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Soft errors are a challenging and urging problem in the domain of safety-critical embedded systems. For

decades, checking schemes have been investigated and improved to mitigate soft-error e�ects for the class of

control-�ow faults, with current industrial standards strongly recommending their use.

However, reality looks di�erent: Taking a systems perspective, we implemented four representative Control-

Flow Checking (CFC) schemes and put them through their paces in 396 fault-injection campaigns. In contrast

to previous work, which typically relied on probability-based vulnerability metrics, we accounted for the

in�uence of memory and time overheads on the fault-space dimensions and applied those in full-scan fault

injections. This change in procedure alone severely degraded the perceived e�ectiveness of CFC.

In addition, we expanded the perspective to data-�ow faults and their in�uence on the overall susceptibility,

an aspect that so far has been largely ignored. Our results suggest that, without accompanying measures, any

improvement regarding control-�ow faults is dominated by the increase in data faults caused by the increased

attack surface in terms of memory and runtime overhead. Moreover, CFC performance less depended on the

detection capabilities than on general aspects of the concrete binary compilation and execution.

In conclusion, incorporating CFC is not as straightforward as often assumed and the vulnerability of systems

with hardened control-�ow may in many cases even be increased by the schemes themselves.
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1 INTRODUCTION
Current hardware designs for embedded systems o�er more performance and parallelism. Still, this

development is associated with shrinking structure sizes and operating voltages and thus comes at

the price of being less reliable. As a consequence, mitigation of soft errors (syn.: transient hardware

faults, single event upsets) is one of the major challenges [5] for safety-critical applications and

systems. In general, soft errors are induced by ionizing particles that a�ect and corrupt data stored in

SRAM memories as well as computation logics without permanently impairing the functionality [4].

Besides adding costly hardware redundancy, virtually sacri�cing the technology gain, software-

based fault-tolerance o�ers a selective and thus potentially resource-e�cient alternative.

To tackle this problem, as systems engineers
1

we focus on software approaches that either engage

with the language or the instruction level and which furthermore can be applied automatically to a

given application as an independent development step.

In general, soft errors can manifest in both data or control-�ow faults (i.e., a change in the intended

program execution). For the domain of control-�ow faults, several control-�ow checking (CFC)

schemes strive to provide a �ne-grained, orthogonal hardening of individual control �ows, with

industry standards such as the automotive ISO 26262 [18] safety standard recommending their use.

1.1 Problem Statement
Recommendation or not, at the end of the day, the only thing that matters is the overall system

reliability. Unfortunately, this is a complex issue that reaches well beyond a single perspective,

such as theoretical detection capabilities or speci�c design considerations. Instead, there are more

in�uencing factors to it, such as the hardware platform, toolchain, operating system, application,

con�gurations, and so on. Yet, such a whole-system perspective seems to be underrepresented

in related literature. One reason might be that judging CFC e�ectiveness in this context is rather

di�cult as an easy to compute metric—such as the Hamming distance [16] for data faults—is

missing. In many evaluations, either fault coverage or probability-based vulnerability metrics are

used for quantifying the e�ectiveness.

However, recent studies [12, 27] suggest that these contemporary evaluation approaches are

overly simplistic as they ignore, among other things, the increase in the attack surface through

software measures. For the domain of control-�ow faults a structured, quantitative e�ect-analysis

is overdue that accounts for attack surface increase, hardware properties as well as other fault

types, such as data faults.

1.2 Our Contribution
In this paper, we put CFC fault-detection capabilities as well as the commonly used probabilistic

reliability metric to the test. We claim the following key contributions to improve our insights on

language- and instruction-level CFC e�cacy:

• Integration of four representative CFC schemes with various con�gurations into the KESO

compiler framework. Reevaluation in four application use cases, including a real-world

UAV �ight-control [37], amounting to 396 fault injection (FI) campaigns. Reproduction and

validation of previous reliability experiments based on the residual failure metric.

• Novel quantitative whole-system evaluation based on full-scan experiments that incorporate

time and memory overheads. Extension of the conventional control-�ow-centric fault model

to also cover data faults as an important factor.

1
That is (real-time) operating system and systems-software engineers.
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BB1 s1 = 0011
. . .

BB2 s2 = 1011

/* d2 = 0011⊕ 1011 */
G = G ⊕ 1000
assert (G == 1011)
. . .

BB3 s3 = 1011

D = 0000
. . .

BB5 s5 = 1000

D = 0011 /* s3 ⊕ s5 */
. . .

BB4 s4 = 1001

/* d4 = 1011⊕ 1001 */
G = G ⊕ D ⊕ 0010
assert (G == 1001)

Fig. 1. Signature-based CFC by the example of CFCSS for single and a multiple predecessors on the le� and
right, respectively.

• Disclosure and discussion of consistent qualitative e�ects, de�ciencies and �aws of CFC

schemes and their evaluation.

Starting with a background section on CFC schemes, our contributions outline the coarse

structure of the remaining paper.

2 BACKGROUND
Before immersing into the actual study, we give a brief overview of CFC techniques and their

underlying mechanics: In the last decades, substantial work has been done on those techniques,

resulting in numerous variants. First of all, there are combined data- and control-�ow integrity

schemes such as arithmetic encoding [11, 26], which tackle the problem implicitly by mapping it

onto the data integrity domain. In this paper, we focus on explicit encoding and veri�cation of

the control-�ow by signature-based CFC schemes. The common principle is to derive a control-
�ow graph (CFG) from the program’s structure and to unify actual execution paths with the

corresponding ones in the CFG at runtime. Usually, this is accomplished by associating each node

in the CFG with a signature as a representative for the respective execution progress.

