

Figure 1. Reverse Approach Overview

Automatic model generation (Step 1): The initial UML
model R (Reverse Model) is generated using a code reverse
engineering tool, which exists for both C and C++ as
the most common programming languages for real-time
systems. For creating the Tool Analysis Artefacts (T ∗ =
{T1, ..,Tn}) we use analysis tools specially targeting the real-
time properties of the source code, the executables, and the
domain-specific models (e.g., Simulink) that are flanking
the code base. Various non-functional system properties can
be extracted: WCET, resource usage, the assignment of
program code to tasks, or the current schedule. A model
transformation (Tool Trafo) reads the information from the
artefacts in domain-specific notation and integrates it into
the model R, applying appropriate MARTE stereotypes to it
thereby creating the model R′ (Refined Reverse Model).

Manual modelling (Step 2): Many real-time properties
are only implicitly available and cannot be extracted from
the source code automatically. Deadlines or minimal inter-
arrival times are, for example, determined by the physical
environment in which the system is embedded, whereas
the maximal jitter for a certain task might be dictated
by a control engineer. Various kinds of analyses, such as
schedulability analysis, however, require such information.

For making the implicit information explicit, we introduce
the model E (Real-Time Expert Model), holding those prop-
erties. Furthermore, it can be used for introducing logical
(e.g., as in [8] for timing issues) and architectural views
on the system for model-to-code transformations in future.
Finally, its information is fed back to the previous step to
configure the analysis tools (e.g., declaring entry points for
WCET analysis).

The two models R′ and E have to be combined by the
model transformation Expert Trafo, which is a crucial part of
the approach. It relies on a reference mechanism that relates
elements from E to R′ and a constraint checking mechanism
that identifies inconsistencies in the case that R′ evolves.
Only if all constraints are fulfilled, the Expert Trafo actually
may merge R′ and E. A detailed discussion of the projected
implementation will follow in Section 5.

Analysis (Step 3): The combined model R′′ (Final Re-
verse Model) serves as input for further analysis tools.
Another model transformation integrates the result back into
R′′. At this point the MARTE standard can play to its
strength. More and more tool vendors are presumed to adopt
it and analysis tools may be successively added. Dependent
on the level of detail and the type of the analysis desired,
more information may be required in R′′. For this purpose,
it is possible to refine the approach in an iterative way by
adding more analysis tools during Step 1 or provide more
implicit information in Step 2.

Summarising, our approach combines a non-model driven
development approach with a synchronised code base and
MARTE models, which is necessary for running regular real-
time analyses to detect programming errors and design flaws
early. It provides support for automated real-time property
extraction and a merging mechanism to include implicit
expert knowledge.

3. Target System

The evaluation platform of our MARTE research is the
I4Copter [9] quadrotor helicopter. The I4Copter has been
designed and developed to resemble embedded real-time
systems arising in real-world industrial scenarios. Therefore
it uses an Infineon TriCore microcontroller commonly used
in automotive ECUs and a custom made sensor periphery
board featuring a wide range of sensors (12 in total) with a
variety of interfaces (analogue, digital, SPI and RS232).



Figure 2. The I4Copter Quadrotor Helicopter

The system itself has been developed in a classical (non
MDD) way in our Real-Time System Lab. In total, the appli-
cation comprises ∼7000 LOC, is written in C++ and features
an object-oriented, component-style architecture with high
coherency and minimal coupling among the components.
There are periodical (e.g., flight control) and sporadic (e.g.,
wireless remote control) real-time tasks having firm as well
as hard deadlines.

The tasks, executed by the real-time operating system
PxROS-HR2, are scheduled statically and ensure isolation
using hardware memory protection.

4. Evolution scenarios

Basic Example - Schedulability Check: To perform a
schedulability check of the system, the analysis tool requires
diverse information about the involved tasks. The basic UML
model of the system’s entities, such as the existing tasks and
entry points, can be reverse engineering automatically from
the code base (Section 2, Step 1). By convention, all tasks in
the system have to inherit from a Task class declaring an en-
try() method. A model transformation, thus, can immediately
identify the tasks out of the reverse engineered model and
apply the stereotype <<swSchedulableResource>> to
the corresponding classes.

Other information needed for a schedulability check,
however, cannot be reverse engineered from the code base.
The corresponding properties have to be modelled manually
in the model E (Section 2, Step 2). The minimal and
maximal period of a task are essential properties. Given a
task gathers data from a sensor. One the one hand, the sensor
has a maximal sampling rate (noted in datasheet); this is an
indication for the minimal period. The maximal period, on
the other hand, depends in the case of the I4Copter on the
maximal possible period of the flight control procedure that
still provides adequate flight behaviour. Both values cannot
be deduced automatically and, therefore, a real-time expert
has to contribute them manually. Additionally, annotating
WCETs is mandatory for schedulability analysis. It can be
determined from the binary data by an appropriate analysis
tool in Step 1.

