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ABSTRACT
Quadrotor helicopters are micro air vehicles with vertical take-off
and landing capabilities controlled by varying the rotation speed
of four fixed pitch propellers. Due to their rather simple mechan-
ical design they have grown to popularity as platform for various
research projects. Despite most of them being individually highly
successful, they are typically tailored to a specific purpose making
it hard to utilise them for further research and education.

In this paper, we present the novel design of the I4Copter quadro-
tor. It has been developed to provide a stable demonstration quadro-
tor platform for various kinds of research and education projects
targeting cross-field challenges in real-time and embedded systems,
distributed systems, robotics and cybernetics. The modular and
open architecture of our platform allows an application-specific,
fine-grained extension, adaption and replacement of software and
hardware components. The safe extensibility is supported by strict
temporal and spatial isolation between the software modules. We
validated our approach by two distinct cross-field use cases: an
evaluation platform for modularised control algorithms enabling tra-
jectory tracking and an implementation that is resilient to transient
hardware errors.

1. INTRODUCTION
Quadrotor helicopters (quadrotors) are a special variant of micro

air vehicles with vertical take-off and landing capabilities. Their
mechanical design is rather simple and relies on four fixed pitch pro-
pellers, pair-wise spinning in the opposite direction, and – in most
cases – a simple gearless drive. Their attitude1 is solely controlled
by varying the rotation speed of the engines and the construction,
operation and maintenance is, therefore, relatively easy and cheap.

1Angle of the quadrotor in regard to a reference point
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Due to these benefits, quadrotors have grown to popularity among
governmental, industrial, academic and private users around the
world. Here, they demonstrate their abilities for personal diversion,
flying camera mount or for serious surveillance and reconnaissance
tasks performed by the police and military. While the mechanical
setting of a quadrotor is rather simple, the challenge is to reliably
control its inherently unstable flight characteristics. This has to
be realised using inertial measurement and software flight control.
Therefore, a quadrotor helicopter is a challenging example of a
safety-critical embedded real-time system, making it a attractive
evaluation platform to explore new ideas in the fields of control
theory [5, 11, 10, 1], navigation [3] and real-time systems [?, 2],
just to name a few. In summary, quadrotors have been implemented
by various interest groups that can be categorised into hobbyist,
companies and researchers.

The resulting solutions have their individual strengths, but all
share a common weakness. They are designed for a special pur-
pose; for example, to provide maximal flight qualities, to enable
reliable surveillance or to demonstrate an individual new technique
in research. In our opinion, a solid base system that can be flexibly
tailored to current and future research as well as new application ar-
eas is missing. While there are popular open source platforms, with
the MikroKopter project2 as a protagonist, we made the experience
that it is comparably hard to extend them (e. g., by indoor navigation
support), as the control software is highly integrated. Commercial
platforms such as provided by microdrones3 show a remarkably
good overall performance, but they are typically not available to the
community, which inhibits their use as a basis for research. Finally,
research projects usually focus on specific questions and naturally
try to achieve this in the fastest possible way. This may lead to good
results from an individual research perspective but slows down the
general progress, as individual researches have to jump through the
same hoops of building a base system to make progress in their
specific field again and again.

We therefore decided to go a different way by building a mod-
ular quadrotor platform that facilitates research and education in
the fields of real-time and embedded systems, distributed systems,
robotics and cybernetics. This approach raises new aspects and
challenges in designing such a modular platform. While having

2MikroKopter homepage – http://www.mikrokopter.com
3Microdrones homepage – http://www.microdrones.com
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Figure 1: The Apollo I4Copter prototype.

modularity in mind, we made an – at first sight – surprising choice
by consolidating the hardware setting compared to the state of the art
and combining all tasks on one central microcontroller. Colocating
the time-critical flight control with less critical application software
(e. g., communication) requires strict isolation and clearly defined
interfaces between all tasks.

This is achieved by using a real-time operating system (RTOS), a
stringent analysis of the real-time components and a spatial isolation
via hardware memory protection. Thus, the consequence is a slightly
more complex system design; however, it offers various benefits
for further extension. In many cases, the application-specific high-
level control has to interact with the low-level flight control in a
specific way to avoid undesirable effects caused by the subsidiary
control. An indoor collision avoidance may, for example, want to
disregard the basic motion control, as it is not adequate for evasive
manoeuvres. Furthermore, any high-level control should have access
to the sensors raw data at maximum sampling rate as it might require
its own filtering and sensor fusion algorithms. Again, an appropriate
solution to support adaptability at this level is to integrate those two
parts onto a single but powerful microcontroller.