Even with the focus on signature-based CFC, there are various degrees of implementation freedom

that amount to a considerable number of variants. Variations include node sizes, ranging from

individual instructions over basic blocks (i.e., branch-free intervals) to groups of basic blocks (e.g.,

single-entry, single-exit or dominance regions in the CFG). Furthermore, the signature associated

with a given node can either be assigned or be derived from the nodes’ properties itself [22].

Additionally, it is not speci�ed whether the actual control-�ow checking is embedded into the

control �ow to be monitored or executed concurrently, for example on a dedicated watchdog

processor [22]. Some CFC schemes, especially concurrent ones, are hybrid hardware-assisted

implementations while others are fully implemented in software. Finally, the actual operations

used for signature veri�cation, assignment and transition are further design choices.

Nonetheless, signature-based CFC techniques considered in this paper share the same basic

principle, which we will showcase using the example ofControl Flow Checking by Software Signatures
(CFCSS) [24]. It operates on the basic-block level with each basic block being referenced by a

uniquely assigned signature si . The global signature variable G is used to track the execution at

run-time; in a fault-free run, it always corresponds to the signature of the basic block currently

being executed. G is updated at the beginning of each basic block using the XOR-operation on G
and the bit-wise di�erence di between the predecessors signature sh and si :

G = G ⊕ di = sh ⊕ (sh ⊕ si ) = si

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: July 2017.
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While this approach is straightforward for single predecessors (cf. Figure 1, BB1→BB2), pre-

cautions have to be taken for multiple predecessors. As illustrated in Figure 1 (right), the basic

idea is to declare one of the predecessors as the canonical one (BB3) and to use its signature in

all successors for the computation of the respective signature di�erence di . To incorporate the

remaining predecessors (BB5), a global signature adjusting variable D is introduced. Whenever

a basic block is left, the individual signature di�erence with the canonical block is stored in D.

Subsequently, the successor (BB4) will use both D and the bitwise di�erence d4 to complete the

signature transition:

G = G ⊕ d3 ⊕ D = G ⊕ s3 ⊕ s4 ⊕ s3 ⊕ sx
= G ⊕ s4 ⊕ sx

In general, control-�ow faults are detectable by a mismatch of the global signature G and the

block-local signature si .
This basic principle is common to virtually all CFC schemes with only details varying: Di�erences

can mainly be found in the operations used for signature transition, the frequency of signature

checks as well as the granularity and the handling of multi predecessor situations. All in all, these

commonalities allow for a uniform and structured analysis of signature-based CFC scheme e�cacy.

3 CASE STUDY
In this paper, we examined the following signature-based software-CFC schemes: (1) Plain
Interblock2

(PI), a simple basic block fencing approach inspired by [6]. (2) Control Flow Checking by
Software Signatures (CFCSS) [24], which we already described in Section 2. (3) Yet Another Control
�ow Checking Approach (YACCA) [13], an adapted and enhanced version of CFCSS. (4) DOM [8],

a dominator-region based signature checking approach. For reference, Table 1 holds a list of the

most important abbreviations used in this paper. We selected these four CFC schemes as they are

representative of the work that has been done in the �eld. They furthermore span the opposing

design objectives of overhead/granularity and detection capabilities.

PI, for example, assigns a static signature to every basic block ahead of time. At the beginning

of the basic block, the signature is dynamically stored in a global register, which is validated at

the block exit. As return addresses on the stack are considered to be particularly vulnerable (they

are stored in data memory), a special method signature is set before returning and subsequently

validated at the call site.

In contrast to PI, the other CFC schemes verify predecessor/successor information when the

control-�ow migrates between basic blocks. As described in Section 2, CFCSS veri�es signatures

by using the XOR-operation. YACCA assigns a unique signature to each basic-block entry and exit.

This method enables the detection of both erroneous branches from within a basic block to a valid

successor and from the �nal branch instruction back into the basic block itself. Furthermore, to

eliminate wrong-successor control-�ow errors for conditional branches, the condition is reevaluated

at the branch destination. We also incorporated this improvement as the YACCAd variant to

determine its e�ectiveness.

The granularity of CFG nodes adds another dimension to the design space. Typically, an inverse

relationship between check granularity (i.e., node size) and the susceptibility to soft errors is

assumed [2]. Therefore, coarse granularity (e.g., single-entry-single-exit regions instead of basic

blocks) should weaken the scheme’s detection capabilities. DOM makes this trade-o� by operating

on groups of basic blocks, namely dominance regions. These hold a single dominator block that

is executed before any other block of the region (e.g., a function entry block dominates all basic

2
Naming based on [15] as no name was given in the original publication
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Abbrev Description

PI Plain Interblock [6]
CFCSS Control Flow Checking by So�ware Signatures [24]

YACCA [d] Yet Another Control flow Checking using Assertions with opt. duplication [13, 14]
DOM {c,s}[l] Dominator based CFC using coverage or smallest region selection strategy with opt. loop opti-

mization [8]

mem Fault injection into memory
ip Fault injection into program counter

all Combination of mem, ip and registers

Table 1. Abbreviations used in this paper.

blocks within a function). DOM selects a �xed number of dominance regions and assigns to it a

single bit in the global signature. The region-entry node sets the bit, whose presence can then be

enforced either within the region or when leaving the dominance region.

3.1 So�ware Infrastructure
The next step is the actual implementation and, even more important, the automated employment

of the selected CFC schemes to a given application. This employment is achieved by an automated

program transformation using compiler techniques, which may engage from instruction level to

high-level programming language—the schemes originally used diverse approaches and toolchains.

