
Annotate Once – Analyze Anywhere: Context-Aware
WCET Analysis by User-Defined Abstractions

Simon Schuster
Peter Wägemann
schuster@cs.fau.de

waegemann@cs.fau.de
Friedrich-Alexander University

Erlangen-Nürnberg (FAU)
Erlangen, Germany

Peter Ulbrich
Peter.Ulbrich@tu-dortmund.de

Technische Universität Dortmund
Dortmund, Germany

Wolfgang Schröder-Preikschat
wosch@cs.fau.de

Friedrich-Alexander University
Erlangen-Nürnberg (FAU)

Erlangen, Germany

Abstract
The widespread adoption of cyber-physical systems in the
safety-critical (hard real-time) domain is accompanied by
a rising degree of code-reuse up to actual software prod-
uct lines spanning different hardware platforms. Neverthe-
less, the dominant tools for static worst-case execution-time
(WCET) analysis operate on individual, specific system in-
stances at the binary level, further depending on machine-
code–level annotations for precise analysis. Thus, this timing
verification is neither portable nor reusable.

PragMetis addresses this schism by providing an expres-
sive source-level annotation language that enables to express
context dependence at the library level using user-defined
abstractions. These abstractions allow users to generically
annotate context-dependent flow facts down to the granu-
larity of individual loop contexts. We then use control-flow–
relation graphs to transfer these facts to machine-code level
for specific instances, even in the presence of certain com-
piler optimizations, thus achieving portability. Our evalua-
tion results based on TACLeBench confirm that PragMetis’s
powerful expressions yield more accurate WCET bounds.

CCS Concepts: • Computer systems organization →
Real-time system specification; Real-time languages;
Embedded software; • Software and its engineering →
Compilers.

Keywords: WCET analysis, annotation language, context
sensitivity, control-flow–relation graphs

1 Introduction
In safety-critical real-time settings, static worst-case execu-
tion-time (WCET) analysis is the state-of-the-art approach
to the verification of temporal properties [1, 59]. In general,
WCET analysis is a challenging task as it must be easy to use
while providing sound yet tight bounds on the WCET. One
of the challenges is the micro-architecture machine-code
analysis, which is highly dependent on the current hardware
state (e. g., cache, pipeline). Consequently, establishedWCET
tools [2, 5] operate at the binary level to infer these platform-
specific runtime costs effectively. Another vital challenge

results from the path analysis, which is used to character-
ize worst-case execution paths. These tools reconstruct this
knowledge (i. e., flow facts) from the binary representation
by control-flow analyses and abstract interpretation. In par-
ticular, path analyses reveal the actual program’s behavior,
for example, by inferring loop bounds and call contexts.

While automated analyses work well in specific domains,
such as aerospace [6], they put high demands on the de-
velopment process: a completely static system structure, in
which the analysis can infer all relevant knowledge from
the machine-code level. However, in general, this is not the
case in many industrial settings requiring manual annota-
tion [13, 23, 27, 57] to bound and refine analyses. Here, stan-
dard tools require annotations at the machine-code level to
circumvent the traceability issue induced by compiler opti-
mizations. However, binary-level annotations are known to
be error-prone, labor-intensive [26, 51] and are subject to
collateral evolution [48].
So, there are ample motivations for an expressive anno-

tation language at the source-code level. Our paper’s moti-
vating example and a deputy is reuse, which we believe is
gaining more importance with the increasing proliferation
of hard real-time systems in cost-sensitive domains (i. e., au-
tomotive). A prime example of this is the use of libraries
that offer functions for a wide range of application scenarios
and cannot be easily annotated in a generalized way. Besides
generic software components, general-purpose operating
systems are increasingly being used, which are no longer
tailored to a specific application. Therefore, extensive con-
figurability is inherent for applications (e. g., product lines)
and their operating systems [20]. In this context, existing
annotation approaches prove insufficient [34, 44], especially
for the annotation of system functions and operating system
code [8, 15, 46, 52].

1.1 Problem Statement
This paper’s objective is the generic annotation of software
modules at the source level, which is module-centric (i. e.,
configuration or hardware agnostic), customizable, and pre-
serves its validity in the presence of compiler optimizations.

Simon Schuster, Peter Wägemann, Peter Ulbrich, and Wolfgang Schröder-Preikschat

Our goal is to manually annotate the code once with annota-
tions that best match the program semantics. Subsequently,
these annotations become reusable in arbitrary contexts. The
fundamental challenge comprises two key problems:

Problem #1: Necessity for Machine-Independent An-
notations. Existing WCET tools have to compromise on au-
tomated analyses and compiler optimizations. Consequently,
they typically demand annotations of the machine code, re-
sulting in poor maintainability and limited expressiveness.
Depending on whether the abstract interpretation can trace
a variable (i. e., loop state) decides whether developers must
bother with its concrete binary representation (i. e., register
storage). These limitations make binary-level annotations
unsuitable for reuse in different deployment scenarios.

Our solution provides expressive source-level annotations
that draw upon a detailed expansion of execution and call
contexts. Likewise, they provide full traceability at the binary
level. For one, we achieve this goal by an adequate aggre-
gation of high-level contexts and execution sequences to
occurrence frequencies and numerical flow facts. In a second
step, we leverage control-flow–relation graphs (CFRGs) [30]
to lower these facts, even under certain code optimizations.

Problem #2: Reusable Annotation of Complex Inter-
Component Path Dependencies. A loop constraint in a
library function may depend on the call context or global
state (e. g., OS). Vice versa, this function can, for example,
also be associated with side effects on the global state. More-
over, such dependency patterns can vary greatly, for example,
with the overall configuration. Annotations must, therefore,
handle complex and potentially inter-component dependen-
cies. Generic abstraction domains (e. g., collection or interval
semantics) of standard WCET tools are unable to manage
these complex interrelationships in a meaningful way.

We propose parametric annotations with user-defined ab-
stractions that allow for case-specific and highly expressive
annotations to tackle complex semantics (e. g., complex data
types) and interdependencies to solve this problem. These
use the call parameters in a given context, incorporate config-
uration, and, most importantly, allow analysis under partial
knowledge. In combination, they enable a bidirectional (i. e.,
caller/callee, higher-order or global state) exchange of knowl-
edge and thus a composable analysis of configurable systems.

1.2 Contribution & Outline
This paper makes the following contributions: (1) PragMetis,
a code-level annotation language that introduces user-defined
abstractions for the generic annotation of complex flow facts
in reusable code (e. g., libraries, core functions, OS). (2) The
concept of opportunistic annotations that allow for a selec-
tive yet tolerable indefiniteness within the analysis context.
(3) A context deduplication approach for both call-context
and integer linear program (ILP) level to minimize analysis
overheads. (4) An open-source WCET analysis framework,

based on Platin [49] and CFRGs [30], which ensure a sound
lowering from the code to the binary-level even in the pres-
ence of certain compiler optimizations. (5) An evaluation
based on our prototype and TACLeBench [18], a widely used
benchmark suite.

Lisper et al. argue for better annotation languages to pro-
vide precise information [44], while Kirner et al. compared
the strengths and weaknesses of annotation languages re-
garding their feature set [33]. Based on this comparison,
PragMetis is the first annotation language for WCET analy-
sis with optimization awareness that comprises all features
of addressing individual loop, call, and application contexts.
The remainder is organized as follows. Our approach to

context-aware analysis by user-defined abstractions is pre-
sented in Section 2, with Section 3 devoted to the imple-
mentation of PragMetis’s toolchain. Section 4 provides a
case study based on TACLeBench and experimental results.
Section 5 discusses future work and Section 6 related work.
Finally, we conclude our work in Section 7.

2 Approach
In this section, we detail PragMetis, a source-code annota-
tion language for expressing scoped, parametric control-flow
refinement information that solves the challenges posed in
Section 1.1. Deviating from that order, we begin with the de-
sign of the annotation language in Section 2.2. Here we cover
PragMetis’s novel concepts of user-defined abstractions and
opportunistic annotations to facilitate annotation locality.
Building on these foundations, we detail the annotations’
traceable lowering to machine-code in Section 2.3. Finally,
we illustrate the ILP formulation for the worst-case bound
in Section 2.4.

2.1 System Model
However, before diving into our approach, we briefly discuss
our system model. PragMetis provides reusable, context-
sensitive, source-code–level annotations for static WCET
analysis. As these annotations allow to refine the control-
flow information within a (single-threaded) programs’ (high-
level) path analysis, the approach is not bound to specific
hardware properties. Therefore, PragMetis only assumes
general timing predictability, in particular the absence of
timing anomalies [14, 21, 45] from the hardware.

