
Revisiting Migration Overheads in Real-Time
Systems: One Look at Not-So-Uniform Platforms

Phillip Raffeck, Wolfgang Schröder-Preikschat
Friedrich-Alexander-Universität Erlangen-Nürnberg

raffeck@cs.fau.de, wosch@cs.fau.de

Peter Ulbrich
Technische Universität Dortmund

peter.ulbrich@tu-dortmund.de

Abstract—Dynamic migration of tasks between cores is nowa-
days one of the standard mechanisms of operating systems to
exploit multi-core systems. However, migration is practically not
used in real-time settings. This is due to the unpredictability of the
associated costs and the resulting pessimistic overapproximations.
Existing approaches typically rely either on a predictable, static
partitioning of tasks or assume uniform costs for all cores;
conceptually, migration does not differ from preemption in
the latter. However, non-unified memory architecture (NUMA)
and NUMA-like embedded hardware platforms are increasingly
widespread. Here, intuitively, migration should be more costly
than preemption, but the degree is uncertain.

This paper aims to shed more light on two key influencing
factors: (1) the variance of the elementary costs of the hardware
and (2) the type and scope of the affected data of a task at the
time of migration, the working set. We approach this challenge by
deeper investigating application benchmarks, revisiting existing
cost experiments, and bringing them to new platforms with
not-so-uniform memory architectures. Our results indicate that
migration differs from preemption in many relevant cases and
thus requires special consideration to incorporate the associated
overheads precisely into worst-case analyses.

I. INTRODUCTION

A static allocation of workloads to cores can lead to
the well-known Dhall effect [1] and is therefore generally
considered detrimental to utilization in multi-core settings.
Nowadays, we are used to dynamically distributing work-
loads conveniently between cores in a multi-core system,
for example, by migrating processes, containers, or even
complete virtual machines. The operating system’s primary
challenge is to provide transparent and efficient migration
mechanisms that foster CPU utilization. However, things are
significantly more complicated in the domain of (hard) real-
time systems. For example, although scheduling theorists have
embraced transparent task migration at the instruction level,
it is rarely put into practice in real-world applications. The
primary reason for this is that the effects on the temporal
behavior are much more complex to predict—a decades-
old problem [2]. The worst-case execution times (WCET) of
application, and operating system functionality are decisive for
verifiable scheduling and typically inferred by static analysis
techniques. However, the ease and difficulty of such timing
analysis are dictated by the given hardware and software’s
predictability (and their analyzability). Even slight variabilities
in execution costs can cause excessive pessimism in WCET
estimates and thus jeopardize schedulability and the desired

improvement in overall utilization. Conceptually, two main
influencing factors can be distinguished: (1) Variable execution
costs of the elementary operations caused by memory-access
related latencies, i.e., the WCET varies with core allocation.
(2) Migration overheads induced by the program structure of
the task to be migrated. In particular, these are determined by
the working set, i.e., the live part of a program’s resident set,
which must be transferred between cores.

We first tackled the second factor by static analysis of
tasks to determine their resident (RSS) and working-set sizes
(WSS) in previous works [3], [4]. As a result, we could reduce
analysis pessimism by identifying particularly advantageous
migration points with low maximum cost. Furthermore, by
compiler-supported slicing of the tasks at these points, we
obtained smaller jobs that are easier to allocate and schedule,
fostering predictable multi-core scheduling.

Challenges and Contribution

Our previous and ongoing work is based on two key
assumptions: First, the working-set size varies within the
program execution so that there are beneficial migration points
to identify. Second, we assume that the hardware exhibits vari-
able access and thus elementary costs on different cores. While
we could demonstrate these basic assumptions for a static
allocation using core-local memories [3], the generalizability
remained an open question.

On the one hand, this issue relates to the evolution of the
size of the resident and working set over time in typical
applications. Does its size vary within programs and during
their execution?

On the other hand, the more challenging question is the
variable execution cost on hardware platforms with advanced
memory architectures. For example, in their study of preemp-
tion and migration delays, Bastoni et al. [5] found these con-
verged with a task sufficiently long preempted. However, they
ran their experiments on a unified memory architecture (UMA)
machine. Because the memory access latencies are equal to
all cores, the cache state (i.e., hotness) determines the access
latencies. The situation is unclear in systems with less uniform
memory characteristics (e.g., non-unified memory architecture,
NUMA), where certain memory regions may not be accessible
from all cores or only with significant overhead. Because of
potential data transfers or memory-access overheads for the



migrated task, migration should intuitively be more costly than
preemption, but the degree is uncertain.