In this paper, we present the novel design of the 3rd generation
of the I4Copter4 quadrotor family that combines the experience
of 4 years of research and hundreds of test flights. This final des-
gin has been developed to provide a stable and extensible research,
education and demonstration quadrotor platform by featuring not
only modular software but also a modular hardware and controller
design. We have validated our approach by two distinct use cases:
an evaluation platform for modularised control algorithms enabling
trajectory tracking and a quadrotor implementation that is resilient
to transient hardware errors. While the former demonstrates the
capabilities of our approach to incrementally extend the controlling
of a quadrotor making new ideas in control theory practical evalu-
able, the latter exemplifies a profound enhancement and explores
a novel design for providing safety critical applications. In sum
we consider the I4Copter as the first deeply extensible quadrotor
platform that enables to address cross-field challenges in the domain
of real-time and embedded systems, distributed systems, robotics
and cybernetics. This has been achieved by a careful design process
and a combination of operating system, software engineering and
control theory concepts as well as the use of industry grade hardware
from the automotive sector.

The paper is structured as follows: First, we outline the hardware
setting including microcontroller, sensors and all mechanical parts.
Section 3 details our software architecture and describes the con-
troller design. Thereafter, we illustrate the benefits of our system
architecture on the basis of the two use cases. Finally, we discuss
related approaches in Section 5 and conclude.

4I4Copter homepage – http://www4.informatik.
uni-erlangen.de/Research/I4Copter

2. HARDWARE PLATFORM
In this section we describe the basic hardware design of the

I4Copter including the airframe with the propulsion, the sensor
system and the microcontroller. In general, the system has been
designed and developed to resemble embedded real-time systems as
employed in real-world industrial scenarios such as the automotive
sector and to be adaptable to new mission scenarios.

2.1 Hardware Requirements
When selecting the individual hardware components, we took the

following requirements into account:

• A microcontroller that (cf. Section 2.2)

– supports hardware memory protection,

– offers sufficient memory and computing resources

– and free I/O to support additional use cases.

• A sensor system that (cf. Section 2.3)

– is based on commercial off-the-shelf components,

– offers a direct connection between each sensor and the micro-
controller (providing raw data),

– supports stable flight in its basic configuration

– and is extensible to support additional use cases.

• A propulsion system that (cf. Section 2.4)

– has a minimal flight time of 15 min

– and can carry at least 500 g of additional payload.

While the first set of requirements enables us to safely consolidate
basic flight control and more complex behaviours on one controller,
the second set offers unrestricted access to sensor values providing
the freedom to flexibly filter and process these in the context of new
use cases. The last set of requirements basically ensures a practical
system setting.

2.2 Microcontroller
To meet these requirements, the I4Copter is equipped with an

Infineon TriCore® TC1796 microcontroller [6], as commonly used
in automotive ECUs and a custom-made sensor periphery board
featuring a wide range of sensors (8 in total) and a variety of inter-
faces. This choice enables us to utilise automotive standards such as
OSEK (open systems and their interfaces for the electronics in motor
vehicles), which offers powerful industry-grade tool and operating
system support.

The TC1796 is a 32-bit RISC microcontroller running at
150 MHz, featuring 2 MB flash and 64 KB internal memory and, im-
portant for the aspired application isolation, a full-featured memory
protection unit. In addition, it provides several versatile peripheral
units, such as four serial controllers, two analogue-to-digital con-
verter units (with 32 inputs each) and two general-purpose timing
arrays (64 I/Os each). Out of the commercially available evaluation
boards, we decided to use HighTec’s5 EasyRun Board as a basis
for our development as it features 1 MB MRAM and an additional
Ethernet on-board controller combined with a small form factor.

5HighTec homepage – http://www.hightec-rt.com
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Figure 2: The I4Copter hardware platform consists of several modules that can be combined according to the mission scenario. The
base system is built of the microcontroller and the basic sensor board.

2.3 Sensor and Communication System
The sensor and communication system is the core of the hardware

platform (see Figure 2). It consists of three major parts, the Sensor
System for attitude stabilisation, the communication facilities for
steering and measurement data transmission (COM) and an interface
to the engine controllers (Drive).