However, to be admissible, each transformation requires a set of static guarantees, in this case

for global control-�ow analysis and re�nement. The language C, as the de facto standard in the

embedded domain, is somewhat di�cult in this sense: Its permissive, low-level memory model and

type system emphasizes aggressive local performance optimizations over accurate global analysis.

Consequently, either some language features have to be omitted (e.g., function pointers, computed

gotos) to again facilitate global analysis or one can resort to type-safe languages, such as Java, in

the �rst place.

As there was no common ground between all CFC scheme’s toolchains, we opted for the later

and implemented the schemes in the context of the KESO Multi-JVM for OSEK-based Systems
(KESO) [33, 36]. This source-to-source compiler takes type-safe JVM bytecode and outputs C. At

the same time, it provides the required global control-�ow information, including both, strong

guarantees for corner cases like function pointers as well as �ne-grained control-�ow re�nement.

Since KESO is a transpiler to C, the output remains comparable as the actual CFC is woven in the

C code. Subsequently, the output equals a traditional C implementation and relies, for example, on

the GNU toolchain. Thereby, we completely circumvented the complexity of a conventional JVM.

KESO’s global analysis furthermore allows for transformation of non-functional properties

such as timeliness, overhead, and most notably dependability (e.g., replication [35], array bounds

checking, and parity encoding of pointers [32]), when paired with contextual information (e.g.,

static system con�guration). To obtain a pristine evaluation of CFC, we disabled all those additional

hardening mechanisms, even those inherent to the language, such as null and bounds checking.

KESO was further con�gured to use the JDK7 bootclasses (OpenJDK 1.7.0_111) and to perform

a full escape analysis [7, 31]. The generated C code was then compiled with GCC 5.4.0
3

(-O2
-mpreferred-stack-boundary=4 -g).

3
GCC Bug #78580, unresolved during the study, prevented a more recent compiler version
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Stress Control-flow Data-flow

Use Case Sequence
�icksort

Matrix Flight
Detector Multiplication Control

Instruction Count 663 499 96 3299
Function Calls 67 8 2 27

Branches (cond/total) 58/98 27/58 8/15 173/301
Basic Blocks (BB) 165 74 20 427

Opcodes per BB (max/�) 22/4.02 29/6.74 13/4.80 135/7.73
Predecessors (max/�) 16/1.32 6/1.39 2/1.05 6/1.34

Successors (max/�) 16/1.39 4/1.42 2/1.10 5/1.35

Table 2. Structural properties of the use cases.

3.2 Use Cases
We have selected two of our applications from those typically used in the original work on the

selected CFC schemes: Matrix multiplication [6, 13, 14, 24] and quicksort [6, 24]. However, we

consider the relevance of these algorithms to the domain of embedded systems as rather limited.

Furthermore, both algorithms resemble heavily repetitive workloads. Therefore, we introduced

two additional use cases: a sequence-detector state machine and a �ight attitude controller, which

mimic real-world production code as close as possible. We used quicksort (1) from the GNU

classpath (v0.99) and implemented matrix multiplication (2) ourselves. The sequence detector (3)

was generated using the State Machine Compiler (v6.3.0). We took the �ight attitude controller (4)

as a MATLAB/Simulink model from [37], with C code generated by Simulink’s Embedded Coder

(v8.10, R2016a) and verbatim ported to Java. As inputs, we used: (1) an unsorted list of 42 random

integers, (2) two 5×5 integer matrices, (3) a sequence of 31 binary inputs that produces two matches

in the detector and (4) a control step of the �ight controller with 13 (simulated) sensor signals.

The structural properties of all use cases are given in Table 2. Due to the rigid structure of matrix

multiplication, its maximum and the average number of pre- and successors is comparatively low,

and the overall use case is rather small with 96 instructions. To the other extreme, the state machine

implementation in the sequence detector provides a higher cyclomatic complexity with multiple pre-

and successors and a large number of function calls. The latter induced additional vulnerabilities

due to the necessary return addresses pushed on the stack. The attitude controller represents a

rather data-driven, compute-intensive workload with rather large basic blocks. Compared to the

other applications, it is also rather large with 3299 instructions. Quicksort’s properties usually lie

midways between those extremes and provide a highly data-dependent, conditional control-�ow.

Overall, we consider this set of use cases as adequate to cover a large set of application classes.

3.3 System and Fault Model
The e�ectiveness of a given hardening method can only be evaluated with respect to a given

fault model. From a software point-of-view, transient hardware faults manifest as observable bit

�ips in memory and CPU registers [4, 20, 38]. The resulting fault patterns range from single-

bit over multi-bit �ips up to a complete inversion of data words. Radiation experiments with

90–130 nm SRAM memory [23] indicate, however, that 95 % of soft errors lead to single-bit �ips,

with the remaining 5 % spreading up to �ve-bit �ips at maximum. These observations have been

corroborated by and extended to more recent hardware designs as well as to computation logic

by further studies [4, 21, 30]. In contrast, non-volatile �ash memory shows a comparatively high

robustness regarding transient hardware faults [17] and is therefore considered to be reliable.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: July 2017.
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The fault hypothesis used in this paper is, therefore, the widely accepted single-bit single-fault

model with uniform fault distribution, which we in particular share with the original work on the

CFC schemes discussed in this paper. Furthermore, we assume that spatial and temporal isolation

is provided by the operating system’s partial virtualization. The memory protection or management
unit (MPU/MMU) further con�nes execution to the text segment, which further resides in read-only

memory, e.g., �ash memory. Therefore, soft errors leading to code-section writes are detected and

only faulty writes to data may become permanent.

