Appears in:

Proceedings of the 30th Euromicro Conference on Real-Time Systems Work-in-Progress Session (ECRTS ’18 WiP)

Barcelona, Spain, 3—6 July 2018

Towards System-Wide Timing Analysis of
Real-Time—Capable Operating Systems

Simon Schuster, Peter Wigemann, Peter Ulbrich, Wolfgang Schréder-Preikschat
Department of Computer Science, Distributed Systems and Operating Systems
Friedrich-Alexander-Universitit Erlangen-Niirnberg (FAU)

Abstract—In the context of static timing analysis of real-time
operating systems, the usage of generically implemented algo-
rithms necessitates annotation languages to express application-
specific knowledge. That is, developers have to provide precise
loop bounds or exclude program paths if automatic timing
analysis fails or yields too pessimistic results. Current annotation
approaches are not able to express and propagate information
across all layers of complete real-time systems (i.e., application
and system-call layer, operating system, machine-code level).

To solve this problem, we present our work in progress within
the SWAN project to enable System-wide WCET Analyses. Specif-
ically, we provide details on PLATINA, a high-level annotation
language, which is processed by an optimization-aware compiler
and timing-analysis infrastructure. PLATINA enables expressing
parametric program-flow facts based on the real-time system’s
context-sensitive state (e.g., number of currently active tasks),
which are propagated through and usable on all layers of the
real-time system. Eventually, PLATINA allows determining if a
generically implemented system is real-time-capable and whether
timing bounds can be guaranteed during execution.

I. INTRODUCTION & MOTIVATION

The worst-case response time (WCRT) is a vital temporal
property of tasks with hard deadlines. Its evaluation demands
a sound worst-case execution time (WCET) analysis of all
implementation artifacts. Accordingly, static timing analysis of
real-time applications is a well-established field with commer-
cially available tools (e.g., aiT [[1]]) that yield precise bounds
on the WCET in practice. They, nonetheless, rely on a largely
static program structure, which is inherent to safety-critical
applications, to accurately infer data and control flows, to, for
instance, bound loops and resolve function pointers.

However, tasks are typically embedded and executed in
a broader system’s context using a real-time operating sys-
tem (RTOS). Consequently, its implementation has to be
subject to the same temporal analysis. The induced overhead
is typically treated as constant and pessimistically added in
a deferred analysis step to each task’s WCRT [2], [3[]. The
reason is that system calls and preemptive scheduling intermit
data and control flows and thus necessitate a dedicated analysis
of kernel paths. The use of such a compositional approach is
consequently only feasible when given a static setting, which
means that operating system (OS) implementations are tailored
to a specific set of statically decidable application parameters.

A relatively new development in safety-critical real-time
systems is the employment of dynamic runtime environments,

Acknowledgments: This work is supported by the German Research Founda-
tion (DFG), in part by Research Grant no. SCHR 603/9-2, the SFB/Transregio

89 “Invasive Computing” (Project C1), and the Bavarian Ministry of State for
Economics under grant no. 0704/883 25.

such as Real-Time Linux [4], [5] that correspond more to a
general-purpose OS and promote code reuse by generically
implemented algorithms and interfaces. A reliable indicator
of this development is the future Adaptive AUTOSAR stan-
dard [|6], which addresses the increasing complexity of driver-
assistance and autopilot functions in vehicles. Here, the aggre-
gation of the individual (i.e., application and kernel) WCETsS is
fraught with inevitable overestimations that rise tremendously
with system complexity [7]]. The cause is in the loss of a
tailored and static OS implementation and the decoupling
of control flows within the application and the OS kernel
resulting from the system’s dynamic system-call layer and
runtime reconfigurability. Consequently, system facilities are
designed to serve all possible application scenarios and thus
exhibit dynamic data structures and execution paths, which in
turn jeopardize conventional analyses [3[]. However, flexible
deployment of dynamic RTOS in safety-critical settings still
requires realistic bounds for the induced overheads.