2. HighTec EDV Systeme GmbH - http://www.hightec-rt.com/

After merging all information from R′ and E, the final
reverse model R′′ contains all necessary information for
performing a schedulability check (Section 2, Step 3).

Evolution Example 1 - Small Change: Consider the
signal processing developer replaces the source code of a
filter algorithm with one having a much higher computation
time. At the push of a button, the toolchain can evaluate
whether the system can meet all timing constraints.

Evolution Example 2 - Considerable Change: A more
profound modification of the system than just altering some
task’s code is the replacement of a hardware sensor. Consider
a sensor previously attached to the system by an analogue
interface is replaced by a sensor communicating on a shared
medium (e.g., SPI or CAN). This has a major influence on
the system’s schedule, since the task using this sensor is now
closely linked to all other entities using the shared medium.

First of all, a representation of the shared resource has to
be introduced into the reverse model. This can be achieved
automatically, given all classes using a shared resource
inherit from a class SharedResource.

Second, a new analysis tool is necessary to detect access
sequences to the shared resource. This might also involve
adding a new type of model, e.g., for specifying system
behaviour. If the schedulability check discovers that a non-
preemptive schedule cannot meet all timing constraints any
more, the scheduling paradigm might need to be changed to
a preemptive priority-ceiling protocol for shared resources.
Finally, if the currently used schedulability tool is not able
to handle shared resources, it can be replaced by a different
tool supporting MARTE as import format, without the need
to change models or write new converters.

5. Implementation

We are currently implementing the toolchain for our
approach and started creating the expert model for the quad-
copter system. We used BoUML3 for reverse engineering the
C++ sources and AbsInts aiT4 for the WCET analysis. The
model-driven toolchain is based on Eclipse and its modelling
facilities5, in particular, openArchitectureWare6.

Whereas the Tool Trafo, which simply annotates the basic
UML model with MARTE stereotypes and tagged values,
is a rather simple model transformation, the Expert Trafo,
which has to cope with evolution of the code base, is
more challenging. It relies on a reference mechanism and
a constraint checking mechanism.

Reference Mechanism. Maintaining stable references
from model elements of E to the evolving model elements
R′ is not trivial. The XMI reference IDs created by standard
tools are unstable and tool dependent; reengineering R′ from

3. BoUML Toolbox - http://bouml.free.fr/
4. AbsInt Angenwandte Informatk GmbH - http://www.absint.de/ait/
5. Eclipse Modelling Framework - http://www.eclipse.org/emf/
6. OpenArchitectureWare - http://www.openarchitectureware.org/

http://www.hightec-rt.com/
http://bouml.free.fr/
http://www.absint.de/ait/
http://www.eclipse.org/emf/
http://www.openarchitectureware.org/


a slightly different code base may result in a complete
invalidation of all references in E. Shifting references to
a separate mapping model, which identifies the elements
of each model to map using their fully qualified names, is
a more stable option. However, we decided that for each
model element of R′ that needs to be annotated, there has to
be one element in E having exactly the same package, type,
and name. Doing so, it is possible to use a simple merge
algorithm to combine E and R′.

Constraint Checking Mechanism. Coping with an
evolving code base has not only real-time–related challenges
(as discussed in Section 4) but also rather technical ones.
Adding, removing, and renaming of classes, methods, or
members bring the models out of sync, as well as changing
code from which a behavioural model is reengineered.
Detecting these cases is however relatively easy by defining
OCL-like constraints that enforce plausibility checks. For
example, one constraint will be that each method defined
and annotated in E needs a correspondence in R′. The checks
will be run each time before each execution of the Expert
Trafo, and thus alleviate the risk of merging inconsistent
models. Further tooling might support the export modeler
with (semi-)automatic functions for adapting E to a changed
R′. This is, however, out of the scope of this paper.

Expert Trafo As we require the expert model E to
resemble the structure of R′ for those elements needing anno-
tations, we can use a simple merge semantic for combining
the models. Fortunately, UML2 already provides the Package
Merge operator in its Superstructure definition [6]. The
Eclipse Modeling Framework comprises an implementation
of the operator’s algorithm. Although Package Merge has
been designed to merge the UML meta model specification
and it is not free of semantic inconsistencies [3], for our
current modelling purposes it is absolutely sufficient, as we
only need the basic recursive merging, which incorporates
merging of stereotypes.