3.4 Fault-Injection Methodology
We evaluated the e�ectiveness of the CFC schemes using the FI framework Fail* [28]. Fail* records

a full trace of a program’s execution (i.e., the golden run) by single-stepping it in a simulator and

extracting all referenced data, registers as well as memory locations and values at instruction set
architecture (ISA) level. The trace is then used to determine the liveness intervals between a write

access and the last subsequent read access to the corresponding data. This information is used to

perform targeted FI at (cpucycle,datalocation) in the trace for all cycles in which live data is stored

in a certain data location, memory or register, providing a full scan of the fault space. After the

injection, normal execution is resumed. When the actual computation has completed, the result is

veri�ed and recorded. For our study, we opted to check just the result (i.e., we veri�ed the integrity

of the given data structures storing the result) but not the integrity of the whole address space. This

method matches the way a further execution would access the results. If a trap (e.g. an arithmetic

exception or illegal memory access) occurs between injection and veri�cation, the execution will

be terminated and the event recorded. Finally, we used a timeout that mimics the OS’s timing

protection to catch execution-time budget overruns (e.g., fault-induced non-terminating loops).

4 EXPERIMENTS AND ANALYSIS
In this section, we move on to the evaluation of the CFC schemes by extensive FI campaigns.

After detailing the experimental setup in Section 4.1, we start by reproducing and revalidating

the comparative results from the literature using the residual failure rates metric in Section 4.2.

Subsequently, we change perspective and glean the shortcomings of this metric in comparison

with the more recent absolute failure counts metric in Section 4.3. Based on this, we assess the

impact of ISA-level micro-e�ects on CFC e�cacy in Section 4.4. Finally, to achieve a more complete,

whole-system evaluation of CFC, we extend our view to data faults and their momentous impact in

Section 4.5.

4.1 Experimental Setup
The experiment setup covers the con�guration of the system regarding hardware and OS, as well

as the CFC implementation variants and the Fail* campaign design.

To account for the large design-space described in Section 2, we made several aspects of the CFC

implementations con�gurable: (1) Signatures and other CFC-related variables can either be stored

in memory or dedicated registers. (2) Consecutive basic blocks can optionally be compressed into

larger regions (e.g., at the locations of potential array bound checks) to increase the granularity.

(3) For YACCA duplication of the branch condition can be enabled as YACCAd. (4) Either the 32

dominance regions in DOM are equally distributed with uniform coverage as DOMc or a heuristic

selects the smallest regions �rst as DOMs. (5) Optionally, marker checks can be reduced to one per

loop if the body does not cross the region boundary as DOM l. Along with the four CFC schemes,

this resulted in 33 con�gurations per use case.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: July 2017.
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Fig. 2. Control–flow-only FI campaign on the quicksort use case: On the le� the overall fault distribution
with the so�ware-visible failures magnified to the right. Thereof, the residual failure rates of the unhardened
(base) versus the various CFC schemes (relative scale).

The actual FI was performed on the IA-32 architecture as this is the only one available for both

the Fail* FI framework and the AUTOSAR-compliant real-time operating system used in KESO.

We provided the simulated system with 16 MB of memory, mapped at the lower end of the address

space. As accurate worst-case execution times were only available for the actual hardware, we

used a safe timeout parameter in the range of seconds. In Fail* individual injections are grouped

as dedicated benchmarks by their respective fault location: Program-counter register (ip), other

registers (regs), and memory locations (mem).

In total, our experiments amount to 703,485,376 individual injections and 47 GB of raw data,

grouped by use cases, implementation variants and benchmarks into 396 aggregated result sets. In

the brevity of this paper, it is impossible to present such a multidimensional dataset in its entirety.

Therefore, we will focus on the most notable, general e�ects and explain those by representative

examples. The source code along with the complete dataset is, however, publicly available on our

website
4

for further exploration and investigation.

4.2 First Step – Residual Failure Rates
First, we evaluate the e�ectiveness of CFC schemes to detect control-�ow faults by injecting bit

�ips into the program-counter register (ip benchmark). This de�ned approach ensures an isolated

injectivity, observability, and traceability of control-�ow faults. While there are in general other

more subtle fault sources—for example, faults a�ecting address and conditional operands, return

addresses or instruction memory—these can either be classi�ed as data faults, which we address

separately in Section 4.5 or mapped to a time-shifted program-counter fault. In the following, we

discuss the impact of control-�ow faults on unhardened programs before evaluating the e�ciency

of CFC schemes under study using the commonly used residual failure rate metric.

4.2.1 General Fault Distribution. Before investigating the qualities of the various CFC schemes,

we assessed the overall relevance of CFC by examining the e�ects of control-�ow faults on the

4
www4.cs.fau.de/Research/Soft-Errors/
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(a) Arraysort for comparison with Figure 2.
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(b) Matrix multiplication as the worst-case example.

Fig. 3. Control-flow-only FI evaluating the absolute failure count (linear scale).

unhardened programs. Figure 2 displays the distribution of di�erent injection results for the

quicksort application.

The most dangerous event is the fail-marker event, which represents an undetected failure (silent

data corruption). It’s surprising that, depending on the use case, only 0.74–5.95 % of all injected

control-�ow faults resulted in undetected failures. As noted earlier, disregarding latent errors

in local data structures that did not manifest as failures shifts the balance between the fail and

OK markers in favor of the latter. Still, even combining OK and fail markers only ≈ 8.5 % of the

experiments result in successful program termination. So more than 91 % of the faulty computations

terminate prematurely due to hardware mechanisms. Here, memory-related events dominate: Either

execution was attempted on unmapped memory (illegal PC) or outside of the executable code

area (section fence), or a write access to unmapped memory was performed (write outerspace).