2.2 Annotation Language Design
Reuse implies that code is executed under various constraints
and in different contexts. Consequently, we enable the de-
veloper to express these differing contexts utilizing Prag-
Metis’s expressive annotations. As we build upon the T-
Crest toolchain [53], PragMetis reuses its #pragma directive
to embed annotations at the source-code level as well as the
syntax of Platina [55] for annotation of control-flow prop-
erties (e. g., loop bounds, path feasibility, or indirect calls).
The given original syntax is:

Annotate Once – Analyze Anywhere: Context-Aware WCET Analysis by User-Defined Abstractions

var = 1

#var = var + 19

#var = var + 22

var = 42
var = 23

var = 20
var = 1 �

path-explosion
behavior

var = 1

#var = var + 19

#var = var + 22

#var = . . . � PragMetis’s
behavior

Figure 1. Example of the risk of path explosion with non-
scoped visibility (left), with each annotation carrying the risk
of doubling state space, as opposed to PragMetis’s (right).
#pragma platina (lbound|guard|callee) "<expression>"

In [55], expressions can reference and combine the values
of global, symbolic parameters to specialize the analysis to
a specific system state. With PragMetis, we extended this
language and its syntax in two ways: (1) A new annotation
platina let that allows changing symbolic parameter val-
ues used in expressions locally. Such a local refinement of
symbolic parameters enables modeling the evolution of the
execution context within the annotation language at a fine
scale. (2) The ability to distinguish between different loop
contexts within expressions by managed indexing variables.
A key concept of PragMetis is defining dominance regions
for such bindings and evaluating them in a purely functional
manner. Therefore, we leverage scope graphs [17, 56] and
extend them to derive said validity regions in the following.

2.2.1 Dominance-Based Scoping Model. Here, Figure 1
exemplifies the need for a purposeful scoping of analysis
contexts. On the left, a simple (imperative-style) scoping
and visibility concept is shown to annotate the parameter
var. Note that parameter var is a symbolic parameter within
the annotation language, which may have a direct relation-
ship to an individual variable in the program, but may as
well express conceptual properties, such as operating modes.
Given an initial value, the subsequent annotations modify
the value of var globally. Unfortunately, using var as a vari-
able within annotation expressions requires a full explicit
path enumeration; its observable values depend on the ex-
ecution history. This explicit enumeration contrasts with
established techniques, such as the implicit path enumera-
tion technique (IPET) [41], that try hard to keep the number
of examined paths low to keep the analysis problem in a
manageable size.

Contrasting, PragMetis features a visibility concept based
on dominance, as shown on the right in Figure 1. Each
binding is only visible within its dominance region. That
is the part of the control-flow graph that can only be ac-
cessed through the annotated program point. For example, a
function entry dominates the function members, and a loop
header dominates its body. We leverage scope graphs [17, 56]

to express the hierarchical deconstruction of a program’s
contexts into scopes. In PragMetis, we use scope graphs at
the source-code level and introduced new scopes for our an-
notation expressions such as let. Conveniently, dominance
regions regularly (i. e., gotos are a manageable exception)
map to blocks at the source-code level. The resulting model
graph allows for efficient identification and specialization of
the identified program contexts during analysis; we detail
this generation process in Section 3. Avoiding the naive ap-
proach’s path explosion, PragMetis facilitates a hierarchical
top-down expansion of analysis contexts. While this scoping
keeps the analysis state small, it impedes automatic differen-
tiation of individual paths as part of the analysis. Therefore,
PragMetis provides user-defined abstractions to express and
distinguish combinations of symbolic parameters for the var-
ious paths locally, within the individual annotation expres-
sions. In this way, we maintain meaningful expressiveness
despite the state reduction. We detail this mechanism in the
following section.

2.2.2 User-Defined Abstractions. In comparison with
established annotations fueled by abstract-interpretation–
based analyzers, our dominance-based approach requires
a fundamentally different, much more declarative annota-
tion design. Returning to our example from Figure 1 (right),
the last annotation (var = ...) must summarize the pre-
ceding constraints and thus abstract from the different val-
ues of var at this program point. The type of abstraction
is dictated by the program structure and semantics and
should keep the analysis precise. The following example
deepens this aspect on the example of three specifications
for a loop bound that depends on the abstraction of var:
lbound "var" // ➀

lbound "42 - var" // ➁

lbound "if var == 16 then 1337 else 42" // ➂

For sound yet precise worst-case approximation, each anno-
tation calls for a different abstraction over var:➀ requires the
maximum value and ➁ the minimum. On the other hand, for
➂ neither of these abstractions is helpful as they cannot rule
out the infeasible case of var == 16. Therefore, a set-based
abstraction of potential values is required. Fully automatic
frameworks [3, 29, 42, 58] that are based on abstract interpre-
tation attempt to track program values in a limited collection
of abstract domains. Each domain models values as long as
it seems feasible and then combines this knowledge to the
most favorable result. While this automatic domain tracking
technique is powerful, it still has its limits as soon as more
complex data structures or application-specific knowledge is
involved and is thus unsuited for our aims. Therefore, we lift
the creation and selection of the most suitable abstraction
to the annotation-language level and the developer, respec-
tively. For our example, this implies: ➀ and ➁ are common
range types, for which PragMetis provides a built-in interval

Simon Schuster, Peter Wägemann, Peter Ulbrich, and Wolfgang Schröder-Preikschat

arithmetic abstraction. In case of ➂, PragMetis offers sets
and the ability to query set membership.

In addition to these simple examples, PragMetis facilitates
user-defined, complex data types forming records, lists, or
sets thereof. Our annotation language obtains these capabili-
ties from Dhall [22], along with its variation of CC𝜔 and type
system [12]. To better adapt to the domain of static WCET
analysis, we extend Dhall’s core language [22] by custom
types such as numeric ranges and lists of C functions to carry
callee information, an extended standard lib, as well syntax
extensions like the indexing variables or undefined values.
Ultimately, this annotation language allows for user-defined
abstractions that model even complex properties, such as
approximations on library data structures or OS semantics.

2.2.3 Opportunistic Annotations. While user-defined
abstractions are a flexible and powerful tool, it puts high
obligations on developers. The more specific the abstraction,
the more information is potentially required at the call site,
which might not be available in all contexts. In turn, the anal-
ysis so far fails, although in many cases, a less accurate but
more straightforward abstraction with fewer requirements
may exist. Therefore, we introduce another complementary
mechanism in PragMetis, opportunistic annotation through
aggregation and filtering. This enables the same syntactic con-
struct to be applied multiple times in varying specifications,
for example:
for(i = 0; i < 42 - nelems; i++) {

#pragma platina lbound "42 - nelems"

#pragma platina lbound "42"

// ...

}

Consequently, PragMetis aggregates all available flow facts
and chooses the best specialization (e. g., lowest loop bound,
most restrictive callee set, or maximum path feasibility re-
striction). Thus, developers are relieved from case-specific
constraints enabling a the-more-the-merrier, opportunistic
annotation approach. Furthermore, PragMetis allows values
to be marked as undefined at certain program points:
#pragma platina let "nelems = (undefined : Integer)"

An undefined value propagates until it is resolved in another
context, or the affected expressions are ultimately removed
from the analysis. However, if an immediate flow fact is
computed, PragMetis filters the corresponding annotations
during the flow-fact aggregation. That way, different abstrac-
tions coexist, and annotations become truly opportunistic, as
aggregation compensates for the lack of local knowledge.

2.2.4 Loop-Context–Indexing Variables. Loop-context
dependence represents a typical annotation problem. For
example, whether a path is infeasible in every second loop
iteration. Therefore, to reference such loop contexts, Prag-
Metis introduces a set of predefined loop-iteration identifiers:
for (i = 4; i < 8; i++) { // ➃

#pragma platina lbound "4"

for (j = 0; j < i; j++) { // ➄

#pragma platina lbound "$1 + 4"

// ... // $0 ⇔ ➄; $1 ⇔ ➃

}

if (i % 2) { // $0 ⇔ ➃

#pragma platina guard "Natural/odd ($0 + 4)"

// ...

}

}

These loop-context–indexing variables (abb. indexing vari-
ables) have the syntax $<numeric index>, where the index
refers to the level within the loop-nesting hierarchy starting
with $0 for the innermost loop scope. Semantically, each in-
dexed variable ranges from 0 to (lbound - 1). Consequently,
PragMetis can not only accurately express the above trian-
gle loop, which has a closed-loop formulation in terms of
scalar-evolution expressions [4], but also more complicated
cases where no closed-loop or polyhedral formulations ex-
ist—for example, loop iterations with conditional behavior
in the listing above. While boosting analysis precision, in-
dexing variables pose the risk of a significant increase in
call contexts: A 1000 iterations loop body calling a function
would spawn up to 1000 call contexts, each with its binding
for $0. While our context-pruning logic (see Section 3) can
help keeping such numbers feasible, there is a simpler, con-
structive solution: Indexing variables are not automatically
visible across the function-call boundary. However, if needed,
these can be bound to a regular scoped variable at any time.

2.2.5 Locality. In our annotation language, all flow-fact–
inducing annotations (i. e., lbound, guard, and callee) pro-
vide locality as they are placed directly at the program point
they describe, which fosters usability as well as maintain-
ability. However, due to our scoped visibility, this is not the
case for some of our let-based bindings, especially those
describing the value of an abstraction after function calls:
int var = pow(x, 2);

#pragma platina let "var = x * x"

Instead, in this example, we must annotate pow’s behavior
at the call site, a somewhat unrelated program point. Con-
sequently, there is a hard-to-maintain collateral evolution
between pow and its annotations at all call sites. Furthermore,
the caller should not be required to describe the behavior
of the function called. We adopted the concept of postcon-
ditions from contract-based programming to resolve this
issue, introducing the new annotation type, glet. Thereby it
is possible to define reusable, globally valid bindings from
within the source-code restoring locality.
// Within pow()

#pragma platina glet " \

pow_post = \(x: Natural) -> \(exp: Natural) -> \

List/fold Natural (List/replicate exp Natural x) \

Natural (\(x: Natural) -> \(y: Natural) -> x * y) 1"

// After the call at the callsite

#pragma platina let "var = pow_post x 2"

Annotate Once – Analyze Anywhere: Context-Aware WCET Analysis by User-Defined Abstractions

𝑓left 𝑓in1

𝑓in2

Figure 2. PragMetis aggregates all loop contexts within a
function context. Constraints linking the back-edge frequen-
cies (dotted) to the function entry allow the solver to assume
iterations correctly.

