
Design by Uncertainty: Towards the Use of
Measurement Uncertainty in Real-Time Systems

Peter Ulbrich, Florian Franzmann, Fabian Scheler,
Wolfgang Schröder-Preikschat

Chair in Distributed Systems and Operating Systems
Friedrich-Alexander University Erlangen-Nuremberg

Erlangen, Germany
{ulbrich, franzman, scheler, wosch}@cs.fau.de

Abstract—Real-time systems usually incorporate a wide variety
of challenges: A control engineer, for example, aims for the
highest possible control quality achievable. Here, one key element
is to minimise the uncertainty of the measurements. This, to put
it simple, is the noise of sensor data, which has a negative effect
on control. Although measurement uncertainty is well treated
in control theory, it is usually ignored in common real-time
architectures where temporal properties are the prevalent criteria.
Consequently, the communication between control engineers
and real-time specialists is rather one way, revolving around
deadlines and sampling periods. However, on closer examination,
many real-time properties are derived from the measurement
uncertainty aspired by the control engineer. Conversely, temporal
variations, virtually inevitable in practice, can be represented as
measurement uncertainty as well.

Tackling the measurement uncertainty should therefore be an
interdisciplinary task: The control system respects the actual
run-time conditions instead of estimating them. Likewise, the
real-time system considers measurement uncertainty rather than
blindly sticking to deadlines. In this paper we present an
uncertainty-centric approach to leverage measurement uncer-
tainty in real-time architectures, not only at design time but
also at run-time. Using measurement uncertainty as an explicit
interface minimises the gap between real-time specialists and
control engineers and facilitates a modular and flexible system
design. Our preliminary results are promising and show the ease
of use and the applicability to existing systems.

Keywords-Measurement Uncertainty, Software Architecture,
Covariance, Scheduling, Frameworks, Operating Systems

I. INTRODUCTION

Nowadays digital controllers are almost omnipresent in
embedded cyber-physical systems and control theory is a well-
known and well-understood engineering discipline. Although
applications employing digital controllers are structured in
a relatively simple manner – sample, compute, and act –
their implementation is anything but easy. Traditional control
theory, which still is the predominant paradigm for many
controllers, assumes that all inputs are sampled instantaneously
and equidistantly, providing a temporally consistent snapshot of
the physical environment [1]. It is, however, almost impossible
to actually meet this requirement in practical implementations
of digital control loops. One reason is the non-zero execution

This work was partly supported by the Bavarian Ministry of State for
Economics, Traffic and Technology under the (EU EFRE funds) grant no.
0704/883 25 and the German Research Foundation (DFG) under grant no.
SCHR 603/9-1.

M
e

a
s
u

re
m

e
n

t 
U

n
c

e
rt

a
in

ty
 (

M
U

)
0

1

2

3

4

S
a

m
p

li
n

g
P

ro
c

e
s
s

0 3 6 11 12 14 18

Total MU (s)

Static MU (s )S

Dyn
amic M

U (s
)

D

Fig. 1: The total MU consists of SMU and DMU. The former
usually is constant and set at design time. The latter results
from run-time behaviour and varies with the sampling instants.

time in computing systems. Thus, two sensors attached to the
same computing node cannot be sampled at the same instant
but have to be queried sequentially.

The lack in temporal precision results in dephased mea-
surements, which suffer from run-time jitter and impair the
quality of the measured values. This degradation manifests
itself as noise [2] and is often called measurement uncertainty
(MU). Computer science and control theory already came up
with a number of ways to tackle that issue. On the one hand,
computer science tries to optimize the temporal behaviour by
ensuring equidistant sampling to minimise run-time jitter and,
thereby, reduce MU to a manageable level. On the other hand,
control engineers use Kalman filters [3], which are somewhat
robust w. r. t. jitter. While each of these approaches is valid, we
think that they are imperfect because they lack an interface that
connects computer science and control engineering. Current
solutions are tailored to individual problems, are monolithic
and not reusable.