This paper aims to shed more light on these questions
by deeper investigating application benchmarks, revisiting
existing cost experiments, and bringing them to new platforms.
This will enable us to identify potential scenarios where con-
sideration of migration overhead is beneficial or necessary and
clear up misconceptions or uncertainties about the overhead
associated with migration.

The paper provides the following contributions: (1) A
compile-time analysis of working-set sizes of different bench-
marks typical for the domain of real-time systems. (2) The
reproduction of previously published results for preemption
and migration delays in real-time systems on UMA platforms.
(3) Bringing these experiments to a broader spectrum of plat-
forms and memory architectures, namely two x86 platforms
with 4 and 8 NUMA domains. (4) A more detailed insight
into embedded systems with NUMA-like characteristics by
comparable measurements on a typical real-time platform.

II. APPROACH

We aim to augment the existing data on migration overheads
in a two-pronged fashion. First, we investigate the influence of
migration on target platforms both with and without NUMA
characteristics. Starting with a reproduction of previous re-
sults [5], our study provides a more in-depth evaluation of
migration delays. Further, we analyze benchmarks at compile
time to get a better understanding of how WSSs grow and
shrink over the lifetime of a task.

A. Measurements

To obtain a broad overview of the costs and implications
of migration, we observed task execution and memory access
behavior on a range of platforms. Depending on the platform,
we used different observation methods, which we briefly
summarize in the following:

On all platforms, we measured memory overheads in a
direct approach by recording memory access times to different
memory regions and NUMA domains.

On platforms where PREEMPT_RT Linux [6] is readily
available, we additionally employed an indirect method to ob-
serve migration overheads. Using the ftrace [7] functionality of
the Linux kernel, we examined the runtime of a measurement
task1 embedded in specifically crafted task systems consisting
of an interference task and multiple blocker tasks. By tuning
the period and execution time of the interference task, we were
able to trigger preemptions and migrations in the measurement
task, which become visible as scheduling events in the ftrace
output. The measurement task’s execution times derived from
these scheduling events subsequentially allowed us to conclude
the overhead of preemptions and migrations.

On the embedded platform, we additionally observed the
overhead incurred by placing a task’s data (e.g., its stack,
relevant parts of data sections) in different domains in the

1The measurement task is the subject of the measurement. However, in
some experiments, it is also instrumented for measuring execution time.

Name CPU Cores NUMA Domains
M1 Intel i7-2600 4 1
M2 AMD Opteron 6180 48 8
M3 Intel Xenon E7-4830 48 4

Table I: Overview of the x86 machines used for measurements.

memory hierarchy. This setup mimics the loss of core locality
due to migration, which enabled us to study two strategies:
control-flow-only migration (i.e., data resides in core-local
memories) and storing data in shared memory only. We then
assessed the potential impacts of such strategies on task
execution from the observed overheads.

B. Analysis Approach

To better understand the variation of the WSS of tasks
over their lifetime, we employed a variation of the analysis
routine described in [3]. Using a custom LLVM-based [8]
compiler [9], [10], we determined the live-data set at each
instruction for our benchmarks during compilation. Contrary
to our previous work, we were not interested in identifying
beneficial points in close vicinity of a target WCET, but
instead in the distribution and evolution of the WSS at all
points in the execution of the task.

This approach allowed us to evaluate the impact of worst-
case WSS estimates on the task execution, as we gained
an overview of how often these worst cases actually occur.
This, in turn, provided insight into the degree of overap-
proximation that is introduced by pessimistic worst-case es-
timates of migration-induced overheads. As our analysis is
performed during the compilation stage, the size estimates are
based on LLVM data types in the granularity of single bits.
Currently, the analysis only considers stack-based dynamic
memory allocation, which we deem sufficient for the target
domain of (hard) real-time systems. Even though analyzing
the representative benchmarks used in our evaluation did not
require it, an extension to heap-based memory management is
feasible with restrictions on idiomatic C (alias problem) [11]–
[13]. In sum, our approach provided valuable information to
assess the impact of migration overheads.