To avoid any built-in estimation and filtering algorithms, but to
have full control of the sensor system, we decided to use basic sen-
sors and commercial off-the-shelf components. Therefore, three gy-
roscopes and accelerometers each form the basic three-axis inertial
measurement unit (IMU) sensing the angular rate and the accelera-
tion of the vehicle around the roll, pitch and yaw axis. Additional
sensors are used to support the pilot; for instance, magnetometers
are utilised as a digital compass and a combination of proximity and
pressure sensors is used to determine the altitude. Finally, using
a GPS device, the vehicle can even support waypoint flight and
maintain its position autonomously. The Software Architecture (cf.
Section 3.1) does not necessitate the sensors to be of a certain type
or interface. Thereby, they can be mixed or even replaced between
hardware revisions as long as they provide the same type of infor-
mation and an appropriate driver is developed. The latter has, for
example, been verified by integrating different types of accelerome-
ters (ADXL202, ADXL335 and ADXL3456). In the same way, the
sensor system can be extended by adding optional extension boards
(cf. Section 4.1).

The communication facilities consist of two independent channels,
a standard 802.11g WLAN and a 2.4 GHz radio control. The WLAN
adapter is connected via a bridge to the Ethernet interface and offers
a flexible and high-bandwidth facility for sending measurement data
and receiving control commands. The radio control is unidirectional;
however, the effective communication range is higher compared to
the WLAN and it can be used with off-the-shelf remote controls.

2.4 Airframe and Propulsion
The airframe has a conventional cross-shaped design made

of carbon-fibre square tubes and aluminium interconnects. The
I4Copter is equipped with 12x3.8 in propellers, resulting in an air-

6Analog devices homepage – http://www.analog.com

Table 1: Events and their period
Event Type Period
Sensor processing periodical 4.7 ms
Attitude control periodical 12 ms
Monitoring periodical 25 ms
Command aperiodical 25..250 ms

frame span of 65 cm and an overall span of 91 cm.
The propulsion system consists of four brushless engine con-

trollers and engines that are powered by a 14.8 V lithium polymer
battery. In this configuration, the system is capable of constantly
generating a thrust of 36 N in total. Based on a thrust margin of 40 %
required for steering and holding off the vehicle, the maximum take-
off weight is about 2120 g. The current prototype of the I4Copter
weighs approximately 1400 g, leading to more than 700 g payload,
and can maintain flight for more than 20 min. In sum, this makes
the I4Copter competitive with the state-of-the-art.

2.5 Temporal Properties
The temporal properties of the quadrotor are the result of the

analysis of the physical events (e. g., control, commands or interfer-
ence) affecting the vehicle, the physical cause and the consequences.
These properties have a significant impact on the real-time prop-
erties of the software system. In our case, we have identified the
four major events depicted in Table 1. Several associated, in par-
ticular aperiodic events (e. g., emergency shutdown) are not listed
due to brevity of the paper. To analyse their temporal properties,
we have measured the causing physical parameters (e. g., weight
and engine response time) using various test rigs and thereof build
a physical model and derived the unmeasurable parameters (e. g.,
vehicle inertia).

In detail, sensor processing is a periodical event caused by pend-
ing data and is triggered, according to the sampling theorem, with
twice the sensor output frequency. This is 105 Hz in our case, lead-
ing to a period of 4.7 ms. The attitude control is caused by a change
in motion and interference (e. g., wind) and depends on the engine
response time of ~120 ms, leading to a 12 ms period with ten times
overapproximation. In the same way, monitoring the vehicle’s flight

http://www.analog.com


condition is a periodical event; its period of 25 ms is derived from
the vehicle inertia. Finally, the user operating the quadrotor causes
aperiodic command events. Their minimal interarrival time is deter-
mined by the communication channel and the reaction time by the
human response time.

3. SOFTWARE ARCHITECTURE
This section details the software architecture of the I4Copter. It

has been designed with modularity as a key requirement, to support
high level application integration while providing real-time and
isolation properties. The latter has to be preserved even in the
presence of shared resources like the serial communication bus.

Consolidating all tasks on a single real-time system does not only
demand for isolation support but also the handling of various types
of periodical (e. g., attitude control) and sporadic (e. g., command)
events that have an impact on the system. A central aspect of our
architecture is therefore to be analysable, which is achieved by a
completely static setting.