Postconditions can call each other as long as a partial order
exists within the global annotations’ callgraph.
Summarizing, scope-based context refinement, expressive

user-defined abstractions, opportunistic annotations, and in-
dexing variables provide the foundations of our annotation
language. Thereupon, commonly used idioms (e. g., specify-
ing symbolic bindings for function parameters) can be added
to foster usability.

2.3 Lowering under Compiler Optimizations
The second part of this section is devoted to our first prob-
lem (cf. Section 1.1): traceable lowering of flow facts to the
machine program level. The challenge is relaying source-
level expressions at specific program points to matching flow
facts on the machine-code level. This is not a new problem,
and several approaches exist [19, 30, 35, 39, 54] to address the
issue. Apart from suppressing control-flow altering optimiza-
tions [54], several techniques exist that co-transform flow
facts along with individual optimizations during the com-
pilation process, either using a tailored compiler [19] or by
instrumenting optimization passes within mainstream com-
pilers [35, 39]. In contrast, CFRGs [30] represent a generic
mechanism to relate execution flows at different represen-
tation levels of the program, even across semantic preserv-
ing program transformations. As CFRGs can be constructed
from a partial mapping of individual program points at the
different levels, as it is often available from standard compil-
ers, the technique requires fewer modifications than the co-
transformation–based approaches. The flow relations take
the form of regular path relations and mathematically cap-
ture equivalencies of execution flows between joint points
of execution progress. This representation holds enough
information to transform numeric flow-frequency informa-
tion, as it is commonly used within IPET-based static WCET
analyses, to the machine-code level. While these regular re-
lations are less expressive than manual co-transformation
and the technique focuses on backend optimizations, CFRGs
still support several high-level optimizations such as loop
peeling, loop unswitching, or loop interchange [30]. Along
with the availability of an open-source implementation [25]
within a standard compiler [37] and the higher portability,
this technique provides a suitable basis for PragMetis.

The first challenge is in flow facts for program points that
occur in multiple analysis contexts, caused by a function
called in either different call or loop contexts. As all primitive
annotations (guard, lbound, callee) are locally contained to
the respective function, we use specializations at the function
level as the basic unit for this transformation. The approach
described in [55] already facilitates lowering of program-
global guard, lbound and callee annotations. There, a guard

annotation at the source level is defined as a constraint to
the frequency variable 𝑓guard of the corresponding program
point: 𝑓guard ≤ 0
Such global numeric flow information is transferred by

CFRGs in the presence of compiler optimizations, as long
as the flow relation is valid and a progress node (or any
pre/post-dominated node) exists that links 𝑓guard to one or
more frequency variables at the machine-code level. This
logic is easily extended to any local annotation outside of a
loop context. A primitive value represents the annotation’s
value: a boolean indicating feasibility (guard) or an integer
denoting execution frequency of the back edge (lbound). To
localize these constraints, we scope those values by relating
them to the frequency of the function entry:

𝑓guard ≤ 0 ∗ 𝑓function
𝑓back edge ≤ 𝑙𝑏𝑜𝑢𝑛𝑑 ∗ 𝑓function

Annotations contained in loop contexts are a little trickier:
While it is straightforward to unroll a loop at the source-
code level, a CFRG is incapable of indicating the correspond-
ing locations on the binary level for individual iterations’
program points. Instead, it provides sets of frequency vari-
ables at both levels, whose execution frequency matches
according to constraints spanned by joint progress nodes.
However, with loop-restructuring optimizations (e. g., loop
interchange), the loop contexts’ execution sequences might
differ among the two levels. Consequently, PragMetis ad-
dresses all loop contexts in a function’s context collectively
instead of individually by aggregating the annotation’s re-
sults into a specific numeric flow fact at the source-code level
that a CFRG can lower. For inner loops, this aggregation is
defined by the sum of all loop bounds 𝑙𝑖 observed for the
individual outer loop’s contexts, or more formally:

𝑓inner back edge ≤ 𝑓function ·
∑︁

𝑖∈outer loop iterations
𝑙𝑖

However, uplifting loop-body frequencies to the function
scope still requires further constraints. Considering the ex-
ample given in Figure 2, the costliest path can either be the
left (𝑓𝑙𝑒 𝑓 𝑡) or the right (𝑓𝑖𝑛1, 𝑓𝑖𝑛2), depending on the context-
dependent loop bounds. Yet, by aggregating the back-edge
frequencies to the function entry (dotted arrows), there is
no indication of any incoming flow into the respective loops.
Thus, an ILP solver might mistakenly assume loop iterations
up to themaximal back-edge frequency.We, therefore, bound
the global back-edge frequency by the maximum local loop

Simon Schuster, Peter Wägemann, Peter Ulbrich, and Wolfgang Schröder-Preikschat

Loop context 𝑙1 𝑙2 𝑙3

Callee sets
{
𝐶𝐶𝑓 ,𝐶𝐶𝑔

} {
𝐶𝐶𝑔 ,𝐶𝐶ℎ

}
{𝐶𝐶𝑖 }

Binary
choices

0 ≤ 𝑓𝑙1 ≤ 𝑓function 0 ≤ 𝑔𝑙2 ≤ 𝑓function 0 ≤ 𝑖𝑙3 ≤ 𝑓function

0 ≤ 𝑔𝑙1 ≤ 𝑓function 0 ≤ ℎ𝑙2 ≤ 𝑓function

Mutual
exclusion 𝑓𝑙1 + 𝑔𝑙1 ≤ 𝑓function 𝑔𝑙2 + ℎ𝑙2 ≤ 𝑓function 𝑖𝑙3 ≤ 𝑓function

Call edge
frequencies

Callsite
constraint

𝑐𝑎𝑙𝑙𝑓 ≤ 𝑓𝑙1 𝑐𝑎𝑙𝑙𝑔 ≤ 𝑔𝑙1 + 𝑔𝑙2 𝑐𝑎𝑙𝑙ℎ ≤ ℎ𝑙2

𝑐𝑎𝑙𝑙𝑖 ≤ 𝑖𝑙3

𝑐𝑎𝑙𝑙𝑓 + 𝑐𝑎𝑙𝑙𝑔 + 𝑐𝑎𝑙𝑙ℎ + 𝑐𝑎𝑙𝑙𝑖 ≤ 𝑓callsite

Figure 3. ILP formulation to express mutual exclusion in
the presence of ambiguous callee contexts within loops

bound 𝑙𝑖 in the various outer loop contexts (if any):
𝑓inner back edge ≤ 𝑓in · max

𝑖∈outer loop iterations
𝑙𝑖

Global and local constraints complement each other. The
former provides structural constraints, ensuring that the
loop is only considered at incoming flow. The latter ensures
tight back-edge frequencies.

For guard annotations, the aggregation yields: “How often
is the program point pp feasible?” Based on the set of loop-
iteration instances, PragMetis determines how often the
guard expression’s values 𝑔𝑖 are feasible or undefined within
the different loop contexts:

𝑓pp ≤ 𝑓function · |{𝑖 ∈ loop contexts|𝑔𝑖 ∈ {undef., feasible}}|
Both aggregations do not require a closed formulation (e. g.,
Gauss sums for triangular loops) of a loop’s execution fre-
quencies: While closed forms can speed up the aggregation
of flow-frequency constraints, we otherwise resort to a full
symbolic evaluation of all individual loop contexts.

Another hurdle is the aggregation of outgoing calls due to
themore complex information: evaluating a call site results in
a set of (potential) outgoing mutually exclusive call contexts,
each represented as a tuple (model context, function). In an
ILP-based WCET analysis, the decision which of these con-
texts constitutes the actual worst case is the numeric solver’s
responsibility. Consequently, we must encode the mutual
exclusion as ILP constraints, which is best illustrated by an
example. Figure 3 depicts the formulation of an annotated
call site within a loop of bound three. The analysis derived
three different sets of call contexts for the three loop con-
texts 𝑙1...3 based on the evaluated callee annotations. In this
example the callee in 𝑙1 and 𝑙2 is ambiguous. To express this
ambiguity, we introduce a selection-state variable ∈ {0, 1}
that represents whether a specific callee, and thus outgoing
call context, was chosen and restrict the global frequency to
one contained context per set. As this decision happens once
per function invocation, this global frequency is thus limited
by the functions entry node’s frequency, 𝑓function. The sum
of each set’s selection-state variables then governs this par-
ticular call edge’s overall execution frequency. PragMetis
uses a call-tagging mechanism such as [55] to attribute call

edges to call sites at the machine-code level. However, this
complex encoding is only necessary if any set is ambiguous.
Otherwise, a much simpler encoding is sufficient that limits
each call edge by the overall frequency of a particular call
context among the callee sets.

This call-edge mapping scheme assumes that the call itself
persists at the machine-code level, which disallows inlining
optimizations. In practice, however, this is not an issue. As all
of our annotation expressions reside at the source-code level,
all inlining operations can be performed before constructing
the CFRG without loss of generality.