We believe that two components of MU – as illustrated
in Fig. 1 – should be distinguished: The first component is
known a-priori and is determined by properties of the sensor,
the targeted environment and by the sampling rates chosen,
and thus can be handled at design time. Typical examples are
dephased sampling instants due to different sampling rates.
We refer to this component as static measurement uncertainty
(SMU). The second component is not known a-priori and can
only be accounted for at run-time, thus, we call it dynamic



measurement uncertainty (DMU). In this paper, we regard
run-time jitter as primary source for DMU.

Current control algorithm designs do not distinguish SMU
from DMU explicitly, endorsing rather complex digital control
loops dealing with SMU as well as with DMU. We, however,
believe that using e. g., the Kalman filter is just one solution to
cope with DMU. Strictly speaking, Elmenreich’s approach [4]
to eliminate execution-time jitter by choosing a time-triggered
execution environment is another, albeit indirect one.

Since DMU seems to be a common ground for computer
scientists and control engineers, we propose a) to explicitly
distinguish SMU and DMU as opposed to the ‘combined’ MU
that is used in current control algorithms and b) an architecture
that explicitly makes the DMU as well as SMU accessible.

II. RELATED WORK

Since MU is not a novel problem in digital signal processing
(DSP) and control theory, several methods have been developed
to handle it.

A well known technique making use of SMU is sensor
fusion. Its purpose is to combine measurements of diverse
sources or of different sampling in a consistent way. Since
sensor fusion is important in a wide variety of applications, the
topic is well treated in literature and a number of sensor fusion
models have been developed to accommodate the problem.

Approaches comparable to ours are the sensor fusion
architectures proposed by Elmenreich [5], Hightower et al. [6]
and Zug et al. [7]. Elmenreich’s approach was developed in
the context of the Time-Triggered Architecture [8] and does
not take jitter into account.

Hightower’s approach is inspired by the ISO/OSI model [9]
and divides the DSP system into multiple layers (sensors,
measurements, fusion, . . . ). While this is helpful w. r. t. mod-
ularization, the approach does not target real-time systems,
rendering it inappropriate for our purposes. Zug et al. focus on
fault detection in distributed sensor systems. Their architecture
provides building blocks for reliable communicating through
messages but does not regard jitter either.

Our approach goes beyond the presented architectures by
making the DMU explicitly available, promoting it to an
interface between DSP and control theory. This is necessary, as
we target event-driven real-time systems where execution-time
jitter is an intrinsic problem.

III. APPROACH

We aim for modularisation of the process control system
(PCS) and consequently our approach is based on the separation
of concerns: each component should be implemented by the
respective domain expert. Using measurement uncertainty as
interface makes this feasible. Therefore, we propose an MU-
aware system architecture that: a) establishes the MU as an
interface, b) makes its individual parts (SMU and DMU)
available, c) integrates well into existing systems, and d) is
lightweight in terms of resource requirements. In the remainder
of this section, we outline our architectural approach and its
basic components and discuss the resulting advantages.

Source
sD

x
sS

x¢sS

x

sD

Compensation
x¢

s S¢
sS

x

sD

Compensation

SMU

R
o
le
s

D
a
ta

A
c
q
u
is
it
io
n

D
a
ta

P
ro
c
e
ss
in
g

D
a
ta

In
te
g
ra
ti
o
n

D
a
ta

O
u
tp
u
t

Process x¢x

Source
sS

x

Compensation
sS

x
x¢

Sinkx

Process
s¢S

x¢

sS

x

PCS Component Input Port Output Port

DMU

Process
s D¢

x¢
s S¢sS

x

sD

Analysis
sD

x
sS

sS

x

Fig. 2: Roles and components of the uncertainty-aware real-
time architecture.

A. Architectural Concepts

As already mentioned, the basic structure of a PCS is quite
simple: sample, compute, and act. The necessary building
blocks can be categorised into four dedicated roles. Besides
the obvious Data Acquisition, Processing, and Output roles,
Data Integration is necessary to remove the MU where it is
no longer relevant or acceptable. Data flows can be described
as a sequence of basic components that implement these
roles: a measurement originates from Data Acquisition (e. g.,,
sensor). Subsequently, the measurement endures a number
of Data Processing steps (e. g., filter, fusion). Finally, the
measurement is fed into Data Integration, which eliminates
the MU and passes the result to Data Output (e. g., actuator).