Certainly, the e�ectiveness of spatial isolation (i.e., section fencing) bene�ts from small-size micro

benchmarks. However, we, also with regard to our example, consider our results to be representative

for the domain of safety-critical embedded systems, which typically are designed and engineering

with rather small protection domains in mind.

Our conservative choice of the timeout value resulted in a rather small number of timeout events.

We assume that tight execution budgets, again typical in safety-critical embedded systems, would,

therefore, reduce the number of undetected failures of even further.
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I The vast majority of more than 91 % of control-�ow faults was caught by hardware and OS
mechanisms. In the end, no more than 6 % of failures were subject to CFC actions at all.

4.2.2 Residual Failure Rates. Soft error mitigation mechanisms are employed to improve the

system’s reliability. A commonly used metric to quantify reliability is the residual failure rate: the

ratio of undetected wrong results.

The right-hand side of Figure 2 displays the residual failure rates for the ip FI of the quicksort

application. While our injection heuristic for control-�ow faults deviates from earlier injection

experiments [6, 13, 14, 24], the results still show the same qualitative e�ects: All implemented CFC

schemes reduced the residual failure rates, predecessor-successor encoding schemes like CFCSS

and YACCA outperformed the region-based approaches like PI and DOM. YACCA represented an

improvement upon already good results of CFCSS and reached �gures equal or even slightly above

those found in [13] with a fault-coverage of up to 99.74 %. In comparison to CFCSS and YACCA,

the poor performance of DOM variants seems to further support the often acclaimed notion of a

tradeo� between check granularity and e�ciency.

IWe consistently observed residual failure rates that match with literature. All variants were
e�ective in reducing the failure rate; the e�ectiveness correlates with granularity and redundancy.

4.3 Changing Perspective – Absolute Failure Counts
Recently, however, the usage of residual failure rates in quantitative evaluations of hardening

mechanisms has been proven to be problematic [27]. The key point of criticism is the lack of a

common base when failure rates are used to compare variants. Our evaluation just presented in

Section 4.2.2 is a�ected by the very same problem: Fault probabilities are always expressed in relation

to both space and time. As all CFC techniques induce (non-functional) overhead, both regarding

size and execution time, their fault space increases compared to the unhardened application.

To resolve this problem, the absolute failure count was proposed as an alternative metric [27],

which recti�es this issue by weighting all injection results with the size of the associated fault

space. In the case of a full fault-space scan, as performed in this paper, this metric can be easily

obtained by counting the absolute number of failures (i.e., fail marker events).

Figure 3a depicts the same experiment as Figure 2 using the absolute-failure-count metric. This

direct comparison yields some interesting results: First of all, not all CFC schemes were e�ective.

The memory variants of PI and all variants of DOM lead to an increased failure count compared to

the baseline. For all other variants, relative improvements fell signi�cantly short compared with

the observed failure rates: While YACCA shrunk failure rates by 95.6 %, it reduced absolute failure

counts by mere 39.3 %. Furthermore, the best performing algorithm for this use case switched from

YACCA to CFCSS, with the improvements peaking at only 61.3 %.

Moreover, while we observed consistent improvements for all CFC schemes across the board

with failure rates, this is not the case with failure counts. For comparison, Figure 3b provides the

failure counts for the matrix multiplication. Note that all but one CFC variant show degraded

failure counts. The only improvement was achieved by YACCAd (compressed), albeit only by

24.5 %. A probable explanation for this e�ect is the di�erence in the application structure. Matrix

multiplication typically consists of a couple of small basic blocks that represent the loop’s indexing

and conditional branches, while the entire computation resides in one large basic block in the

innermost loop body, where most of the execution time is spent. This structure bene�ts intra–basic-

block control-�ow faults, which are undetectable by all implemented CFC schemes.

I Switching to the more realistic absolute failure count metric, the overall e�ciency degraded
substantially for all CFC schemes. Even worse, in many cases, CFC even reduced the overall reliability.
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Fig. 4. Micro-e�ect: Fault-induced non-aligned jump is bypassing the CFC.

4.4 Micro-e�ect Analysis
In addition to the metrics issue, we observed a high variance within individual use cases, in particular

with the matrix multiplication (Figure 3b). For DOM, to some extent, �uctuation are intrinsic to

the scheme: Even small changes to the CFG and therefore the dominator tree directly in�uenced

the region selection and signature-check-placement strategies, resulting in substantially di�erent

executables. This variation, however, did not apply to the deviations between register and memory

variants that we observed in other cases.

For the register variants of YACCA and CFCSS, we permanently allocated two registers to the

CFC scheme. These, however, represent a notoriously scarce resource, especially in the IA-32

architecture that only provides eight general-purpose registers. Therefore, the deprivation of two

registers leads to more variables being spilled to the stack, which consequently leads to a larger

fault space and bigger basic blocks. The latter in turn causes additional and again undetectable

intra–basic-block control-�ow faults. The e�ect of this is, however, highly application speci�c: As

the set of live variables is higher for the matrix multiplication, the impact is comparably higher or

even inverse to the one observed with array sort.

I Overall, the reliability impact of CFC variants is not only highly implementation speci�c but also
strongly correlated with the application structure. Suboptimal combinations can even harm.

