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Abstract—Multi-core real-time systems face the challenge of
efficiently maintaining consistency of shared data despite con-
current operations. Existing synchronisation techniques ignore
data locality, resulting in cache-related execution time overheads.
This paper proposes Migration-Based Synchronisation (MBS), a
transparent replacement for locks. In MBS, control flows are
migrated to data, instead of moving data to control flows. The
consequence is an improvement of data locality that reduces
the worst-case execution time of critical sections, and indirectly,
worst-case blocking bounds.

Index Terms—real-time systems, multi-core systems, data lo-
cality, thread synchronisation, control-flow migration

I. INTRODUCTION

Multi-core processors promise improved performance, es-
pecially as cores become available in abundance. However,
despite all the recent improvements [1] in real-time engineer-
ing, their adoption in real-world systems is still plagued with
the stigma of inadequate predictability. A widely accepted
approach is still to partition the system (i.e., task set) into
independent parts that operate with little, if any, dependencies.
While this is a viable approach in settings with few cores
and a simple application structure, it becomes inefficient with
increasing system complexity as applications can no longer be
partitioned. Consequently, tasks suffer from interdependencies
and interferences caused by shared resources. A plethora
of multi-core synchronisation approaches [2], [3] has been
developed, including message passing, wait-free programs,
and blocking synchronisation with locks. These solve the
underlying coordination problem and allow an inference of
blocking times at the abstraction level of WCETs. Synchroni-
sation in multi-core systems, however, has a detrimental effect
on bounding the WCET: It entails sharing data (i.e., critical
sections) between control flows on different cores.

Contemporary multi-core processors typically exhibit a
multi-level memory hierarchy with core-local first-level
caches, a shared last-level cache, and shared main memory.
In sum, access latency is minimal if data is stored core-local
(i.e., first-level cache or scratchpad) and increases with cache
misses throughout the hierarchy. Simultaneously, concurrent
and conflicting accesses cause interference, with shared data
structures being prone to such effects when distributed among
cores. Consequently, synchronisation not only introduces run-
time overheads but, much worse, has a severe impact on

WCET analysis’s pessimism. In the worst case, cache analysis
must assume an unknown cache and that all shared data must
be loaded from a remote core. In turn, the resulting over-
approximations adversely affect the system’s overall schedu-
lability, thwarting the aspired multi-core advantage.

Migration in real-time systems faces very similar pessimism
issues. The root cause is the task’s state, the resident set size, to
be transferred between cores. As this size typically varies sub-
stantially depending on the point of migration, analyses may
be forced to operate under overly pessimistic assumptions.
From the point of control-flow migration, however, remote-
core interference is, contrary to synchronisation, non-existent.
So far, established real-time synchronisation approaches typi-
cally do not exploit these similarities and potential synergies
(we detail this aspect in Section II).

In this paper, we reconsider the challenge of predictable
synchronisation mechanisms by leveraging both concepts.
Our approach’s underlying assumption is that we can deter-
mine dependencies and the residence set size through static
analysis [4], [5], [6] (in this respect, we exploit the static
nature of real-time systems). We propose Migration-Based
Synchronisation (MBS), a novel synchronisation approach
for shared data structures that can be used as a transparent
replacement for locks. The goal of MBS is to avoid cache
misses in critical sections by improving data locality. In MBS,
control flows are migrated to data, rather than data to control
flows. The resulting memory locality is vital to simplify cache
and WCET analyses, thereby reducing over-approximations
of critical sections. This increased predictability collaterally
allows for tightening the bounds on blocking times in high-
level schedulability analysis. Furthermore, by increasing cache
locality, our approach also minimises synchronisation over-
heads, improving the overall performance.

The contributions of this paper are three-fold:
• We present MBS, a novel synchronisation technique for

shared data structures in multi-core real-time systems.
• We outline that data locality is a key aspect for the perfor-

mance, as well as WCET estimations, of critical sections.
With MBS, the location of data is known at compile-time,
which improves, and also simplifies, WCET analyses.

• We discuss the influence of WCET reduction of critical
sections on blocking-bound and schedulability analyses.



The rest of the paper is structured as follows. Section II
briefly summarises the necessary background and related
work. MBS is presented in detail in Section III. Section IV
experimentally demonstrates that data locality can improve
WCET estimations, and Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

Beyond ensuring consistency despite concurrent operations,
a crucial aspect of synchronisation in real-time systems is
to guarantee upper bounds on blocking times and to control
priority inversion. Accordingly, the literature is rich in syn-
chronisation approaches. Two fundamental approaches can be
distinguished: lock-based and delegation-based.