Fig. 2 gives an overview of the resulting architecture:
orthogonal to the roles, are the components which implement
the architecture. Depending on the interface, the components
are further subdivided on the basis of support for static and
dynamic uncertainty. In the following, we detail the individual
components, with respect to the SMU and DMU specifics.

1) Data Acquisition: This is the origin of each data flow (x),
and therefore, the only source for both SMU (σs) and DMU
(σd). Any subsequent stage only adjusts or compensates MU.
To enrich the PCS with run-time information, the architecture
introduces a DMU-aware Source.

Certainly, the Analysis component is an exception. It is
used if the necessary temporal properties are indeterminable
during the execution of the Source component. Subsequently,
Analysis obtains temporal information, which it converts to
DMU. Typical examples are aperiodic sources such as remote
sensor nodes, where temporal correlations emerge throughout
the communication.

2) Data Processing: DSP steps, such as filtering, fusion,
and observers, are encapsulated by Processing components.
Hence, they only adjust MUs and do not add new information.

3) Data Integration: The Data Integration role corresponds
to the control part (but may also include fusion or observer) of
the process control system. From this point on, the measurement
uncertainty is no longer needed and therefore compensated.

One component deviates from the others: as an inverse
operation to Analysis, a third Compensation component only



compensates for dynamic uncertainty. This way, even DMU-
unaware controllers can benefit from DMU compensation.

4) Data Output: finally, Data Output is the sink of a PCS.

B. Uncertainty as an Interface

Using MU as an interface links the design-time and the
run-time aspects of a PCS – thus ultimately closing the gap
between control engineer and computer scientist.

At design-time, the SMU is used to describe the controller
requirements on the one hand and the capabilities of DSP on
the other hand. In a nutshell, the control engineer expresses
his expectations of the measurement quality. If everything fits,
the processing chain is dimensioned and arranged accordingly.
The interface supports this by providing SMU information
at inputs and outputs where it is used in the same way to
describe requirements and capabilities. Hence, each component
at design time is a static component.

At run-time any temporal deviations, for example sampling
jitter, jeopardize the compliance with the design. Executed
components that are subject to run-time deviations provide the
DMU at their interface, thus, facilitating its specific handling
either by means of DSP or scheduling.

C. Modularisation

For many reasons, the PCS and the filters in particular are, as
mentioned earlier, often monolithic: control engineers usually
work in terms of mathematical models where modularization is
usually not an issue. Likewise, the uncertainty information
necessary for the filter design is derived from all sensors
leading to a global covariance matrix. However, this approach
considerably limits the options of the real-time system, for
example to prioritize jitter sensitive parts of the PCS at run-
time. Our approach simplifies the modularisation of such PCSs
by leveraging its uncertainty-centric interface: for independent
sensors, the covariance equals the MU. Thus, the individual
modules can be derived directly from the matrix. Moreover, this
eliminates the cumbersome derivation of individual temporal
properties as well.

IV. IMPLEMENTATION AND EVALUATION

In order to demonstrate the usefulness of our approach, we
decided to implement it prototypically in the I4Copter’s [10]
flight control system. The I4Copter is a quadcopter and
therefore intrinsically unstable, requiring a fairly complex
controller to stabilize its attitude. Most of the code that was
already available in an earlier version of the I4Copter could be
reused, thus showing that our approach acts as a thin wrapper.
The transition proved to be straightforward. Furthermore we
conducted smaller and more controlled experiments which
clearly showed the validity of our method. We implemented
two artificial signal sources that generated the same signal. Then
we subjected one of the two sources to increasing levels of
jitter, while the other remained jitter-free. The two signals were
then fused using the MUs as weights. When we compensated
for jitter, the mean square error was bounded, while it increased
without limit if we did not compensate for jitter (see Fig. 3).