Our Contribution: We present our work in progress on
system-wide WCET analysis that makes available context-
specific knowledge to the kernel analysis by PLATINA, an
expressive annotation language. PLATINA features parametric
flow facts that can be linked to system state (e.g., number of
currently active tasks) in an application- and context-sensitive
manner. In conjunction with an optimization-aware compiler
and timing-analysis infrastructure, we can infer tighter yet
sound bounds for generically implemented real-time systems.

II. RELATED WORK & PROBLEM STATEMENT

Colin and Puaut [8|] were among the first to pinpoint the
fundamental problems of OS WCET analysis: meaningful
construction of global control-flow graphs over kernel bound-
aries. They identified indirect function calls, immanent in
the system calls interface, as well as dependencies between
application properties and kernel loop bounds as crucial issues.
Their approach was to modify the system’s source code,
restoring a statically analyzable implementation. Despite these
tedious and non-generalizable measures, a high degree of
overestimation (avg. 86 %) remained. Later Sandell et al. [9]
reported a large number of “uninteresting” kernel paths (e.g.,
error handling) in their analysis. Furthermore, they observed
the mediocre performance of the data-flow analysis within the
OS kernel. They used an annotation language with constant
expressions at assembly level to address the problems, which,
however, involved a high degree of recurring effort with still
unsatisfactory reduction of pessimism.

Among others, Schneider [7] determined the dynamic re-
configurability and system-call interface, the tracing of call
graphs, as well as the internal feedback between the RTOS
and the applications as further challenges towards realistic
WCET estimations. He proposed an integrated WCET and
scheduling analysis as a potential solution. In 2009 Lv et
al. compiled a survey [3] on RTOS-analysis attempts, from
which they derived a set of challenges. Like Schneider, they
question the usefulness of single, global WCET estimates for
individual operations but instead suggest a parametric analysis
that captures specific WCETs for each invocation.

Since then, research focused on circumventing the problem
by tailoring the OS to be deterministic again. Undecidable
artifacts (e.g., loop iterations, indirect calls) are eliminated by
application-specific source-code modifications: For example,
in the seL4 kernel [2] preemption points in loops are added to
limit the length of consecutive kernel execution. In our work
on SysWCET [10], we leveraged the scheduling semantics to
eliminate globally infeasible system execution paths by using
a tailored operating system. However, for larger RTOSs (e.g.,
Real-Time Linux) these code-tailoring approaches are not
feasible, due to the high complexity and recurring effort.

Our challenge: Instead of tailoring, we opt for a generic
annotation of the OS implementation and subsequent context-
aware WCET analysis that proves real-time capabilities specif-
ically for a given application setting. We identified three
practical symptoms on the fundamental problem of context-
sensitive control flows: (1) Control-flow reconstruction issues,
(2) paths that are either unanalyzable or become infeasible in
certain contexts, and (3) overly pessimistic bounds as context
knowledge cannot be automatically inferred. The resulting
challenge is therefore to provide a unified way of formulating,
passing, and evaluating state- and context-sensitive flow facts
in a system-wide WCET analysis, especially when analysing
OS operations. As assembly-level annotations [2], [9] are not
an option due to their poor reusability and manageability, this
requires parametric annotations at the source-code level.

III. APPROACH

We tackle our challenge by SWAN, an approach to enable
System-wide WCET Analyses. Figure [I] illustrates its funda-
mental concept: the core (middle) is PLATINA, a parametric
annotation language expressing context-sensitive information
on the source-code level. The annotations are associated with
system facts (top) that hold context-dependent information.
Finally, to achieve a context-aware WCET analysis (bottom),
SWAN provides a semantic-preserving transformation from
code to assembly level. We detail those steps in the following.

Our goal with PLATINA is to bridge the immanent semantic
gap between application and kernel analysis by propagating
context-dependent information (system facts) to the low-level
WCET analysis in an automated fashion. Hence, we provide
parametric (i.e., context-dependent) annotations to address said
three challenging symptoms that so far prevent tighter bounds
on generic OS operations: (1) Annotation of indirect function
calls to aid the control-flow reconstruction. This is a key