Locks synchronise accesses to shared data by sequencing of
critical sections. In general, this has the following temporal
implications on a control flow. First, a locking protocol is
executed to control priority inversion, which might cause the
thread to block. For a given protocol and depending on the
priority structure, an upper bound on the blocking time can be
obtained [3], [7], [8]. Second, when the thread starts executing
the critical section, the protected shared data is likely not in
the local cache. In particular, without further assumptions,
a sound worst-case analysis must assume the caches to be
cold. However, as critical sections tend to be memory-intensive
(as they protect shared data), numerous cache misses are
detrimental for both the overall runtime performance and the
schedulability analysis. The latter suffers from the interaction
between WCET and blockade time analysis. Third, when the
critical section has completed, and the thread releases the
lock, the shared data stored in the local cache instantaneously
becomes a burden as accesses are no longer permitted. In
summary, the synchronisation and its temporal analysis suffer
from poor data locality in numerous ways. In this paper, we,
therefore, focus on cache locality in critical sections.

Taking data locality into consideration has the potential to
tighten WCET bounds of critical sections significantly, and
thereby indirectly foster schedulability analyses. Consequently,
cache analysis is an extensively researched topic in real-time
systems [9], as the simplistic but sound worst-case assumption
of constant cache-miss leads to unacceptable overestimations.
Sound memory and cache analysis is, however, a challenging
task, which even in single-core systems still is an active
research topic [10]. Research in multi-core systems largely
focuses on compositionality [11] or creating abstractions
equivalent to single-core systems [12]. In particular, inter-
ference between caches is avoided by mechanisms such as
cache partitioning and cache locking [9]. MBS facilitates such
analyses without the need for additional mechanisms as cache
locality for shared resources is guaranteed by design.

An alternative to lock-based is delegation-based synchroni-
sation, where the critical section is passed to another thread
that coordinates its execution. Delegation is a form of partial
control-flow migration and comprises various approaches: for
example, Actors [13], Flat Combining [14], and Guards [15].
Closely related to MBS are Remote Core Locking [16] and
ffwd [17], where critical sections are migrated to a single

server core. Delegation-based synchronisation, however, re-
quires the critical section to be contained as a delegatable unit,
which consequentially requires source code modifications. Our
approach with MBS is to avoid such modifications.

Moving the control flow to the requested data instead
of the other way around is not an entirely new concept.
The original version of the multiprocessor priority ceiling
protocol (MPCP) [2] handles shared global data by pinning
critical sections to dedicated processors. However, the focus
of MPCP is solely on controlling priority inversion of global
resources, without attention to detrimental core sharing and
cache locality. Boyd-Wickizer et al. [18] propose a scheduling
algorithm based on migrating control flows to the data they
operate on using manual source-code annotations. They neither
consider timing implications nor is their approach transparent
to the application.

Further research on the exploitation of data locality by
migration includes hardware-based techniques to reduce the
number of cache-misses via thread migration [19], [20] as
well as scheduling according to data-locality to minimise
cache interference [21], [22]. Neither do these works consider
real-time aspects nor do they have a particular focus on
synchronisation of critical sections.

III. APPROACH

Unlike existing approaches, MBS redefines the underlying
locking mechanism to eliminate interference on shared data
entirely. Therefore, MBS replaces the traditional locking or
dispatching of data by a migration-based strategy.

A. Migration-Based Synchronisation

For each shared resource in the system, a dedicated synchro-
nisation core is reserved for accesses to this shared resource
only. In other words, these cores are considered resources
themselves that are assigned to a thread exclusively; acquiring
them grants access to the associated shared data. Threads
may only migrate to a synchronisation core (or back) if they
explicitly ask for that migration. Synchronisation cores obey
priorities but do not provide preemption. This ensures proper
coordination at the expense of the generality of these cores:
they must not be considered in any implicit migration-based
technique, such as load balancing. Note that these restrictions
do not apply to the remaining regular cores.

The fundamental concept of MBS is then to place data
structures in the local cache of their synchronisation core, and
to move the control flow to the shared data on the respective
synchronisation core, instead of moving the requested data to
the core of the requesting control flow. Our approach can be
used using the well-known interface of locks: The acquisition
of an exclusive resource corresponds to the migration of
the control flow to the associated synchronisation core. By
migrating the control flow back to the original core, the
resource gets released. As synchronisation cores ensure that
only one control flow can run at each moment in time, and
will not be preempted, mutual exclusion is guaranteed for each
resource access.



B. Analysability

The main benefit of MBS is the guaranteed cache locality
for shared data. As all shared resources are assigned to exactly
one synchronisation core, data structures can be preloaded into
the respective core-local caches on system startup. Since only
control flows running on the associated synchronisation core
are allowed to access the data structure (i.e., protection), the
data never leave their local cache. As a consequence, no cache-
coherency measures are necessary. This guaranteed cache
locality is beneficial for the timing analysis of critical sections
in two ways. Firstly, interferences due to cache coherence do
not need to be modelled or estimated, which simplifies the
analysis. Second, execution times of critical sections decrease
because data structures are already present in the cache. In
addition, static analyses can be made aware of this locality,
promising tighter WCET bounds of critical sections.