2.4 IPET-Based ILP Formulation
We showed how to evaluate the call graph into a graph of
context-specific function-specializations and infer flow facts
by our annotation expressions from Section 2.2. Further, we
detailed their lowering to the machine-code level by CFRGs
in Section 2.3. However, we still miss the IPET’s final analysis
step: the ILP formulation.
There, PragMetis employs straight duplication: that is,

a unique instance-id identifies each function specialization.
For the latter, all variables are tagged with the respective
instance-id when emitting both structural constraints and
flow facts. A final adaption to this process is required for
global, non-PragMetis flow facts (e. g., global constraints),
which typically come with multiple, tagged copies of the
program points they refer to. We address this issue by intro-
ducing global representatives for those program points as
sums of the associated program points’ execution frequencies
within the individual copies. While this automatic mapping
works reliably, specifying global flow-facts at the ILP level,
outside of PragMetis, carries the risk of re-introducing un-
necessary pessimism. As PragMetis aggregates loop-context–
sensitive flow information (e. g., conditional infeasibility)
across all loop iterations determined by PragMetis’s annota-
tions, a later tightening of the loop bound at ILP level will not
be reflected within PragMetis’s aggregated flow facts; actu-
ally infeasible iterations might thus introduce pessimism into
the analysis. To circumvent this issue, as much information
as possible should be expressed as PragMetis annotations.

In sum, PragMetis provides a usable, generic, expressive,
source-level annotation language for IPET-basedWCET anal-
yses, even in the presence of certain compiler optimizations.

3 Implementation
In this section, we dive into PragMetis’s efficient implemen-
tation, which we based on the T-Crest toolchain [53] and
provide as open-source1. PragMetis’s toolchain consists of a
clang/LLVM-based compiler [37] to generate the CFRGs [30]
and the PlatinWCET analyzer [25, 49, 55], where most of the
contextual analysis is implemented. Conceptually, CFRGs
1The implementation of PragMetis is publicly available under an open-
source license: gitlab.cs.fau.de/pragmetis

https://gitlab.cs.fau.de/pragmetis

Annotate Once – Analyze Anywhere: Context-Aware WCET Analysis by User-Defined Abstractions

#

#

�

#

î

�

exit

CFG

«call» «call»

Function: foo

#foo = 42

@Guarded R.

@Guarded R.

@Guarded R.

�foo > 42

#foo = 23

Loop

#len = List/Length tasks

îlen + foo

�

if $0 < 5
then [|sym| bar]
else [|sym| baz]

Model-graph fragment

call: bar() call: *funptr()

Figure 4.Model-graph fragments use dominance and abstract a function’s annotation-enriched control flow into a scope-based
tree representation for efficient evaluation. Every fragment node is linked to a CFG node (dotted, some edges omitted for
legibility), which might either be control-flow structures or let annotations (#). Additionally, some nodes (guarded regions/@,
calls, loops) reference their associated annotation nodes (guard/�, callee/�, lbound/î) that determine the node’s behavior.

can correctly handle several high-level optimizations [30],
such as loop peeling, loop unswitching, or loop interchange.
In their actual implementation within the T-Crest toolchain,
CFRGs link LLVM’s bitcode and machine-code–level pro-
gram representations [30] and thus only encompass LLVM’s
backend optimizations. However, the T-Crest toolchain still
supports source-level annotations for absolute, numeric loop
bounds, expressed as custom pragmas. To ensure the valid-
ity of those annotations over high-level, loop-restructuring
optimizations that might occur outside of the constructed
CFRG, the toolchain locally suppresses these optimizations
for annotated loops [25]. As PragMetis’s prototypical im-
plementation reuses this mechanism, it shares this behavior.
Thus, PragMetis’s modifications to T-Crest’s LLVM-based
compiler are limited to parsing of PragMetis’s custom prag-
mas, and their extraction at the CFRG level.
The contextual analysis is done as a pre-processing step

in Platin’s timing analysis. Here, the set of individual call
contexts (i. e., function and its model context) is determined
from the initial context and the analysis’s entry function.
As our optimization-aware lowering operates on functions,
call contexts constitute the atomic unit of processing. Conse-
quently, our analysis is performed onmodel-graph fragments,
a condensed representation we derive from the source-level
control-flow graph (CFG). Figure 4 gives an example. Based
on dominance information, these mode-graph fragments
cluster CFG nodes (function entries, loops, annotations, and
calls) hierarchically by their area of effect into scopes. We fur-
ther insert guarded regionmarkers based on post-dominance
information, as path infeasibility (and thus guard annota-
tions) acts bidirectionally on the execution path.

The analysis process itself is mostly hierarchical, with lets
only refining the model contexts locally, except loops and
guarded regions. Here, a child node can retroactively influ-
ence the parents’ loop bounds or feasibility. Therefore, loop
scopes and guarded regions feature a set of associated anno-
tations, which are evaluated depth-first and whose results
are then aggregated before continuing. This helps to discard
locally infeasible subtrees early in the evaluation process. For
loops, PragMetis performs a loop-bound–sensitivity analy-
sis on the loop body: if no references to $0 are found, a single
evaluation is conducted and results are weighted by the loop
bound; therefore, we call this a loop-context folding optimiza-
tion. Otherwise, all iterations within [0; (𝑙𝑏𝑜𝑢𝑛𝑑 − 1)] are
elaborated, symbolically evaluated, and aggregated. For calls,
the analysis determines the set of outgoing call contexts, that
is, callee set and model context passed to the called functions.

Once a model-graph fragment is completely evaluated, we
aggregate and store all results that are required for lowering
according to the scheme detailed in Section 2.3. That is, fea-
sibility count for guards, observed back-edge frequencies for
loops, and call contexts for outgoing calls. Subsequently, the
analysis proceeds following the outgoing call contexts. This
call-context–specific refinement continues hierarchically un-
til the model graph is complete.

Our implementation is tuned to analyze each context only
once to minimize overheads. Accordingly, PragMetis aims
for deduplication of model contexts, which is done in two
steps. First, it is performed based on the abstraction val-
ues within the model contexts. However, this approach is
not exhaustive as differences between model contexts might
concern properties not referenced by any annotation in the
called function. Therefore, PragMetis uses a second level of

Simon Schuster, Peter Wägemann, Peter Ulbrich, and Wolfgang Schröder-Preikschat

deduplication before generating the ILP: When the model
graph is enumerated, all instances are processed from leaves
to the root in reverse topological order. For each instance,
flow facts that include loop bounds, infeasible paths, and
called function variants, are lowered to the machine-code
level. These facts are subsequently reused to reliably dedu-
plicate any two instances of a function that will behave the
same way within the ILP. This deduplication reduces the
number of ILP variables and thereby the complexity of the
optimization problem considerably. Finally, the ILP is gener-
ated as described in Section 2.4.

Besides showing the feasibility of the PragMetis approach,
we also exploit efficient data structures, detection of idem-
potent loop iterations, and the multi-level deduplication of
identical contexts in order to improve PragMetis’s efficiency.

4 Evaluation
In this section, we present PragMetis’s evaluation. After
detailing our experimental setup, we provide both a quanti-
tative evaluation based on the widely used TACLeBench [18]
benchmark suite and a qualitative discussion of expressive-
ness and usage of our annotations.

4.1 Experimental Setup
In this evaluation, we use our open-source prototype from
Section 3. Measurements were conducted on an Intel Core
i7-8550U using Ruby (2.7.2p137) and Gurobi (v9.1.1) as the
ILP solver. We took the upstream of TACLeBench at commit
dcc2501 as our reference, to which we applied our anno-
tations where beneficial. When measuring overall analysis
times, we performed 11 measurements per configuration,
dropped the first to mitigate filesystem-caching effects, and
averaged the remaining measurements. All studied programs
were compiled with hardfloat and analyzed for an ARM
Cortex-M4 processor family using the Infineon XMC4500
platform with caches disabled. For the analysis results, we
validated flow frequencies of annotated loops against execu-
tion counts for the reference input.

4.2 Quantitative Evaluation
The quantitative analysis was performed on TACLeBench’s
kernel category of benchmarks. These benchmarks provide
a wide range of implementations of typical operations com-
monly found in embedded systems, from more general sort-
ing mechanisms to checksum as well as matrix functions and
filtering applications, all written in different implementation
styles, and thus provide a good testbed for our source-based
annotation approach. As Platin, and thus PragMetis, does
not offer an explicit concept for analyzing recursion, only 24
of the 29 benchmarks, in their original form, are analyzable.
TACLeBench already provides global, context-insensitive
flow facts via annotations (especially for loop bounds) for its
benchmarks. These flow facts were mostly generated by trac-
ing and recoding the benchmarks’ execution on their sample

input and then deriving the bounds and thus are already
input-specific. This means that for PragMetis to provide a
tighter bound than those provided annotations, whichwe use
as our baseline, during quantitative analysis, a benchmark
has to exhibit internal context-dependence within itself, in
terms of either function or loop contexts. This is the case
for at least seven benchmarks. We refer to the remaining
17 benchmarks without improvements as no effect within
our evaluation. Their analysis result, as well as the incurred
runtime overhead, is shown in Table 1. There, the actual
improvement of generated worst-case bounds varies con-
siderably: PragMetis can only provide tighter bounds by
eliminating pessimism that was introduced by overprotec-
tive globalization of flow facts of multiple contexts within
the original reference annotations. The extent of this internal
pessimism depends on the benchmark, ranging from a mere
3.08 % with the minver benchmark to up to a 99.36 % with
the fft analysis, which exhibits a deeply nested, fluctuating
loop structure that benefits greatly from a fine-grained differ-
entiation between the individual loop iterations. Of course,
this fine-grained differentiation within a highly repetitive,
not folded loop incurs more work on the analysis, as it has
to symbolically evaluate these annotations within those dif-
ferent contexts for aggregation. This analysis makes fft the
second most expensive benchmark within the set, with an in-
crease in analysis time of factor 2.73×. In absolute terms, the
total analysis time for the seven benchmarks ranges from
0.5 s (insertsort) to 13.4 s (prime). Yet, cost and saving
do not always correlate, as seen for the prime benchmark,
where the analysis overhead is disproportionally high. Here,
the analysis time increases by 24.46× and the pessimism is
reduced by 9.31 % (to a bound of 90.69 %).
To understand this in more detail, it is beneficial to look

into where execution time is spent during analysis across
the different benchmarks. Figure 5 shows this relative distri-
bution. Again, the exact distribution is benchmark-specific.
However, for fft, the measurement shows that most of the
time is spent on constructing the model graph and thus ac-
tually expanding those loop contexts; with approximately