Given this relationship between structure and implementation variants, it might be tempting to

infer similar correlations between application speci�cs and well performing CFC schemes. Indeed,

the best performing con�gurations di�ered between use cases: CFCSS with CFG compression for

array sort, YACCAd with CFG compression for the matrix multiplication, DOMc with compression

and signature storage in registers for the sequence detector and YACCAd with CFG compression

for the �ight control.

However, it would be ill-conceived to arrive at conclusions regarding the suitability of schemes

for certain application classes from only those individual data points. To make this clear, we have

to reconsider two requirements for failures in our injection: First, the fault causing the failure

has to be possible. Given our single-bit fault model, this means that control-�ow faults may only

misdirect the control �ow to addresses with a Hamming distance of one to any given fault-free

address in the program. Second and even more important, the subsequent, erroneous execution has

to terminate successfully, without causing any hardware traps and within the timeout. This e�ect is
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tightly coupled with the actual hardware context at the fault location, that is register and memory

content. The context is reinterpreted by the resulting faulty instruction stream with potentially

completely di�erent semantics. To exemplify this e�ect: If a given register represents an array

index in the fault-free case but is used as a pointer variable in the erroneous control �ow, it will

most likely trigger an MPU/MMU trap. If it were used as an arithmetic operand instead, it would

most likely silently corrupt the subsequent calculation and lead to a wrong result. That way, it

remains undetected by hardware measures, actually causing a failure.

Consequently, each variant exhibits an entirely di�erent set of possible control-�ow faults: The

additional instructions introduced by CFC at the very least cause a relocation of all symbols in the

binary and therefore a di�erent set of addresses within Hamming distance one. When integrating

the hardening process into a source-level compiler, as we did, these extra instructions further

interact with the instruction scheduling, register allocation and code generation features of the

backend, which will in most cases again result in signi�cant changes to the generated binary.

I In contrast to evaluation approaches often presented in literature, CFC should be assessed under
careful consideration of the actual code generation process as the application’s binary representation
heavily impacts possible fault patterns.

Even with this knowledge, it is hard to provide conclusive predictions on a schemes e�ectiveness.

For instance, di�erences between YACCA und DOM in the matrix-multiplication use case (cf.

Figure 3b) seem to be signi�cant from a quantitative point of view. However, even tiny changes

may have a tremendous impact on the absolute failure count. Even more, especially with iterative,

loop-heavy code, those e�ects may be ampli�ed by repetitive execution. For example, in matrix

multiplication, we observed that for some con�guration, faults targeting a single instruction lead

to 823 failure events, which translates to 51.6 % of the baselines total fail marker events.

I Coincidental hot spots in the binary representation may ultimately change quantitative evaluation
results and thus even reverse qualitative conclusion on the suitability of individual CFC schemes.

4.4.1 Unaligned Jumps. On architectures, such as IA-32, with variable-length instruction en-

coding, a particular incarnation of control-�ow related micro-e�ects can be observed regarding

unaligned jumps. For example, the average instruction length of our use cases is ≈ 3.25 bytes. As a

result, we observed a considerable number of control-�ow faults to lead to errant executions starting

somewhere in the middle of another instruction. Again, even small changes in the underlying

assembly may result in considerable variations in the execution of the faulty instruction stream

and therefore either aggravate or alleviate the CFC’s e�ect. In the worst case, this could even zero

out the CFC code as illustrated in Figure 4.

In our experiments we observed 59.6 % of the failures to be unaligned control �ow, posing a

serious threat to reliability. Admittedly, given that the overall rate of unaligned control �ows

among all injected faults was 86.1 %, this fault class was not particularly e�ective and triggered the

hardware detection mechanisms (i.e., illegal instruction traps) above average.

4.4.2 Interim conclusion. So overall, the ratio of control-�ow faults that result in actual failures

is not substantial. While failure rates suggest a high improvement for CFC, a switch to the absolute

failure count metric, which accounts for overhead, shows only an impaired, very application

speci�c performance, with even degraded reliability in many scenarios. Overall, the high in�uence

of micro-e�ects renders general propositions on scheme e�ciency infeasible and mandates for a

binary-level evaluation.
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(a) Arraysort
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(b) Matrix multiplication
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(c) Sequence detector
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(d) Flight control

Fig. 5. Control-flow and data FI evaluating the absolute failure count of all applications. Figures show the
drastic increase of the failure count due to overhead-induced fault-space explosion (logarithmic scale).
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4.5 General Fault Injection
As noted earlier, transient faults in the program counter register are one, but not the only source of

control-�ow errors in a system. Actually, the original publications of both CFCSS and YACCA did

not even model this particular fault type at all and focused on memory based control-�ow faults

instead. They performed injections into the immediate operand of branch instructions [13, 14, 24]

and in the case of CFCSS [24] branch deletion and insertion.

However, these attempts failed to cover all possible single bit faults. Therefore, we extended

our experiment to also include all single-bit upsets in all general-purpose registers and memory

locations to obtain a full scan of the underlying fault space including data faults.

The results of this general fault injection are shown for all four applications in Figure 5. Once again,

the outcome shifts and worsens the perception of CFC e�ciency: In virtually all cases, the overall

reliability was degraded by the introduction of CFC schemes, with PI with CFG compression in the

�ight-control use case being the only exception. Notably, the schemes complexity and implementa-

tion overhead now strictly dominates their e�ciency: The simple PI and the coarse-granular DOM

scheme consistently outperform CFCSS, which in turn puts the more complex YACCA and YACCAd

into place. Regarding implementation variants, both register and CFG compression reduces the

overhead and thus excel their heavier counterparts.