3.1 Software Architecture Requirements
Shifting the separation of the time-critical basic flight control and

the more complex application logic from hardware to software by
colocating the former two on a single microcontroller raises further
requirements that have to be addressed by the software architecture
as well as the underlying system software:

• Strict temporal and spatial isolation of all software components

• Modular and configurable core architecture that supports pre-
dictable runtime behaviour

• Measurement data provision at actual sampling rate

• Software signal processing, filtering and estimation

3.2 Core Architecture
We have chosen a system and software engineering centric ap-

proach to tackle the aforementioned requirements. Therefore, the
I4Copter software architecture has been designed as a lightweight
and predictable framework and features a component-based design
written in C++. A real-time operating system is used for the execu-
tion of the software components and for instrumenting the hardware
memory protection offered by the TriCore microcontroller. Overall,
the base system – including the flight control – comprises approx-
imately 26.000 LOC (without the OS). The flight-control system
with all available features enabled utilises less than 1/3 (28,4 %) of
the CPU, leaving enough spare capacity for user provided tasks and
features. The memory footprint of 164 KB is less than 10 % of the
available system memory.

To support the real-time analysis and predictability, wherever
possible, periodic activation and polling is used to minimise the
coupling and impact of events on the rest of the system. The base
software components feature high coherency and minimal coupling
among them, and their dependencies are reduced to simple data flow
dependencies wherever possible.

In total, the core architecture (see Figure 3) consists of the base
System managing the hardware, the Ethernet and SerialBus resource
handlers operating the communication interfaces, the Signal Pro-
cessing component for data acquisition and the Flight Control and
Copter Control components implementing the low level control and
the high level behaviour of the quadrotor.

3.3 System
The System layer provides the base framework for the I4Copter

software architecture. On the one hand, it acts as an abstraction

layer towards the hardware. On the other hand, it provides services
for data exchange, exception handling and consistent operational
mode management for all other software components.

At the moment, two real-time operating systems can be used to
execute the application system, whereas the OS-specific calls are
covered by a thin abstraction layer: The commercial PXROS-HR7

and the CiAO OS [9], which is developed at our lab. PXROS-HR
is a stable and well supported RTOS platform and used in SIL-4
applications. HejDa is open source, highly configurable and features
an AUTOSAR8 API. The latter enables the integration of automotive
software developments for evaluation purposes. An outstanding
feature both have in common is the support for hardware-based
isolation using memory protection.

In the same way, the TC1796 microcontroller-specific control of
the periphery modules is encapsulated in a thin, statically configured
TriCore Hardware Abstraction Layer, which supports the Copter
Hardware Device Drivers controlling the sensors (e. g., gyroscopes)
and actuators (e. g., engine controllers) directly attached to the mi-
crocontroller. Thereby, we perform the signal filtering at the level of
the device drivers, as their parametrisation is highly device specific.

Besides the abstraction, the System layer provides service prim-
itives for component interaction. This is, base classes for system
and application components as well as a type-safe, template-based
connector mechanism used to implement data flow between memory
protection domains at different levels of protection. Depending on
the actual data flow scenario and the data type, the connectors are
reduced at compile-time to simple pointers or are mapped to OS-
based messaging. The software component support is completed by
a basic exception handling and an operational mode management.
The former enables components to signal exceptions of different
severity (e. g., warning, error and panic) within predictable time lim-
its. The operational mode manager takes care of a consistent view
on the system’s operational mode and state among the components.

3.4 Shared Media Handlers
In general, hardware devices can be attached to the microcon-

troller using either point-to-point connections (e. g., I/O pin) or
shared media via a communication bus. In any case, the software
interfaces of the device drivers should be fixed even when changing
the connection type. Therefore, the serial periphery bus (SPI) and
the Ethernet interfaces are operated using the SerialCom and Ether-
net handler components, respectively. They have been designed to
maintain the isolation of the components that are using bus devices.

The SerialCom design is to store the serial message within each
bus device driver individually, granting the handler exclusive mem-
ory access only when actually communicating. By the time the
answer has been received, the handler releases the memory again,
thereby also implementing synchronisation with the component.
Further implementation details regarding the temporal isolation are
discussed in Section 3.8.