Table 1.Analysis results for the annotated benchmarks, their
runtime overhead relative to context-insensitive analysis,
and the number of context-sensitive annotations; the no effect
category represents benchmarks without improvement.
benchmark WCET bound analysis time # contextsensitive

(norm.) (norm.) annotations

no effect 100 % 1× 0
bsort 52.30 % 1.52× 3
fft 0.64 % 2.73× 8
insertsort 72.03 % 1.05× 1
ludcmp 38.00 % 1.20× 11
md5 32.83 % 1.29× 24
minver 96.92 % 1.30× 2
prime 90.69 % 24.46× 3

Annotate Once – Analyze Anywhere: Context-Aware WCET Analysis by User-Defined Abstractions

bsor
t fft

inse
rtso

rt
ludc

mp md5min
ver prim

e
0

0.5

1

fr
ac
tio

n
of

ex
ec
ut
io
nt
im

e
sp
en
t

Model-graph constr.
Evaluating Exprs.
CFRG & FF Dedup
ILP Construction

ILP Solving

Figure 5. Runtime distribution of analysis phases. Expres-
sion evaluation is a part of the model-graph construction

half of that time in turn being spent on evaluating the an-
notation expressions themselves. Generally speaking, this
is the case for most of the benchmarks that exhibit nested,
loop-context–dependent loops, so bsort is part of this group
as well. Among the remaining benchmarks, the number of
loop contexts is a lot smaller, so other parts of the process,
most prominently the CFRG-based transformation of the
generated flow facts, dominate the process. Again, prime is
the exception to the rule, and nearly all time there is spent on
annotation-expression evaluation. The reason is that prime
itself is quite short, but the annotation uses a rather com-
plex and expensive to compute abstraction, which puts a
lot of load on our tree-visiting annotation-language inter-
preter. The abstraction of prime is further discussed in the
qualitative analysis (see Section 4.3).
As the final step in our quantitative analysis, we studied

the efficiency of the different optimization techniques we
introduced in Section 3. Table 2 shows the results. Again,
the loop-heavy benchmarks (bsort, fft, insertsort) only
have few call contexts and thus do not profit from the call-
context deduplication. In the case of fft, PragMetis’s loop-
context folding significantly reduces the analysis time. As
both bsort and insertsort are dominated by a triangular

Table 2. Efficiency of optimized evaluation techniques: Dedu-
plication reduces the number of call-contexts at model-graph
and ILP level, loop-context folding reduces the number of
loop contexts actually evaluated

call # model-graph # ILP-level # loop contexts
benchmark contexts ctxs (rem. %) ctxs (rem. %) (eval. %)

bsort 2 2 (100.00%) 2 (100.00%) 5247 (100%)
fft 2 2 (100.00%) 2 (100.00%) 43040 (35.79%)
insertsort 1 1 (100.00%) 1 (100.00%) 64 (100%)
ludcmp 7 3 (42.86%) 3 (42.86%) 130 (100%)
md5 58645 24 (0.04%) 23 (0.04%) 671 (2.09%)
minver 13 4 (30.77%) 4 (30.77%) 118 (31.36%)
prime 37 8 (21.62%) 6 (16.22%) 29 (6.90%)

0 10 20 30 40
0

0.5

1

Iteration

bo
un

d
(n
or
m
al
iz
ed

to
m
ax
)

ludcmp
bsort
prime

pessimistic bound

Figure 6. Parameter study in the range of 1 to 42
loop, our basic folding was not applicable. The other bench-
marks make use of function calls more extensively and thus
profit from the call-context deduplication a lot more, with
between 57.14 % to up to 99.96 % of the call contexts dedupli-
cated during elaboration at the source level. The duplication
at the ILP level based on flow facts did not prove too effec-
tive within our measurements. We partly attribute this to
the rather compact and specific benchmarks, and expect this
number to rise within larger programs.

Finally, we did test our solution against different optimiza-
tion levels (-O1, -O2), where all 7 annotated benchmarks
remained analyzeable. These results confirm that our ap-
proach of aggregating fine-grained flow information at the
function scope and lowering interacts gracefully with the
implemented CFRGs.

4.3 Qualitative Evaluation
However, a purely quantitative analysis misses out on two
important aspects of PragMetis: The ability to define custom
abstractions and to reusably reanalyze a library in different
contexts parametrically. Among the benchmarks studied, the
most common abstractions used are maximum abstractions
on input data, either in terms of numerical values or array
lengths. But there are two interesting exceptions: md5 passes
a complex computation context throughout its functions, and
prime does not require the maximum value, but the number
of quadradic values below a certain maximal input value.
Especially the latter shows the potential in user-defined ab-
stractions at the annotation level: Such specific information
is unlikely to be provided by any fully automatic analysis
tool. Furthermore, this issue is invariably linked to the issue
of maintainability: Loops in TACLeBench are tagged with
numeric min/max bounds observed for an execution of the
reference input. However, in contrast to our approach, there
is no indication that, for instance, 25 was the number of
square numbers below the max input value of 2759. Here
PragMetis is able to provide an additional benefit: besides
the context-specific, tailored bound, PragMetis is capable of
deriving flow facts for a context-insensitive analysis as well.
So the benchmark suite TACLeBench could be annotated

Simon Schuster, Peter Wägemann, Peter Ulbrich, and Wolfgang Schröder-Preikschat

more expressively, without comprising functionality, and
thus, for instance, answer the question of a comment within
upstream’s dijkstra benchmark on the origin of the loop
bound in a hard-to-understand loop-annotation statement.

The other aspect we studied was whether PragMetis can
precisely express generic flow interdependencies and then
analyze them in different contexts. Figure 6 provides insight
into this by means of a parameter study. Here, we used three
of the benchmarks and varied the value backing the abstrac-
tion governing their runtime bound, that is varying the maxi-
mum input size (in terms of array length or maximal numeric
input value), during the WCET analysis. Here, PragMetis is
capable of expressing not only more traditional loop formats
such as within bsort, which exhibits the expected, approx.
quadratic growth of a triangular loop, and possesses a closed
formulation, but also far more irregular patterns, such as
for the ludcmp benchmark, where a closed formulation does
not exists at all. Finally, the result for prime, which follows
the far more erratic execution time pattern outlined above,
consists of a series of constant segments of non-uniform
length, that step up in their WCET bound whenever the
maximum input abstraction passes a new value in the se-
ries of square values of odd numbers larger than 3, which
means 32 = 9 and 52 = 25 for our study’s parameter range.
As evident in the Figure 6, this context sensitivity provides
significant potential for reducing analysis pessimism, which
is the area between the individual measurement series and
the global pessimistic bound. But, more importantly, as the
study did not modify any annotations themselves, this shows
that PragMetis can live up to its motto: Annotate (just) once,
but analyze everywhere, no matter in what context.

5 Discussion & Future Work
PragMetis provides the ability to concisely annotate high-
level contextual knowledge by the virtues of an expressive
annotation language and thus allows the programmer to
choose her own abstraction to annotate a benchmark as
precisely as possible, with Section 4 showing its potential.
Yet, there still exist several potentially worthwhile av-

enues of further research. The first is integrating a concept
for recursive applications into PragMetis. Even though safe
coding standards such as MisraC [47] often explicitly forbid,
there are still uses, as witnessed for instance by the 5 skipped
benchmarks within TACLeBench. Here, the problem is more
one of usability over semantic. Conceptually recursion rep-
resents a loop on the call-graph level and integrating and
thus could be handled in a similar fashion to how we handle
loop contexts. However, this possibly makes annotations
more complicated to use than formulating the respective
new context abstractions at the recursive call site.
Independent of PragMetis’s annotations, we observed

that the T-Crest toolchain occasionally generated either in-
valid or too trivial CFRGs. Generally, such glitches can be
manually fixed by modifying the corresponding code. Note

that no such issues were observed in the benchmarks used
in our evaluation. That said, an in-depth study on the factors
influencing CFRG validity, their practical performance on
high-level optimizations, and ways to improve their applica-
bility is part of our future work.