Overall, the degraded reliability is caused by a widening of liveness intervals due to the CFC’s

overhead: During an execution �ow, each data location is associated with a series of liveness

intervals, during which it stores information relevant to the computation. Each instruction inserted

between de�nition and use represents a new vulnerability option that has to be added to the fault

space. As a large set of memory locations is usually active and relevant to the computation at any

given point in time and as no data integrity measures were taken, any fault to such a data point

will result in a failure, unless it triggers a trap during the continued execution. For reference, ??
shows a modeled injection of 1000 FI campaigns, with and without weighting of the results by

overhead. While a comparison with Section 4.4.2 indicates that this e�ect is not linear in runtime

as the a�ected dataset varies in time, it still dominates any other e�ects that could be introduced

by the individual properties of the di�erent CFC schemes.

I Also considering data faults, CFC dangerously fails the reality check with the reliability decreased
in virtually all test scenarios. The reason being the overhead induced, which substantially enlarges the
fault space especially for the typically neglected data faults.

As hinted earlier, the impact of the CFC’s overhead depends on the number of live memory and

thus on the size of the application state: Both quicksort and matrix multiplication process large

arrays in memory without aggregation and subsequently pose a huge attack surface. Similarly,

the internal state of the sequence detector is maintained during the complete execution of the

application. The �ight-control use case, on the other hand, is data-�ow driven and represents a

rather sequential computation that continually transforms the same small data set and is, therefore,

less vulnerable to the fault-space explosion. But even given such a bene�cial application structure,

the best performing scheme, PI storing its signature in registers, only improved the reliability by

mere ≈ 3.5 %.

I The fault space’s impact is directly related to the software’s structure and state size. Consequently,
data-intensive are more vulnerable than control–�ow-oriented applications.

Interim conclusion. Overall, it is imperative to account for data faults when implementing CFC

schemes. Otherwise, reliability may be even degraded in comparison to the unprotected system,

with potentially catastrophic e�ects in safety-critical settings. Ultimately, given the small fraction

of control–�ow-related failures in comparison to the signi�cant overheads induces by CFC, their
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use is to be questioned at all. Unless the de�cits are solved, we have only the recommendation to

resort to proven techniques such as replication or arithmetic codes [26].

5 THREATS TO VALIDITY
First of all, it is important to recall that this paper is neither designed nor intended as a shootout

between CFC schemes. Instead, it focuses on general, qualitative design constraints that impact such

techniques. In this section, we perform a structured analysis on the threats to validity following

and adapting the structure commonly used in statistical analysis: conclusion, internal, construct,

and external validity along with a short discussion on dependability aspects [9].

As a form of empirical conclusion validity, we attempted to address and eliminate di�erent types

of bias by means of traditional study design. While a full scan of the fault space e�ectively eliminates

any selection or sampling bias in the FI itself, its subjects (i.e., the four test applications) might

su�er a slight selection bias: We used matrix multiplication and quicksort because they are very

common benchmarks (e.g., used in [6, 13, 14, 24]), yet they are data driven and seem somewhat

unrepresentative for the domain of embedded systems. We addressed this issue by adding both a

control-�ow intensive workload and a real-world example. Having said that, application-speci�c

micro-e�ects (cf. Section 4.4) may adversely impact the FI results of individual binaries. Still, as we

have only drawn conclusions from consistent, indicative e�ects observable in all benchmark, the

law of large numbers should mitigate those artifacts.

Internal validity raises the question of cause and e�ect, focusing on alternate factors that could

contribute to the observed result. Across all experiments, we used the same hardware platform,

toolchain, and FI framework. Consequently, variants di�er only in the CFC con�guration. Further-

more, Fail*’s hardware simulation and FI are entirely deterministic and controllable. As we rely on

and advocate for binary-level FI, we consider this to be a common ground for the evaluation free of

unanticipated side e�ects.

Construct validity traditionally considers whether the experiment is �t to measure the cause–

e�ect relationship, which corresponds to modeled versus actual behavior in our case. In general, we

share the commonly accepted and used fault model of uniformly distributed single-bit faults on ISA

level. While this might not accurately re�ect the actual susceptibility of the individual hardware

components, it is �rst of all paramount to maintain at least qualitative comparability of our results

with previous work. At the same time, there is a notable variance in hardware technologies as

well as architectures especially in the embedded domain and thus an equally large variance of

susceptibility. However, a de�nite, representative and commonly agreed fault model at that level is

missing to the best of our knowledge. Nonetheless, practical experiences [4, 20, 21, 23, 25, 30, 38]

suggest that evaluations using the simpli�ed model still provide su�cient qualitative indicators to

assess the vulnerability of systems and therefore substantiate our evaluation.

Further issues arise from the use of Fail* and its hardware simulator, which simpli�es the timing

of individual instructions to a single-cycle behavior. As this deviates from the actual behavior of

contemporary hardware, any assessment of the practical impact directly translates to external
validity. As we have seen in Section 4.5, the size of liveness intervals and therefore the duration of

instructions is a central concern for vulnerability. The single-cycle model absorbs execution-time

variations caused for example by pipeline hazards, memory access timings, load-store architectures

or complex instructions. In all cases, the model is overly optimistic and thus the execution times

and liveness intervals on the actual hardware can only become larger. This simpli�cation bene�ts

the CFC schemes in the sense that it underestimates the increase in attack surface.

KESO internals further fosters small basic blocks as a result of the runtime check implementation,

which in turn reduces granularity and ampli�es the CFC overhead. Once more, this will result in
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quantitative changes when ported to other implementations. However, this is completely justi�ed

in the context of this work, as it permits easy pinpointing of problems in CFC and equates to

changes in the application structure.