Fig. 1. Information propagation within SWAN: semantic system facts are
gathered from a semantic model. Parametric annotations use these pieces of
information to express the semantics of context-sensitive execution flow at the
source code level. After lowering to the assembly-code level, the static WCET
analysis leverages this information to exclude infeasible execution flows.
enabler for the subsequent propagation of context-dependent
flow facts. (2) State-dependent annotation of branches in con-
ditional executions to eliminate paths that become infeasible
only in certain contexts. (3) Context-sensitive annotations to
bound computations by application and configuration knowl-
edge. These building blocks form an expressive annotation
language that allows associating the semantics of individual
system facts with the actual execution flow. To reflect the com-
plexity of control flows within the OS, PLATINA’s annotation
language allows the programmer to combine multiple system
facts and even reuse expressions by defining custom facts or
functions. Furthermore, to foster long-term maintainability of
annotations, we decided to integrate them at the annotated
program point within the source code (e.g., C++ program).
The system-facts layer parametrizes and instantiates
PLATINA annotations. Therefore, the layer provides and stores
static and application-specific configuration knowledge as well
as context-dependent information, which we call system facts:
the atomic entities on which the annotation language operates.
Higher-level analysis, such as our SysWCET [10] approach to
incorporate scheduling semantics, also engage at this level to
further derive and enrich the model with further system facts.
Finally, the annotation expressions are evaluated over a
given context of system-fact values within our context-aware
WCET analysis, which is based on and extends the PLATIN
toolkit [[11]]. While boosting (re-)usability, our earlier decision
to keep the annotations at source-code level poses the question
of how they can be propagated soundly to the assembly-code
level of the WCET analysis. Here, we rely on optimization-

aware compilation [12] to transform context-specific flow
information into the machine-code—level control-flow graph.
Consequently, our lowering preserves the annotation seman-
tics, which ultimately allows us to infer specific facts on the
execution flow from the contexts of system calls. Examples
include loop bounds that are specific to the number of runnable
tasks or paths that are only infeasible in the given context.
That way, we obtain context-sensitive and thus more accurate
bounds for OS overheads, which proofs that the OS is real-
time capable in the given setting. Our lowering, while based
on an optimization-aware compilation, enables parametrization
without recompilation: the same binary can be evaluated for
arbitrary system facts and in multiple contexts, which retains
scalability and usability even for large implementations.

In summary, SWAN provides sound propagation of high-
level, semantic, context-sensitive information throughout the
compilation and analysis processes down to the level of the
static WCET analysis. The parametric annotation mechanism
allows obtaining tailored, context-aware timing bounds even
for generic OS kernels. Thus, SWAN proves their real-time
capability in a specific context with potentially higher analysis
accuracy compared to traditional decoupled WCET analysis.

IV. PRELIMINARY RESULTS

To demonstrate the feasibility of SWAN, we conducted a
case study on FreeRTOS and relevant parts of the Linux ker-
nel (i.e., scheduler). In both cases, traditional WCET analysis
does not obtain realistic bounds; partly it even fails in the
reconstruction of the control-flow graph. This observation,
first of all, substantiates the need for an integrated, context-
sensitive approach to WCET analysis. Our first results with
SWAN are promising, and we were already able to annotate and
analyze various intricate parts of both settings. As quantitative
results depend on the given application scenario, we graphed
the impact of our approach on the example of FreeRTOS’s
vSuspendTask system call in Figure 2} Whenever a task is
suspended, a reschedule is triggered, entailing the selection
of the next runnable task. Here, FreeRTOS relies on a set of
queues (one per priority level), which are probed with decreas-
ing priority. For our experiments, we configured FreeRTOS
for the ARM Cortex-M4 platform and a total of 42 priority
levels. Without our extensions, PLATIN computed (supported
by constant annotations) a static upper bound of 6485 cycles
for the worst case, which assumes no runnable task in any of
the queues and therefore requires 42 probing steps. However,
as there is a linear relationship between the number of probing
steps and the system call’s WCET, this bound is too pes-
simistic in most cases: we observed divergence of over 178 %.
With SWAN, we were able to accurately express this context
dependency by combining the number of priority levels and the
priority of the next task. The former is a system-configuration
property; the latter is a context-dependent property (e.g.,
available from our state-transition graph [10]]). Consequently,
our bounds correctly reflect the maximum number of runnable
tasks for any given state and context; thus ultimately relieving
OS overheads from unnecessary pessimism.