To deliver tighterWCET bounds, PragMetis’s annotations
allow to introduce contextual knowledge into the analysis.
However, to reduce pessimism locally, a fine-grained anal-
ysis state is required; this is the primary driver in runtime
and memory overhead. We specifically designed PragMetis
to mitigate these effects by (1) the dominance-based scoping
concept, (2) strictly limiting visibility of indexing variables,
and (3) deduplicating contexts on the loop, model-graph,
and ILP level. These automatic techniques proved effective
in our evaluation, even with our current implementation
trading deduplication ratio for a faster model-context com-
parison. However, there exist certain critical instances where
the choice of annotation and abstraction can undermine our
optimizations. For example, nested loops whose innermost
body spawns a call hierarchy that (indirectly) references
the various loop-context–indexing variables within its an-
notations may result in numerous contexts that cannot be
deduplicated. Here, PragMetis is at a disadvantage com-
pared to automatic, abstract-interpretation–based WCET an-
alyzers with a limited set of abstractions: As we lifted the
choice of abstraction to the annotation-language level, we
also delegated the trade-off between analysis pessimism and
overhead. In general, there is no readily available way to sum-
marize and reduce different analysis contexts automatically.
That said, PragMetis allows the programmer to control said
trade-off between analysis precision and runtime explicitly
by manually choosing a more pessimistic abstraction within
annotation expressions.
Furthermore, in this paper, we regarded PragMetis and

automatic analyzers as opposing concepts, however, we see
great a perspective in symbiosis there. While user-defined
abstractions deliver the ability to create unique, complex
abstractions for difficult to bound programs, our evaluations
hints that several abstractions at the library boundary are
rather basic, such as maximum values for call parameters
or data structures’ lengths. Such information is usually well
within reach of automatic data-flow analysis such as As-
treé [16]. The influence of thread-local data-flow analysis
on WCET analysis is a well-studied subject [9]. However,
the precision of such data-flow analyses usually improve the
higher the abstraction level [7, 36]; we expect those tools to
harmonize well with PragMetis’s source-level abstractions
and to outperform automatic analysis approaches operating
exclusively on the machine-code level.

Annotate Once – Analyze Anywhere: Context-Aware WCET Analysis by User-Defined Abstractions

6 Related Work
A huge body of related work exists in the context of static
WCET tools [2, 19, 24, 28, 40, 43, 50] and their annotation lan-
guages [32–35, 54]. However, to the best of our knowledge,
no annotation approach exists so far that enables users to ex-
press user-defined abstractions and/or opportunistic annota-
tions. For example, the FFX annotation language [10] formu-
lates several powerful annotation types (e. g., loop-context–
sensitive annotation), however all related WCET tools or im-
plemented annotation languages [5, 11, 31, 36] only support
a subset of FFX (e. g., constant loop bounds). In contrast to
proposed annotation-language designs, PragMetis is an im-
plemented, publicly available approach handling source-code
annotations, such as loop-context–dependent information,
in the presence of certain compiler optimizations.

Several approaches exist to transfer flow facts from source
level under code optimizations [19, 30, 35, 39, 54]. Schom-
mer et al. presented a source-level annotation approach us-
ing compiler-specific builtin function calls [54]. Their ap-
proach relies on the CompCert compiler [38] and the aiT
WCET analyzer. However, their approach is incapable of
loop optimizations as they would jeopardize the annotations’
meaning. An approach to circumvent this issue is the co-
transformation of flow facts along with individual compiler
optimizations [19, 35, 39]. TheWCC compiler framework, for
instance, constitutes a framework considering WCET-aware
code generation and optimization techniques for WCET re-
duction [19]. It is in particular related, as it employs a syntax
for specifying flow information within the source code as
custom pragmas. To transfer this information across loop
optimizations, such as loop unrolling, WCC relies on spe-
cific compiler optimizations that are aware of the respective
flow facts. A back-annotation mechanism enables WCC to
furthermore transform data from the machine-code back to
the source-code level. Sharing the same goal of WCC of sup-
porting compiler optimizations while enabling annotations
on source code level, PragMetis builds on a CFRG-based
transformation to map flow facts between different repre-
sentation levels of the program. Additionally, PragMetis has
an annotation language that is even more expressive than
stating polyhedral formulas as loop bounds.
Most other WCET analysis tools operate on the binary

code, such as aiT [2]. The major drawback of this approach
is the need to cope with binary code and apply annotations
on this level. In contrast, PragMetis supports the convenient
annotation of the application’s source code.
For PragMetis, we reuse the syntax of the SWAN frame-

work [55], which targets WCET analyzes of operating sys-
tems. While this framework enables users to annotate oper-
ating-system-state–specific knowledge at the granularity of
system operations (e. g., system-calls), it lacks the features
of expressing fine-grained context sensitivity and context
differentiation at arbitrary program points within a single

operation’s analysis. In contrast to this system-level WCET
analyzer, PragMetis enables context-sensitive analyses of
library functions depending on the callers’ behavior, even
at loop-context level. SWAN’s system-level view and notion
of scheduling semantics together with PragMetis’s expres-
sivity based on user-defined abstractions are two essential
ingredients for future analyses of whole real-time systems.
Kirner et al. compared annotation languages for WCET

analysis [33]. Relying on this comparison, PragMetis is the
first compiler-aware toolchain that supports all annotation
features of directly expressing non-rectangular loops, call
contexts, loop contexts, and application contexts.
7 Conclusion
The analyses of hard real-time systems demands powerful
annotation language in order to determine accurate WCET
bounds. In this paper, we presented the PragMetis approach
that enables users to state user-defined abstractions that are
linked to the system’s code. Furthermore, PragMetis’s con-
cept of opportunistic annotations achieves the aggregation
and filtering of knowledge. The open-source implementation
of PragMetis exploits scope-based representations for the ef-
fective evaluation of annotation expressions. The integration
of PragMetis’s prototype into a WCET- and optimization-
aware framework [30] allows developers to annotate at the
source-code level while preserving backend compiler opti-
mizations of the clang/LLVM compiler infrastructure. Our
evaluation results confirm our major claim: more expressive
annotation statements yield more accurate WCET bounds.

Acknowledgments
The authors thank Johannes Kern for his support validating
early stages of this research. This work was partially funded
by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) TRR 89 Invasive Computing (project
number 146371743) and grants no. SCHR 603/15-2 LARN,
SCHR 603/10-2 COKE, and SCHR 603/9-2 AORTA.

Source code of PragMetis: gitlab.cs.fau.de/pragmetis

References
[1] J. Abella, C. Hernandez, E. Quiñones, F. J. Cazorla, P. R. Conmy, M.

Azkarate-askasua, J. Perez, E. Mezzetti, and T. Vardanega. 2015. WCET
analysis methods: Pitfalls and challenges on their trustworthiness. In
Proceedings of the 10th International Symposium on Industrial Embedded
Systems (SIES ’15). 1–10. https://doi.org/10.1109/SIES.2015.7185039

[2] AbsInt. 2021. aiT WCET Analyzers. https://www.absint.com/ait/.
[3] S. Altmeyer, C. Hümbert, B. Lisper, and R. Wilhelm. 2008. Parametric

Timing Analysis for Complex Architectures. In Proceedings of the
14th Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA ’08). 367–376. https://doi.org/10.1109/RTCSA.
2008.7

[4] O. Bachmann, P. S. Wang, and E. V. Zima. 1994. Chains of Recurrences
– a method to expedite the evaluation of closed-form functions. In
Proceedings of the International Symposium on Symbolic and Algebraic
Computation (ISSAC ’94). 1–8. https://doi.org/10.1145/190347.190423

https://gitlab.cs.fau.de/pragmetis
https://doi.org/10.1109/SIES.2015.7185039
https://www.absint.com/ait/
https://doi.org/10.1109/RTCSA.2008.7
https://doi.org/10.1109/RTCSA.2008.7
https://doi.org/10.1145/190347.190423

Simon Schuster, Peter Wägemann, Peter Ulbrich, and Wolfgang Schröder-Preikschat

[5] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat. 2010. OTAWA:
An Open Toolbox for Adaptive WCET Analysis. In Proceedings of the
8th International Workshop on Software Technolgies for Embedded and
Ubiquitous Systems (SEUS ’10). 35–46. https://doi.org/10.1007/978-3-
642-16256-5_6

[6] D. Barkah, A. Ermedahl, J. Gustafsson, B. Lisper, and C. Sandberg.
2008. Evaluation of automatic flow analysis for WCET calculation
on industrial real-time system code. In Proceedings of the Euromicro
Conference on Real-Time Systems (ECRTS ’08). 331–340. https://doi.
org/10.1109/ECRTS.2008.37

[7] J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and
X. Rival. 2011. Static Analysis by Abstract Interpretation of Embedded
Critical Software. SIGSOFT Software Engineering Notes 36, 1 (2011),
1–8. https://doi.org/10.1145/1921532.1921553

[8] B. Blackham, Y. Shi, S. Chattopadhyay, A. Roychoudhury, andG. Heiser.
2011. Timing analysis of a protected operating system kernel. In
Proceedings of the 32th Real-Time Systems Symposium (RTSS ’11). 339–
348. https://doi.org/10.1109/RTSS.2011.38

[9] J. Blieberger. 2002. Data-flow frameworks for worst-case execution
time analysis. Real-Time Systems 22, 3 (2002), 183–227. https://doi.
org/10.1023/A:1014535317056

[10] A. Bonenfant, H. Cassé, M. De Michiel, J. Knoop, L. Kovács, and J.
Zwirchmayr. 2012. FFX: A Portable WCET Annotation Language.
In Proceedings of the 20th International Conference on Real-Time and
Network Systems (RTNS ’12). 91–100. https://doi.org/10.1145/2392987.
2392999

[11] A. Bonenfant, M. de Michiel, and P. Sainrat. 2008. oRange: A Tool
For Static Loop Bound Analysis. In Proceedings of the Workshop on
Resource Analysis. 1–6.