0
1
2
3
4
5
6
7
8
9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

m
ea

n
sq

ua
re

er
ro

r−
→

jitter standard deviation [0.1 ms] −→

uncompensated

compensated

Fig. 3: Jitter experiment: The curves compare the mean squared
error if the DMU is compensated or not during sensor fusion.

t

 

A1

 

A2

 

A3

 

F

Deadline

N

Fig. 4: Bounding the measurement uncertainty via deadlines

In the rest of this section we will focus on the way we com-
pensate for jitter: Walden [11] introduces a straightforward way
of calculating the DMU σ ′d from the maximum amplitude A,
the sampling interval T and the jitter’s standard deviation στ :

σ
′
d =

π ·A ·στ

2T
This estimate, however, seems overly pessimistic. In our opinion
it is sufficient if only those spectral components are taken into
account, which are below the cut-off frequency of the filters
that are involved. The DMU then becomes σd = π · fc ·A ·στ

and the combined MU σ ′ can be calculated from the DMU
and SMU σs as σ ′ =

√
σ2

s +σ2
d . We use this relationship to

prefer more reliable over less reliable values during fusion.

V. OUTLOOK AND FUTURE WORK

Promoting the SMU and the DMU to an interface opens
some interesting opportunities. Here, we briefly discuss two
ways to benefit from that additional knowledge by exploiting
the SMU in an integrated toolchain and feeding it into a
scheduling service in order to optimise the DMU at run-time.

A. Integrated Toolchain

Specifying the SMU and the DMU within the de-
sign tools commonly used by control engineers, such as
MATLAB/Simulink, is the first step towards an integrated
tool support. The toolchain could subsequently exploit the
MU information to automatically arrange sampling instants
and vary the sampling rates of the different sensors. Likewise,
filters or fusion algorithms could be parametrized automatically
according to the acceptable MU. This would ultimately release
the control engineer from cumbersome manual mapping of
MU to deadlines. In addition, the control engineer can even
leverage the real-time system feedback (in terms of DMU), for
example, in future filter, observer, and controller designs.



In the I4Copter we already annotated sensors and the
controller with the metadata necessary to derive the PCS.
These annotations are evaluated automatically for each sensor
and the achievable MU and value range is computed and the
sensor fusion is parametrised. Currently, the main purpose of
these tools is to check if the achievable values match those
specified by the control engineer.

In the future we want to extend our tool-support in two
directions. On the one hand, we want to integrate these
annotations directly into MATLAB/Simulink-models. Hence,
the control engineer does not have to switch to an unfamiliar
tool. On the other hand, we want to automate the mapping of
driver sampling to threads and the arrangement of sampling
instants through use of the Real-Time Systems Compiler
(RTSC) [12]. The RTSC is a compiler-based tool that arranges
and manipulates control flows (i. e., threads and interrupt service
routines) through the control flow graphs.

B. Uncertainty-aware System Software

In event-triggered systems, MU is controlled mainly by
ensuring dense artificial deadlines for real-time jobs sampling
sensor values. As long as these deadlines are met, the overall
MU certainly stays below a threshold. The aim of these
deadlines is to keep the sampling jitter reasonably small, thereby
limiting the DMU as much as necessary. This situation is
illustrated in Fig. 4: sampling jobs A1..3 have to be finished
before sensor fusion job F .

Handling the DMU explicitly, however, could significantly
relax the situation if this information is made available to
the underlying real-time operating system. The primary goal
of the scheduler in such a system would no longer be to
meet deadlines but to keep the DMU below a given threshold,
thereby maintaining a suitable quality of control. One possible
way is to speed up or delay threads having great or low
influence on the DMU by adapting their priority similar to a
priority exchange [13] or sporadic server [14]. Obviously, just
providing the scheduler with the DMU is not sufficient for this
purpose. The scheduler also needs to predict how much the
DMU increases if a sensor is sampled late or even dropped
and how much of this DMU could be compensated for by the
following sensor fusion and control algorithms.

Such a scheduler, however, would simplify the design
and implementation of PCSs significantly as the maximum
acceptable measurement uncertainty no longer has to be mapped
to the mentioned artificial deadlines. Thus, the MU would be
the major measure for the quality of control.

VI. DISCUSSION AND CONCLUSION

In this paper we presented an integrative approach for the
development of embedded real-time control systems. We aim to
bridge the semantic gap between the main domains involved:
Control Engineering and Computer Science. Therefore, we
based our approach on measurement uncertainty (MU) as
a common interface to establish a two-way communication
between control and system. Accordingly, we explicitly dis-
tinguish between the static and the dynamic measurement

uncertainty (DMU), and thus between design-time and run-
time. We implemented our approach by an uncertainty-aware
real-time architecture that leverages the interface to cope with
the DMU and to escape the bonds of bearish deadlines.