static upper bound x*
6000 - op o
x**
7 X
[}
S 5000 - X%
2 xx%
x
54000 - X
@) x
=z xx"x
x
3000 o SWAN’s
xx"x context-sensitive bound
X
T T T T T
0 10 20 30 40

Queues to probe

Fig. 2. Runtime of the vTaskSuspend system call in relation to the number
of task queues (total set of 42) that are probed until a runnable task is found.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented SWAN, our ongoing effort on
context-sensitive WCET analysis of RTOSs. Its key element is
PLATINA, a parametric annotation language to express depen-
dencies between a system’s control-flow and application states
generically. Combined with system facts and an optimization-
aware compiler and timing analysis, we can both prove real-
time capabilities in a given context as well as eliminate overly
pessimistic constant bounds on RTOS overheads.

We currently finish our prototype and case study of
FreeRTOS and Linux. Beyond this proof of concept, we
consider the sheer size of, for example, Real-Time Linux as
another fundamental challenge. Thus, our next steps are de-
voted to improving traceability of system facts and annotations
as well as the overall scalability and usability. In the future, we
see great promise for the integration of high-level application
and RTOS semantics to further reduce analysis pessimism.

REFERENCES

[1] AbslInt., “aiT worst-case execution time analyzers,” absint.com/ait,

[2] B. Blackham, Y. Shi, S. Chattopadhyay, A. Roychoudhury, and
G. Heiser, “Timing analysis of a protected operating system kernel,”
in Proc. of RTSS 11, 2011.

[3] M. Lv, N. Guan, Y. Zhang, Q. Deng, G. Yu, and J. Zhang, “A survey
of WCET analysis of real-time operating systems,” in Proc. of ICESS
’09, 2009.

[4] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H.
Anderson, “LITMUSRT: A testbed for empirically comparing real-time
multiprocessor schedulers,” in Proc. of RTSS '06, 2006.

[5]1 B. B. Brandenburg, “Scheduling and locking in multiprocessor real-time
operating systems,” Ph.D. dissertation, UNC, 2011.

[6] AUTOSAR, “AUTOSAR the next generation — the adaptive platform,”
autosar.org/fileadmin/files/presentations/EUROFORUM_Elektronik-
Systeme_im_Automobile_2016_-_FUERST_Simon.pdf, 2016.

[7]1 J. Schneider, “Why you can’t analyze RTOSs without considering
applications and vice versa,” in Proc. of WCET 02, 2002.

[8] A. Colin and I. Puaut, “Worst-case execution time analysis of the
RTEMS real-time operating system,” in Proc. of ECRTS ’01, 2001.

[9] D. Sandell, A. Ermedahl, J. Gustafsson, and B. Lisper, “Static timing

analysis of real-time operating system code,” in Leveraging Applications

of Formal Methods, ser. Lecture Notes in Comp. Science, 2004.

C. Dietrich, P. Wéagemann, P. Ulbrich, and D. Lohmann, “SysWCET:

Whole-System Response-Time Analysis for Fixed-Priority Real-Time

Systems,” in Proc. of RTAS’17, 2017.

P. Puschner, D. Prokesch, B. Huber, J. Knoop, S. Hepp, and G. Gebhard,

“The T-CREST approach of compiler and WCET-analysis integration,”

in Proc. of SEUS ’13, 2013.

B. Huber, D. Prokesch, and P. Puschner, “Combined WCET Analysis

of Bitcode and Machine Code Using Control-flow Relation Graphs,” in

Proc. of LCTES 13, 2013.

[10]

(1]

[12]

https://www.absint.com/ait/index.htm
https://www.autosar.org/fileadmin/files/presentations/EUROFORUM_Elektronik-Systeme_im_Automobile_2016_-_FUERST_Simon.pdf
https://www.autosar.org/fileadmin/files/presentations/EUROFORUM_Elektronik-Systeme_im_Automobile_2016_-_FUERST_Simon.pdf

	Introduction & Motivation
	Related Work & Problem Statement
	Approach
	Preliminary results
	Conclusion and Future Work
	References