[12] S. Boulier, P.-M. Pédrot, and N. Tabareau. 2017. The next 700 syn-
tactical models of type theory. In Proceedings of the Conference on
Certified Programs and Proofs (CPP ’17). 182–194. https://doi.org/10.
1145/3018610.3018620

[13] S. Byhlin, A. Ermedahl, J. Gustafsson, and B. Lisper. 2005. Apply-
ing static WCET analysis to automotive communication software. In
Proceedings of the 17th Euromicro Conference on Real-Time Systems
(ECRTS’05). IEEE, 249–258. https://doi.org/10.1109/ECRTS.2005.7

[14] F. Cassez, R. Rydhof Hansen, and M. C. Olesen. 2012. What is a
Timing Anomaly?. In Proceedings of the 12th International Workshop
on Worst-Case Execution Time Analysis (WCET ’12). 1–12. https:
//doi.org/10.4230/OASIcs.WCET.2012.1

[15] A. Colin and I. Puaut. 2001. Worst-case execution time analysis of
the RTEMS real-time operating system. In Proceedings of the 13th
Euromicro Conference on Real-Time Systems (ECRTS ’01). 191–198.
https://doi.org/10.1109/EMRTS.2001.934029

[16] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A.Miné, D.Monniaux, and
X. Rival. 2005. The ASTREÉ Analyzer. In Proceedings of the European
Symposium on Programming (ESOP ’05). 21–30. https://doi.org/10.
1007/978-3-540-31987-0_3

[17] A. Ermedahl, F. Stappert, and J. Engblom. 2003. Clustered calculation
of worst-case execution times. In Proceedings of the International Con-
ference on Compilers, Architecture, and Synthesis for Embedded Systems
(CASES ’03). 51–62. https://doi.org/10.1145/951710.951720

[18] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange,
M. Schoeberl, R. B. Sørensen, P. Wägemann, and S. Wegener. 2016.
TACLeBench: A Benchmark Collection to Support Worst-Case Exe-
cution Time Research. In Proceedings of the 16th International Work-
shop on Worst-Case Execution Time Analysis (WCET ’16). 1–10. https:
//doi.org/10.4230/OASIcs.WCET.2016.2

[19] H. Falk and P. Lokuciejewski. 2010. A Compiler Framework for the
Reduction of Worst-case Execution Times. Real-time Systems 46, 2
(2010), 251–300. https://doi.org/10.1007/s11241-010-9101-x

[20] L. F. Friedrich, J. Stankovic, M. Humphrey, M. Marley, and J. Haskins.
2001. A survey of configurable, component-based operating systems

for embedded applications. IEEE Micro 21, 3 (2001), 54–68. https:
//doi.org/10.1109/40.928765

[21] G. Gebhard. 2010. Timing Anomalies Reloaded. In Proceedings of the
10th International Workshop on Worst-Case Execution Time Analysis
(WCET ’10). 1–10. https://doi.org/10.4230/OASIcs.WCET.2010.1

[22] G. Gonzalez. 2018. dhall: A configuration language guaranteed to
terminate. https://github.com/dhall-lang/dhall-haskell/releases/tag/1.
14.0.

[23] J. Gustafsson and A. Ermedahl. 2007. Experiences from Applying
WCET Analysis in Industrial Settings. In Proceedings of the 10th In-
ternational Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC ’07). 382–392. https://doi.org/10.1109/
ISORC.2007.36

[24] D. Hardy, B. Rouxel, and I. Puaut. 2017. The Heptane StaticWorst-Case
Execution Time Estimation Tool. In Proceedings of the 17th Interna-
tional Workshop on Worst-Case Execution Time Analysis (WCET ’17).
8:1–8:12. https://doi.org/10.4230/OASIcs.WCET.2017.8

[25] S. Hepp, B. Huber, D. Prokesch, and P. Puschner. 2015. The platin
Tool Kit – The T-CREST Approach for Compiler and WCET Integra-
tion. In Proceedings of the 18th Kolloquium Programmiersprachen und
Grundlagen der Programmierung (KPS ’15). 277–292.

[26] N. Holsti, T. Långbacka, and S. Saarinen. 2000. Using a Worst-Case
Execution Time Tool for Real-Time Verification of the DEBIE Software.
In Proceedings of the Data Systems in Aerospace Conference (DASIA ’00).
1–6.

[27] N. Holsti, T. Långbacka, and S. Saarinen. 2015. Worst-case execution-
time analysis for digital signal processors. In Proceedings of the Euro-
pean Signal Processing Conference (EUSIPCO ’21). 1–5.

[28] N. Holsti and S. Saarinen. 2002. Status of the Bound-T WCET Tool. In
Proceedings of the 2nd International Workshop on Worst-Case Execution
Time Analysis (WCET ’02). 36–41.

[29] B. Huber, D. Prokesch, and P. Puschner. 2012. A Formal Framework
for Precise Parametric WCET Formulas. In Proceedings of the 12th
Workshop on Worst-Case Execution Time Analysis (WCET ’12). 91–102.
https://doi.org/10.4230/OASIcs.WCET.2012.91

[30] B. Huber, D. Prokesch, and P. Puschner. 2013. Combined WCET
Analysis of Bitcode and Machine Code Using Control-flow Rela-
tion Graphs. In Proceedings of the 14th Conference on Languages,
Compilers and Tools for Embedded Systems (LCTES ’13). 163–172.
https://doi.org/10.1145/2465554.2465567

[31] R. Kirner. 2012. The WCET Analysis Tool CalcWcet167. In Proceedings
of the International Symposium On Leveraging Applications of Formal
Methods, Verification and Validation (ISoLA ’12). 158–172. https://doi.
org/10.1007/978-3-642-34032-1_17

[32] R. Kirner, A. Kadlec, A. Prantl, M. Schordan, and J. Knoop. 2008. To-
wards a Common WCET Annotation Languge: Essential Ingredients.
In Proceedings of the 8th International Workshop on Worst-Case Execu-
tion Time WCET Analysis (WCET ’08). 1–13. https://doi.org/10.4230/
OASIcs.WCET.2008.1657

[33] R. Kirner, J. Knoop, A. Prantl, M. Schordan, and A. Kadlec. 2011. Be-
yond loop bounds: comparing annotation languages for worst-case
execution time analysis. Software & Systems Modeling (SoSyM) 10, 3
(2011), 411–437. https://doi.org/10.1007/s10270-010-0161-0

[34] R. Kirner, J. Knoop, A. Prantl, M. Schordan, and I. Wenzel. 2007. WCET
Analysis: The Annotation Language Challenge. In Proceedings of the
7th Workshop on Worst-Case Execution Time Analysis (WCET ’07). 1–17.
https://doi.org/10.4230/OASIcs.WCET.2007.1197

[35] R. Kirner, P. Puschner, and A. Prantl. 2010. Transforming flow informa-
tion during code optimization for timing analysis. Real-Time Systems
45, 1-2 (2010), 72–105. https://doi.org/10.1007/s11241-010-9091-8

[36] J. Knoop, L. Kovács, and J. Zwirchmayr. 2012. r-TuBound: Loop Bounds
for WCET Analysis. In Proceedings of the International Conference on
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR ’12).
435–444. https://doi.org/10.1007/978-3-642-28717-6_34

https://doi.org/10.1007/978-3-642-16256-5_6
https://doi.org/10.1007/978-3-642-16256-5_6
https://doi.org/10.1109/ECRTS.2008.37
https://doi.org/10.1109/ECRTS.2008.37
https://doi.org/10.1145/1921532.1921553
https://doi.org/10.1109/RTSS.2011.38
https://doi.org/10.1023/A:1014535317056
https://doi.org/10.1023/A:1014535317056
https://doi.org/10.1145/2392987.2392999
https://doi.org/10.1145/2392987.2392999
https://doi.org/10.1145/3018610.3018620
https://doi.org/10.1145/3018610.3018620
https://doi.org/10.1109/ECRTS.2005.7
https://doi.org/10.4230/OASIcs.WCET.2012.1
https://doi.org/10.4230/OASIcs.WCET.2012.1
https://doi.org/10.1109/EMRTS.2001.934029
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1145/951710.951720
https://doi.org/10.4230/OASIcs.WCET.2016.2
https://doi.org/10.4230/OASIcs.WCET.2016.2
https://doi.org/10.1007/s11241-010-9101-x
https://doi.org/10.1109/40.928765
https://doi.org/10.1109/40.928765
https://doi.org/10.4230/OASIcs.WCET.2010.1
https://github.com/dhall-lang/dhall-haskell/releases/tag/1.14.0
https://github.com/dhall-lang/dhall-haskell/releases/tag/1.14.0
https://doi.org/10.1109/ISORC.2007.36
https://doi.org/10.1109/ISORC.2007.36
https://doi.org/10.4230/OASIcs.WCET.2017.8
https://doi.org/10.4230/OASIcs.WCET.2012.91
https://doi.org/10.1145/2465554.2465567
https://doi.org/10.1007/978-3-642-34032-1_17
https://doi.org/10.1007/978-3-642-34032-1_17
https://doi.org/10.4230/OASIcs.WCET.2008.1657
https://doi.org/10.4230/OASIcs.WCET.2008.1657
https://doi.org/10.1007/s10270-010-0161-0
https://doi.org/10.4230/OASIcs.WCET.2007.1197
https://doi.org/10.1007/s11241-010-9091-8
https://doi.org/10.1007/978-3-642-28717-6_34

Annotate Once – Analyze Anywhere: Context-Aware WCET Analysis by User-Defined Abstractions

[37] C. Lattner and V. Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In Proceedings of the 2nd
International Symposium on Code Generation and Optimization (CGO
’04). 75–86. https://doi.org/10.1109/CGO.2004.1281665

[38] X. Leroy, S. Blazy, D. Kästner, B. Schommer, M. Pister, and C. Ferdi-
nand. 2016. CompCert-a formally verified optimizing compiler. In
Proceedings of the 8th European Embedded Real Time Software and
Systems Congress (ERTS ’16). 1–8.