Why, however, should a computer scientist switch from
temporal properties to measurement uncertainty? First of all,
it replaces the inflexible deadlines as the primary means of
communication with the control engineer. This might seem
insignificant for individual sensors, where the DMU can be
directly mapped to deadlines. However, it may turn out to
be a powerful approach when considering more complex
sensor systems. Since the DMU reflects the actual effects of
temporal variance within the processing chain, the individual
deadlines, and thus the whole system design, become more
flexible. To benefit from this flexibility, uncertainty-aware
system software, as sketched in Section V, is necessary in
addition to an uncertainty-aware architecture.

When using our approach, apart from the modified com-
munication interface, the control engineer stays in his natural
habitat. Explicitly dealing with temporal properties is no longer
necessary. Instead, ey can decide whether the real-time system
should eliminate the DMU or to design the PCS accordingly.
In addition, this opens up the chance to explicitly consider the
real-time system feedback (in terms of DMU), for example,
in future filter, observer, and controller designs.

REFERENCES

[1] M. Törngren, “Fundamentals of implementing real-time control appli-
cations in distributed computer systems,” Real-Time Systems Journal,
vol. 14, pp. 219–250, May 1998.

[2] S. G. Rabinovich, Measurement Errors and Uncertainties: Theory and
Practice, softcover reprint of hardcover 3rd ed. Springer, 10 2010.

[3] R. E. Kalman et al., “A new approach to linear filtering and prediction
problems,” Journal of Basic Engineering, vol. 82, no. 1, pp. 35–45, 1960.

[4] W. Elmenreich, “Sensor fusion in time-triggered systems,” Ph.D. disser-
tation, Technische Universität Wien, Institut für Technische Informatik,
Treitlstr. 3/3/182-1, 1040 Vienna, Austria, 2002.

[5] W. Elmenreich and S. Pitzek, “The time-triggered sensor fusion model,”
in IEEE Int. Conf. on Intelligent Engineering Systems, 2001.

[6] J. Hightower, B. Brumitt, and G. Borriello, “The location stack: A layered
model for location in ubiquitous computing,” in IEEE W’shop on Mobile
Computing Systems and Applications. IEEE, 2002, pp. 22–28.

[7] S. Zug, A. Dietrich, and J. Kaiser, “An architecture for a dependable
distributed sensor system,” IEEE Trans. on Instrumentation and Mea-
surement, vol. 60 Issue 2, pp. 408–419, 2011.

[8] H. Kopetz and G. Bauer, “The time-triggered architecture,” Proc. of the
IEEE, vol. 91, no. 1, pp. 112–126, 2003.

[9] International Organization For Standardization, “ISO/IEC 7498-1:1994,”
p. 59, 1996. [Online]. Available: http://standards.iso.org

[10] P. Ulbrich, R. Kapitza, C. Harkort, R. Schmid, and W. Schröder-
Preikschat, “I4Copter: An adaptable and modular quadrotor platform,”
in 26th ACM Symp. on Applied computing (SAC ’11). New York, NY,
USA: ACM, 2011, pp. 380–396.

[11] R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE
J. on Selected Areas in Communications, vol. 17, pp. 539–550, 1999.

[12] F. Scheler and W. Schröder-Preikschat, “The real-time systems compiler:
migrating event-triggered systems to time-triggered systems,” Softw. Pract.
Exper., vol. 41, no. 12, pp. 1491–1515, 2011.

[13] J. P. Lehoczky, L. Sha, and J. K. Strosnider, “Enhanced aperiodic
responsiveness in hard real-time environments,” in 8th Int. Conf. on
Real-Time Systems (RTSS ’87). Washington, DC, USA: IEEE, Dec.
1987, pp. 261–270.

[14] B. Sprunt, L. Sha, and J. P. Lehoczky, “Aperiodic task scheduling for
hard real-time systems,” Real-Time Systems Journal, vol. 1, no. 1, pp.
27–60, 1989.