6. Discussion

In the following, we will discuss the quality of the
reengineered model R from source code and the feasibility
of keeping the models E and R′ synchronous.

Reverse engineering UML models out of existing code
is prone to errors in the general case. Nevertheless, in
safety-critical real-time applications, strict processes and
programming rules (e.g., regarding pointers) have to be
applied to ensure high quality of the code. Further on, such
applications are of a completely static nature regarding their
composition and interactions. This way, we can exclude
a lot of pitfalls (e.g., dynamic message passing) that are
commonly difficult to extract during UML reengineering.

We address synchronisation of the models E and R′ with a
constraint checking mechanism and we have presented how
we intend to approach different kinds of evolution scenarios.

Substantial changes, such as the introduction of shared
resources described in Section 4, Example 2 could compro-
mise the toolchain, as necessary analysis tools and checks
are not present. However, as our reengineering approach has
to follow the same stringent development processes as the
rest of the system; those cases can be detected and handled
by introducing the appropriate tools.

Despite this support, our approach still requires substan-
tial manual involvement of the real-time developers, thus,
the ultimate proof of feasibility will be acceptance of the
developers.

7. Conclusion and Outlook

In this paper we presented an approach to for apply-
ing MARTE to an existing, code-centric real-time system
considering the evolution of the code base and without
switching to an MDD approach. We illustrated our approach
by describing several evolution scenarios and discussed the
most critical issues.

Once implemented, the approach will allow us to detect
programming errors and design flaws early. Even more, we
expect that it will be highly useful considering the future
plans for the I4Copter project. There already exist three
quadcopters, each comprising different hardware. Further
upgrades will include cameras and GPS hardware. This vary-
ing hardware will be accompanied by differing application
software, as, depending on the operation area (e.g., security,
rescue, hobby) of a quadcopter, different functionality will
be necessary. With the growing number of hardware and
software variants, the effort for manually analysing and
planning the real-time properties of different variants will
become more and more infeasible. Still, our approach will
have to be extended considerably to cope with such a
situation and there are still various challenges regarding the
combination of real-time modelling, analysis, and variability
on the way. However, we are confident that by committing
us to automating the analysis process we are making an
important step into the right direction.

References

[1] D. Aulagnier, A. Koudri, S. Lecomte, P. Soulard, J. Champeau,
J. Vidal, G. Perrouin, and P. Leray. SoC/SoPC development
using MDD and MARTE profile. In Model Driven Engineering
for Distributed Real-time Embedded Systems. Hermes, 2009.

[2] S. Demathieu, F. Thomas, C. André, S. Gérard, and F. Terrier.
First experiments using the UML profile for MARTE. In
11th IEEE Int. Symp. on OO Real-Time Distributed Computing
(ISORC ’08), pages 50–57, Washington, DC, USA, 2008.
IEEE.

[3] J. Dingel, Z. Diskin, and A. Zito. Understanding and improv-
ing UML package merge. Software and Systems Modeling,
7(4):443–467, October 2008.



[4] M. U. Khan, K. Geihs, F. Gutbrodt, P. Gohner, and R. Trauter.
Model-driven development of real-time systems with uml 2.0
and c. pages 33–42, Washington, DC, USA, 2006. IEEE.

[5] C. Mraidha, Y. Tanguy, C. Jouvray, F. Terrier, and S. Gérard.
An execution framework for MARTE-based models. In 13th
Int. Conf. on Eng. of Complex Comp. Sys. (ICECCS ’08), pages
222–227, Washington, DC, USA, 2008. IEEE.

[6] Object Management Group OMG. Unified modeling language
(UML) 2.1.2 superstructure specification. formal/2007-11-02,
November 2007.

[7] Object Management Group OMG. UML profile for MARTE,
beta 2. ptc/2008-06-08, June 2008.

[8] M. Peraldi-Frati and Y. Sorel. From high-level modelling of
time in MARTE to real-time scheduling analysis. 1st Int.
W’shop on Model Based Architecting and Construction of
Embedded Systems (ACES 08), pages 129–143, 2008.

[9] P. Ulbrich. The I4Copter project — Research platform for
embedded and safety-critical system software. http://www4.
informatik.uni-erlangen.de/Research/I4Copter/, visited 2010-
02-22.

http://www4.informatik.uni-erlangen.de/Research/I4Copter/
http://www4.informatik.uni-erlangen.de/Research/I4Copter/

	Introduction
	Approach
	Target System
	Evolution scenarios
	Implementation
	Discussion
	Conclusion and Outlook
	References