We conclude the list of experiment speci�c threats with a discussion of dependability. As we

performed a full scan of the fault space, the individual FI experiments are deterministic and repeat-

able, which eliminates measurement related artifacts. All conclusions drawn from the experiments

conducted in Section 4 and summarized in Section 7 are based on signi�cant e�ects observed across

all applications, which makes our propositions dependable.

So overall, the threats to validity might impact the quantitative portions of this paper, mainly due

to the choice of our simulation platform, toolchain, and use cases. All these cross-cutting concerns

naturally have a considerable in�uence on reliability and therefore the quantitative results might

vary, which is part of our message. Even though, we are con�dent that the qualitative e�ects shown

in Section 7 remain observable across all platforms and therefore consider our model to be as good

as any other.

6 RELATED WORK
Some of the individual e�ects we addressed in this paper have already been discussed in isolated

contexts in the past. The described in�uence of compiler speci�cs has already been studied in

di�erent implementation and evaluation settings: Using Vulnerability Factor of Control Flow (VFCF),

a port of the architectural vulnerability metric to the domain of control-�ow faults [19], in the

context of aspect-oriented fault tolerance implementations including a signature based control-�ow

checking scheme (DS-CFC) [1], and in the evaluation of the ACCE signature based control-�ow

checking technique, which was implemented on the level of LLVM intermediate representation [10],

a level similar to the implementation on JVM level used in this publication. In all cases, a high

impact of di�erent compiler optimizations on the reliability was observed. Furthermore, variations

of reliability due to the interaction of several compiler optimizations with di�erent application types

have been reported in this context [10, 19], which corresponds to the �ndings on implementation

details presented here.

The in�uence of memory and runtime overhead has repeatedly been revisited in the past. In [3],

an evaluation factor is proposed and evaluated, that tries to integrate the overhead as a performance

characteristic into CFC comparisons, both in an experimental as well as an analytical setting. The

impact on susceptibility to faults was discussed in [12], where the static memory and runtime

overhead is used to determine a normalized fault coverage metric. Recently, the absolute failure

count metric has been proposed for data faults, which, while conceptually similar, additionally uses

the dynamic memory overhead in the comparison [27]. This metric was applied to control-�ow

faults and used in this work.

Overall, the use of complex fault hardening schemes has been questioned. Due to the in�uence

of overhead on architectural vulnerability [29], costly schemes were found to degrade the overall

vulnerability. While we believe that precisely predicting the peculiar e�ect of individual control-

�ow faults on the result in theoretical vulnerability calculations is hard to impossible, and therefore

resorted to simulated FI for our work, this paper supports our conclusions from a lower level

perspective. From a security viewpoint [34], FI experiments similar to our setup were performed

for a variety of control-�ow and data hardening schemes. Although not directly comparable, the

conclusion that simple schemes often produced better results due to the lower overhead matches

with our �ndings.
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7 CONCLUSIONS AND LESSONS LEARNED
Overall, our study disclosed various latent de�ciencies of both the residual failure rate metric as

well as software-implemented CFC which potentially compromise their general use.

First of all, tentative experiments with the injection of control-�ow faults suggest that contempo-

rary hardware protection mechanisms already catch the vast majority of control-�ow faults, with

only a small fraction of less than 6 % manifesting themselves as failures in our experiments.

While the reliability improvements were signi�cant regarding residual failure rates that are in

line with the literature, the transition to absolute failure counts, which account for memory and

execution-time overheads, resulted only in moderate improvements at best and even degraded

reliability at worst. This disparity between the two metrics suggests that ignoring overheads has

led to ill-guided optimization and evaluation of CFC schemes in the past.

The absolute-failure-count metric furthermore exposes the liability of CFC to coincidental micro-

e�ects and artifacts caused by compilation and linking steps, coupling the e�ectiveness to attributes

of the binary that are unrelated to the CFC’s implementation. Therefore, the overall reliability can

only be assessed from individual, concrete binaries, jeopardizing the ease of use.

Finally, soft errors do cause not only control-�ow faults but also a considerable amount of data

faults. Their impact is typically neglected in the literature, which spoils the evaluation from a

systems perspective. However, our experiments conclusively emphasize that, when unhandled, data

faults dominate the overall reliability. Even worse, their count is tightly coupled to the residence

time of data in memory and therefore to the overhead of the CFC itself, which means that scheme

complexity had an adverse e�ect on reliability.

The bottom line is that CFC schemes are not only mostly ine�ective but even dangerous when

used without further data hardening measures. The scheme’s di�cult handling, the moderate

performance and the incurred overhead in relation to the e�ectiveness of hardware protection

mechanisms, we found that, in our setting, the usage of CFC schemes was not appealing at all.

Given the apparentness of our quantitative results, we consider the qualitative conclusions drawn

in this paper to be relevant to most applications in the embedded domain.

8 OUTLOOK
Our implementation in the context of KESO leads to comparably small basic blocks, and therefore

to a high overhead of the hardening schemes, which certainly ampli�ed the e�ects discussed above.

It should be explored how the qualitative e�ects quantify on other toolchains as well as target

platforms. In a similar vein, we plan to study the quanti�cation of multi-bit faults, caused for

instance by error bursts, on the e�ects discussed.

Furthermore, we observed signi�cant di�erences between the benchmarking applications, which

we traced back to certain application characteristics. It would be interesting to identify more

application categories that respond well to certain implementation variants of software based CFC

beyond the notion of data versus control-�ow intensive applications.
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