For the system-level timing analysis, MBS can be imple-
mented in a way that is equivalent to locks. First, the local
scheduler of synchronisation cores can employ the same as-
signment strategy as a lock (in particular, adhere to priorities).
Thereby, unbounded priority inversion is avoided by design, as
the core-local scheduler of synchronisation cores is priority-
aware, and resource assignment cannot conflict with processor
assignment strategies. Second, if threads do not release their
original core at migration (i.e., the original core remains idle),
the schedule is equivalent to locks. In that (rather inefficient)
variant of MBS, existing blocking-bound and schedulability
analysis techniques of traditional locks are directly applicable.
More efficient variants that release the original core are left
for future work, as they require modification to blocking-
bound analyses, but promise an improvement of processor
utilisation. Additionally, even when using the same system-
level analysis techniques, MBS yields better results due to the
WCET reduction of critical sections.

C. Overheads

The introduction of migration as a tool for synchronisation
brings in all the overhead induced by migration, namely the
copying of thread-related data between cores. In the case
of MBS, stack-local data and (parts of) the thread control
block associated with the control flow requesting the resource
need to be transferred to the synchronisation core and back.
Depending on the specific hardware platform and memory
layout, theses overheads may or may not be significant [23],
[24]. The advantage of MBS is that the transfer of control-flow
related data replaces the transfer of the shared data. Depending
on the size of the shared data, control-flow related data might
be significantly smaller, leading to less data that needs to be
transferred. This effect increases if only the necessary parts of
stack-local data are transferred to the synchronisation core.

The overheads of MBS are, in the worst case, similar to
locks that release the processor while waiting. Consider the
following worst-case scenario of a control flow waiting for
access to a shared resource guarded by a traditional lock. The
control flow requests the currently occupied lock and is thus
preempted and writes its local processor state to memory.
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Fig. 1. Reduction achieved by hot caches relative to cold-cache execution in
the WCET estimates by TimeWeaver for several TACLeBench benchmarks.

While waiting for the lock, the warm caches get scrambled
as other threads run and overwrite the cache state. Once the
lock is granted, the control flow restores its processor state
from memory and begins execution of the critical section
with cold caches. In summary, the worst-case costs of a lock
acquisition involve storing the current thread state to memory
and restoring it later, which is effectively a migration, but in
the time dimension rather than between cores.

A drawback of MBS is the need for many processor
cores, as a dedicated synchronisation core is necessary for
each shared resource. Especially, MBS is not going to work
in single-core environments. But also the use in multi-core
systems might be problematic if most of the cores are used as
synchronisation cores, as the performance of the system may
suffer. The dedication of a processor core for synchronisation
is a beneficial trade-off if the number of hardware cores is
sufficiently large and data structure accesses are relatively
important for the application performance.

IV. EVALUATION

As the main advantage of MBS lies in the guaranteed
cache locality, it is helpful to have a look at the potential
benefits. We conducted first measurements on a Xilinx Zed-
board Zynq-7000 [25] featuring an ARM Cortex-A9 dual-
core [26]. Selected benchmarks taken from the TACLeBench
benchmark suite [27] were executed both with a cold and a hot
cache. As we primarily aim to facilitate worst-case analyses
for tighter WCET and blocking-time bounds, the obtained
execution traces were used as the basis of a hybrid WCET
analysis with the TimeWeaver tool from AbsInt [28]. For each
benchmark, the analysis was performed both using traces with
hot caches only and using all obtained traces. Figure 1 shows
the improvement gained by the known cache locality, yielding
up to 60.45 % lower WCET bounds.

These results are, of course, not necessarily representative
for whole real-time systems and their critical sections. Addi-
tionally, they are highly dependent on the memory and cache
hierarchy. They show, however, that future implementations of
the MBS approach can yield significant improvements in both



system performance and analysability. We, therefore, deem
future research of that approach fruitful and necessary.

V. CONCLUSION

This paper has presented Migration-Based Synchronisation
(MBS), a synchronisation approach that aims at optimising
data locality. We have shown that data locality is an important
matter in real-time systems, as it affects the WCET, blocking
times, and schedulability. Thereby, MBS takes a constructive
approach that purposefully places data in core-local caches
and migrates control flows to the data they operate on. In
consequence, MBS simplifies cache-state analyses and, thus,
the WCET estimation, while at the same time achieving lower
WCET estimates. MBS is straight-forward to implement and
does not rely on specific program structures or additional run-
time mechanisms. It can transparently replace locks—both in
the source code and in blocking-bound analyses.

Future work will integrate MBS in a multi-core real-time
operating system [29] to evaluate system-level effects in
realistic application scenarios. The trade-off between the cost
of dedicating a processor core for the synchronisation of a
shared data structure and the improvement in synchronisation
performance depends on the application structure as well as the
number of available hardware cores. Besides, as the number
of cores is rather small in current-generation COTS hardware,
the optimal solution is likely a mixture of MBS with other
synchronisation techniques. The mapping of data structures
to synchronisation cores with consideration of cache capacity,
data structure size, thread-related data size, and also contention
patterns, is another optimisation problem that remains as
future work. Besides, variants of MBS can selectively keep
a reservation of the original processor core at migration, to
support lock nesting or to improve processor utilisation. Such
a reservation can utilise low-power sleep states to save energy.
Furthermore, the inclusion of latency-hiding techniques might
reduce migration-related overheads.
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