The Ethernet handler is used for parsing incoming and for build-
ing outgoing packets. The protocol used is a custom design on top
of the UDP protocol. Its uniform packets are configured statically at
compile time. In combination with a strictly periodical transmission
the resource consumption is constant at runtime.

3.5 Signal Processing
The sensor data acquisition and filtering is done by the Signal Pro-

cessing component. Therefore, it consists of several subcomponents
that represent either the different kinds of sensor classes attached to
7Freely available for educational use (http://www.
hightec-rt.com).
8AUTOSAR homepage – http://www.autosar.org
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the system or estimation filters. All measurement values are stored
and distributed in a type-safe manner, using the appropriate unit.

The device drivers that belong to a certain sensor class are en-
capsulated by a subcomponent, thereby providing a single, stable
interface to the rest of the system. This is especially useful for
multi-axes sensors or for multiple sensors covering a sensing range.
Furthermore, the scheduling of (lower) divergent sampling rates is
also handled within the sensor class subcomponents.

The estimation filters located in the Signal Processing can directly
access the raw data and work with the same sampling rate. They
are used not only for Kalman filtering but also for sensor fusion and
reconstruction of unmeasurable system states. The most important
estimates are the vehicle angles around the pitch and roll axes.

3.6 Copter Control
The Copter Control component is responsible for receiving oper-

ator commands, sending measurement data and for the high level
behaviour of the quadrotor. The steering data is provided by ei-
ther the radio control device driver or the Ethernet component or
both of them. In the latter case, the data is merged and prioritised.
Whereas the data sent by the radio control is fixed, complex flight
and waypoint plans can be submitted using the Ethernet interface.
Both connection types are strictly periodic and used as a heartbeat
at the same time to detect connection loss. In the opposite direc-
tion, Copter Control forwards relevant measurement data to the
ground station via Ethernet. Being the vehicle’s monitor, Copter
Control also implements the basic behaviour control for emergency
responses in the case of a cut-off communication, low battery and
other exceptions including an immediate emergency stop.

Table 2: Events and their appearance
Event Component/Task Period WCET
Sensor processing SignalProcessing 3 ms 422 µs
Attitude control FlightControl 9 ms 260 µs
Monitoring & Steering CopterControl 21 ms 472 µs

3.7 Flight Control
The software component with the highest impact on the user’s

perception is Flight Control, as it implements the basic control
system for maintaining a stable and easy to control flight. Its design
(see Figure 4) is modular and organised in a cascaded structure
of three layers. This has the advantage that not only high level
motion control is available for the operator but that also the inner
control loops can be accessed. The attitude controller is available
as a MathWorks™ Simulink®9 model and the controller code is
generated using Simulink’s Real Time Workshop.

3.8 Real-Time System Design
Finally, the software components and physical events outlined in

Section 2.5 have to be mapped onto tasks that are scheduled within
the real-time operating system. As the base components have been
designed with events in mind, this mapping is straightforward, as
shown by the selected set in Table 2. All time-critical tasks are
executed strictly periodically. However, the aperiodic events have to
be handled asynchronously by using for example (short) interrupt
handlers or background execution. Soft real-time tasks, for example
the Ethernet task, are scheduled for background execution.

One may notice that the period of the periodic tasks is harmonic.
This helps to determine appropriate phase offsets for the tasks and
to avoid overlapping tasks, which is especially important when
dealing with shared resources like the serial communication bus.
Accordingly, the resource allocation can be done ahead of runtime
implicitly using a static schedule. Therefore, the allocation protocol
restricts each device driver to one bus message per task activation.
For calculating the phase offset for a certain setting, we have deter-
mined the worst-case execution time (WCET) of each component
and interrupt handler using the Absint10 aiT WCET analyser. In the
resulting static schedule the tasks do not interfere with each other.

9MathWorks homepage – http://www.mathworks.com
10AbsInt homepage – http://www.absint.de
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4. USE CASES
Next, we will outline two distinct use cases extending the

I4Copter base platform. Firstly, a variant supporting redundant
execution that is resilient to transient hardware errors. Secondly,
an evaluation platform for engineering and evaluating control algo-
rithms.