[39] H. Li, I. Puaut, and E. Rohou. 2014. Traceability of Flow Information:
Reconciling Compiler Optimizations and WCET Estimation. In Pro-
ceedings of the 22nd International Conference on Real-TimeNetworks and
Systems (RTNS’14). 97–106. https://doi.org/10.1145/2659787.2659805

[40] X. Li, Y. Liang, T. Mitra, and A. Roychoudhury. 2007. Chronos: A Tim-
ing Analyzer for Embedded Software. Science of Computer Program-
ming 69, 1 (2007), 56–67. https://doi.org/10.1016/j.scico.2007.01.014

[41] Y.-T. S. Li and S. Malik. 1995. Performance Analysis of Embedded
Software Using Implicit Path Enumeration. In ACM SIGPLAN Notices,
Vol. 30. 88–98. https://doi.org/10.1145/216636.216666

[42] B. Lisper. 2003. Fully Automatic, Parametric Worst-Case Execution
Time Analysis. In Proceedings of the 3rd Workshop on Worst-Case Exe-
cution Time Analysis, (WCET ’03). 99–102.

[43] B. Lisper. 2014. SWEET – A Tool for WCET Flow Analysis. In Proceed-
ings of the 6th International Symposium On Leveraging Applications
of Formal Methods, Verification and Validation (ISoLA ’14). 482–485.
https://doi.org/10.1007/978-3-662-45231-8_38

[44] B. Lisper, A. Ermedahl, D. Schreiner, J. Knoop, and P. Gliwa. 2010.
Practical experiences of applying source-level WCET flow analysis
on industrial code. In Proceedings of the International Symposium On
Leveraging Applications of Formal Methods, Verification and Validation
(ISOLA ’10). 449–463. https://doi.org/10.1007/978-3-642-16561-0_41

[45] T. Lundqvist and P. Stenstrom. 1999. Timing Anomalies in Dynami-
cally Scheduled Microprocessors. In Proceedings of the 20th Real-Time
Systems Symposium (RTSS ’99). 12–21. https://doi.org/10.1109/REAL.
1999.818824

[46] M. Lv, N. Guan, Y. Zhang, Q. Deng, G. Yu, and J. Zhang. 2009. A survey
of WCET analysis of real-time operating systems. In Proceedings of
the International Conference on Embedded Software and Systems (ICESS
’09). 65–72. https://doi.org/10.1109/ICESS.2009.24

[47] MISRA Consortium. 2004. Guidelines for the Use of the C Language in
Critical Systems (MISRA-C:2004).

[48] P. Montag, S. Goerzig, and P. Levi. 2006. Challenges of timing
verification tools in the automotive domain. In Proceedings of the
2nd International Symposium on Leveraging Applications of Formal
Methods, Verification and Validation (ISOLA ’06). 227–232. https:
//doi.org/10.1109/ISoLA.2006.52

[49] P. Puschner, D. Prokesch, B. Huber, J. Knoop, S. Hepp, and G. Geb-
hard. 2013. The T-CREST Approach of Compiler and WCET-Analysis
Integration. In Proceedings of the 16th International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing

(ISORC ’13). 1–8. https://doi.org/10.1109/ISORC.2013.6913220
[50] Rapita Systems Ltd. [n.d.]. RapiTime - Worst-case execution time

(WCET) analysis for critical systems. http://www.rapitasystems.com/
products/RapiTime.

[51] M. Rodríguez, N. Silva, J. Esteves, L. Henriques, D. Costa, N. Holsti, and
K. Hjortnaes. 2003. Challenges in Calculating the WCET of a Complex
On-board Satellite Application. In Proceedings of the 3rd International
Workshop on Worst-Case Execution Time Analysis (WCET ’03). 11–15.

[52] D. Sandell, A. Ermedahl, J. Gustafsson, and B. Lisper. 2004. Static
Timing Analysis of Real-Time Operating System Code. In Proceedings
of the International Symposium On Leveraging Applications of Formal
Methods, Verification and Validation (ISoLA ’04). 146–160. https://doi.
org/10.1007/11925040_10

[53] M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley, R. Capasso, J.
Garside, K. Goossens, S. Goossens, S. Hansen, R. Heckmann, S. Hepp,
B. Huber, A. Jordan, E. Kasapaki, J. Knoop, Y. Li, D. Prokesch, W.
Puffitsch, P. Puschner, A. Rocha, C. Silva, J. Sparsø, and A. Tocchi. 2015.
T-CREST: Time-predictable Multi-Core Architecture for Embedded
Systems. Journal of Systems Architecture 61, 9 (2015), 449–471. https:
//doi.org/10.1016/j.sysarc.2015.04.002

[54] B. Schommer, C. Cullmann, G. Gebhard, X. Leroy, M. Schmidt, and S.
Wegener. 2018. Embedded Program Annotations for WCET Analysis.
In Proceedings of the 18th International Workshop on Worst-Case Exe-
cution Time Analysis (WCET ’18). 8:1–8:13. https://doi.org/10.4230/
OASIcs.WCET.2018.8

[55] S. Schuster, P. Wägemann, P. Ulbrich, and W. Schröder-Preikschat.
2019. Proving Real-Time Capability of Generic Operating Systems by
System-Aware Timing Analysis. In Proceedings of the 25th Real-Time
and Embedded Technology and Applications Symposium (RTAS ’19).
318–330. https://doi.org/10.1109/RTAS.2019.00034

[56] F. Stappert, A. Ermedahl, and J. Engblom. 2001. Efficient Longest
Executable Path Search for Programswith Complex Flows and Pipeline
Effects. In Proceedings of the International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems (CASES ’21). 132–140.
https://doi.org/10.1145/502217.502240

[57] S. Thesing, J. Souyris, R. Heckmann, F. Randimbivololona, M. Langen-
bach, R. Wilhelm, and C. Ferdinand. 2003. An Abstract Interpretation-
Based Timing Validation of Hard Real-Time Avionics Software. In Pro-
ceedings of the International Conference on Dependable Systems and Net-
works (DSN ’03). 625–632. https://doi.org/10.1109/DSN.2003.1209972

[58] E. Vivancos, C. Healy, F. Mueller, and D. Whalley. 2001. Para-
metric Timing Analysis. In Proceedings of the Conference on Lan-
guages, Compilers and Tools for Embedded Systems (LCTES ’01). 88–93.
https://doi.org/10.1145/384198.384230

[59] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,
G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström. 2008. The worst-case
execution-time problem—overview of methods and survey of tools.
ACM Transactions on Embedded Computing Systems (TECS) 7, 3 (2008),
1–53. https://doi.org/10.1145/1347375.1347389

https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/2659787.2659805
https://doi.org/10.1016/j.scico.2007.01.014
https://doi.org/10.1145/216636.216666
https://doi.org/10.1007/978-3-662-45231-8_38
https://doi.org/10.1007/978-3-642-16561-0_41
https://doi.org/10.1109/REAL.1999.818824
https://doi.org/10.1109/REAL.1999.818824
https://doi.org/10.1109/ICESS.2009.24
https://doi.org/10.1109/ISoLA.2006.52
https://doi.org/10.1109/ISoLA.2006.52
https://doi.org/10.1109/ISORC.2013.6913220
http://www.rapitasystems.com/products/RapiTime
http://www.rapitasystems.com/products/RapiTime
https://doi.org/10.1007/11925040_10
https://doi.org/10.1007/11925040_10
https://doi.org/10.1016/j.sysarc.2015.04.002
https://doi.org/10.1016/j.sysarc.2015.04.002
https://doi.org/10.4230/OASIcs.WCET.2018.8
https://doi.org/10.4230/OASIcs.WCET.2018.8
https://doi.org/10.1109/RTAS.2019.00034
https://doi.org/10.1145/502217.502240
https://doi.org/10.1109/DSN.2003.1209972
https://doi.org/10.1145/384198.384230
https://doi.org/10.1145/1347375.1347389

	Abstract
	1 Introduction
	1.1 Problem Statement
	1.2 Contribution & Outline

	2 Approach
	2.1 System Model
	2.2 Annotation Language Design
	2.3 Lowering under Compiler Optimizations
	2.4 IPET-Based ILP Formulation

	3 Implementation
	4 Evaluation
	4.1 Experimental Setup
	4.2 Quantitative Evaluation
	4.3 Qualitative Evaluation

	5 Discussion & Future Work
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