4.1 A Soft Error Resilient Quadrotor
Future hardware designs for embedded systems will exhibit more

parallelism at the expense of being less reliable. Detecting transient
faults (also known as soft errors), and tolerating their effects, has
been a popular topic in the context of mission-critical systems (e. g.,
space computers) for decades. However, there is limited knowledge
on how these faults will be handled once off-the-shelf components
are afflicted with these kinds of faults. Conveniently, recent work
on software protection mechanisms was done in cooperation with
Siemens [12]. We therefore decided to implement an error resilient
version as an use-case.

As a first explorative step, we extended the I4Copter by triple
modular redundant execution [4]. At the hardware level this was
achieved by a second extension board that duplicates the essentially
needed sensor values by a second set of accelerometer and gyro-
scope sensors. As we require another set of values to enable voting,
we decided to derive these values using sensor fusion algorithms.
In sum, we gain three sets of inputs that are handed over to an in-
terfacing flight control task which stores them in different memory
regions for gaining fault independence. Next, we tripled the flight
control task. Each of the tasks using its own set of sensor input
values. Finally, the outputs of the three instances are combined and
voted. We designed the voter to be as simple as possible to reduce
the risk of soft errors at this critical stage.

The extension of our first prototype Icarus to the soft-error re-
silient version Apollo (see Figure 1) went quite smoothly. As our
system design was already very modular and component-based we
only had to implement the new interfacing task and the voter. The
actual replication step of the flight control can be considered as
matter of extended configuration. This included building a new
schedule. Compared to the basic variant the system load increased
by only 10.4 %. Furthermore, the temporal and spatial isolation
provided by the OS and supported by the microcontroller was very
beneficial for the development and for achieving fault independence.
Hardware-wise the extension board could be easily attached to the
existing system and the core microcontroller had enough input ports
to handle the additional sensor signals. Aside from the positive
experience, we also identified the former SerialCom to hinder the
background execution and to be obstructive when setting up the
schedule for the system. The reason was the easy to analyse but
inefficient synchronous operation of the serial bus, leading to gaps
in the schedule and waste of CPU time. For this reason, we extended
the SerialCom to provide asynchronous operations (see Section 3.4).

4.2 Trajectory Tracking Control
The applicability of the I4Copter platform for evaluating con-

trol engineering algorithms has been proven by implementing a
trajectory tracking control featuring waypoint flight in the three
dimensions and an automated take-off and landing control.

The former has been implemented by extending the cascaded
controller by a fourth layer controlling the vehicle’s velocity and
position on the basis of the GPS data. To obtain the velocities, the
Signal Processing has been extended by additional estimation filters
for pitch and roll as well as for the yaw axis. The latter is realised
by a sensor fusion of the yaw accelerometer and the pressure data,
bypassing the existing filters and using raw data. An additional

user task computes the motion paths for the waypoint heading. The
autopilot is working in parallel to the existing controller and thereby
is able to compensate the noisy signals caused by the ground effects.
Therefore, it features an alternative implementation of the attitude
controller replacing the original one during the starting and landing
phase.

The modular system and controller design enabled a straight adap-
tation to the mission-specific needs. The connectors used for data
exchange between the components proved to be useful for integrat-
ing the velocity estimation and the additional task calculating the
motion paths. The mode management provided by the framework
helped us to implement the different operational modes defined by
the control engineers.

5. RELATED APPROACHES
Existing quadrotor projects can be roughly subdivided by their

main interest focus: commercial, hobbyist and research.
Commercial solutions available today such as products provided

by microdrones offer already a wide range of support for surveil-
lance up to the point of on-demand development for a specific task.
Despite these facts, access to their code is not possible or associ-
ated with high costs and licence restrictions. Therefore, their use in
research and education is rather limited.

The community-based project MikroKopter is a representative
for a hobbyist project. It builds the starting point for hobbyist
and researchers enabling initial work in the field of quadrotors.
This is fostered by the availability of cheap and working toolkits
and an open-source implementation of the control software. As
downside, this project realised the whole flight control in one main
loop based on a small Atmel® ATMega644 and avoids using an
operating system. From an engineering perspective this is a poor
choice as it makes further extension and evolution of the system
very hard. In consequence, researchers tend to extend the platform
by an additional microcontroller and have difficulties to adapt the
control software to the changed flight characteristics.

Researchers usually focus on their research topics and naturally
select the easiest possible way to implement them. Some projects
like the OS4 [1] or X-4 Flyer [11, 10] quadrotors have been design
for evaluating the basic controller theory of quadrotors and therefore
have the same drawbacks regarding reusability as the community
driven projects (e. g., lack of an operating system). Other research
projects, such as the STARMAC [5], do address application-specific
programming. Therefore, these projects incorporate operating sys-
tems but still rely on a strict separation of low and high level control
on multiple microcontrollers. The JAviator [?, 2] features a sys-
tem design similar to that of the STARMAC – although being a
lot bigger and better integrated – and also uses a Robostix (Atmel
ATMega128) for low level hardware control as well as a Gumstix
(Intel XScale PXA255) for high level vehicle control. In contrast to
all other projects, the JAviator developers have identified the need
for spatial isolation. Accordingly, they are either using Real-Time
Linux or their own Tiptoe RTOS and Java-inspired programming
paradigms. Showing a promising solution, however, the separa-
tion into a low and a high level microcontroller still remains. A
characteristic that OS4, STARMAC and JAviator have in common
is the usage of integrated IMUs incorporating the basic filters and
estimation algorithms. This impedes an application-specific reuse as
there is no access to the individual sensor raw data at high sampling
rates.



6. SAFETY ASPECTS
Despite being a model-size aircraft, a quadrotor can cause serious

damage and must be considered under safety aspects. For the de-
velopment of the safety-critical parts of the system – this is mainly
steering and flight control – we used industry grade tooling and
analysis techniques for both functional as well as real-time aspects.
The basic flight control is model-based, developed and tested by
control engineering experts using Simulink. So far, there are four
I4Copter in total, two of them are used by our group and one each
by Siemens Corporate Research in Munich and Princeton. There,
the overall system design has shown its applicability and reliability
through rigorous testing and hundreds of test flights.

However, we encountered an unexpected but retrospectively
rather obvious safety aspect while evaluating the trajectory tracking
control use case. A bug in one of its specific components jeopar-
dized the aspired fault isolation, which almost lead to the loss of
a quadrotor. To be specific, the bug indirectly affected the radio
control component in case of a connection loss11, where it impeded
the transition to the prioritised emergency mode. In general, the
I4Copter architecture implements component interaction by state
messages [8] like data flow coupling. Apart from that, the compo-
nents have to form and obey a consensus of the current operational
mode of the system (e.g., ready, flight, emergency). Here, the issue
is that the shared global operational mode leads to a distributed and
parallel state machine [7] if more than one component triggers a
certain mode – this cannot be mapped to state messages. In conse-
quence, the correctness and the temporal order of the state machines
involved for a certain transition has to be verified and can be seen as
the TCB.

As a first step to regain the intended modularity and the isolation
properties, we introduced the actual operational mode management,
which is a turn-based arbiter for the operational mode. With this,
the parallel, component-local state machines are synchronised at
a specific point in time, and the consistency of a suggested mode
transition can be checked. To reduce the TCB for the vital emergency
transition we decided to build a simplified and provable version of
this part of the state machine as a watchdog. In addition, we are
currently working on a provable version of the local state machines
picking up the approach described in [7] and using MathWorks™

StateFlow®.

7. CONCLUSION
We presented the novel design of the I4Copter quadrotor family.

Unlike related approaches that basically target to provide maxi-
mal flight qualities or demonstrate an individual new technique in
research, we combined the experience of 4 years of research and nu-
merous test flights as well as various prototypes to provide a stable
and modular platform. Thereby addressing cross-field challenges in
the fields of real-time and embedded systems, distributed systems,
robotics and cybernetics. This has been achieved by consolidating
all control software to a single but powerful microcontroller and
the spatial isolation via hardware memory protection. Furthermore,
our architecture exhibits a modular software and controller design
as well as an adaptable communication infrastructure while being
analysable due to its strictly static setting. We validated the benefits
of our approach by two challenging use cases: an evaluation plat-
form for modularised control algorithms enabling trajectory tracking
and a soft-error resilient variant of the I4Copter. While the first
case makes formal control theory practically applicable the second
explores the design space of safety critical applications. Preliminary

11To be considered as a model aircraft, a manual override is manda-
tory by law in many countries

results from the associated research projects at Siemens substantiate
the experience we made with the two use cases. In sum, the over-
all system design resembles industry and automotive applications
which makes it a great basis for research and educational use to
attack and solve cross-field challenges.
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