III. OBSERVATION OF NUMA-EFFECTS

We performed experiments on various platforms to cover
the characteristics of different memory architectures and their
influence on migration overheads. First, as a powerful embed-
ded platform representative, we opted for the Infineon AURIX
platform, which is widely used in safety-critical automotive
applications (e.g., engine and body control, collision avoidance
systems). Specifically, we used the 6-core AURIX TriCore
TC397XE [14] for our experiments. The platform features
a diverse memory hierarchy, including core-local scratchpads
and multiple levels of CPU-local (DLMUx) and domain-
local memory (LMUx), as well as global extended memory
(EMEM). The shared memory regions are mirrored to two
different address ranges to allow cached and non-cached ac-
cess. The core-local scratchpads are accessible from all cores,
albeit at the cost of higher latencies. Cores 0-3 and 4-5, as well



Local Memory
(DLMU0)

64KB

Local Memory
(DLMU1)

64KB

Local Memory
(DLMU2)

64KB

Local Memory
(DLMU3)

64KB

Local Memory
(DLMU4)

64KB

Local Memory
(DLMU5)

64KB

Local Memory 
(LMU1)
256KB

Local Memory 
(LMU2)
256KB

Local Memory 
(LMU0)
256KB

Extension 
Memory
(EMEM)
4096 KB

Bridge BridgeXBAR0 XBAR1XBAR2

CPU0
Scratchpad: 400KB

Cache: 48KB

CPU1
Scratchpad: 400KB

Cache: 48KB

CPU2
Scratchpad: 160KB

Cache: 48KB

CPU3
Scratchpad: 160KB

Cache: 48KB

CPU4
Scratchpad: 160KB

Cache: 48KB

CPU5
Scratchpad: 160KB

Cache: 48KB

SRI Domains 0 12

Figure 1: Block diagram of the TC3X microcontroller memory architecture. It features multiple levels with varying access
latencies: from core-local scratchpad, over (domain) local memory (DLMU, LMU) up to extended memory (EMEM). Domains
are marked by color, linked by the system resource interconnect (SRI, i.e., crossbar), and accessible via bridges.

as the extended memory, are connected to different crossbars
(XBARx), called system resource interconnect (SRI), con-
stituting dedicated memory domains. Figure 1 outlines the
components of the memory hierarchy relevant to this work.

In the following, we first discuss the results on the AURIX
platform before moving on to the second class of systems:
three x86 machines with different core counts and NUMA
characteristics, ranging from common desktop CPUs to many-
core platforms. Table I provides an overview of the respective
hardware details of the used CPUs.

A. AURIX embedded platform experimental results

Experiments were performed on an Infineon AURIX
TC397XE [14] platform with the help of a Lauterbach Pow-
erDebug [15]. Using this hardware debugger allowed us to
record instruction traces in a non-intrusive manner by on-chip
tracing. One limitation of this, however, is that the measure-
ments are limited by the 1MB trace buffer. By recording just
the start and end times of the relevant code sections for the
experiments, we ensured that the length of the benchmarks did
not become an issue of said limited buffer size.

In the first experiment, we examined access times from
one core into different parts of the memory hierarchy of the
TC397XE platform. All memory regions, including scratch-
pads of other cores, are accessible from all cores, albeit with
different latencies. To quantify these, we captured execution
traces for transferring a total of 1KiB, 8KiB, 16KiB and
32KiB of memory to core 0 from the different memory
regions and domains to cover all the various possible access
routes through the memory interconnects showcased in Fig-
ure 1. The transfer was performed at word granularity, with
the next word to transfer chosen randomly to avoid prefetching
effects of linear memory accesses. In particular, we evaluated
accesses from four memory regions: First, the core-local
scratchpad of core 0 as the typical storage for task data.

Additionally, one of the shared domain-local memory regions
close to core 0, which is (D)LMU0 in Figure 1, in both
the cached (LMU0) and non-cached (LMU0 NC) variant. We
consider only the non-cached access variant as relevant, as
evaluating cache-coherency mechanisms is outside the scope
of this paper. Lastly, we used the scratchpad of core 4 as a
remote memory region, constituting the worst-case scenario as
it is only accessible for core 0 through the crossbar bridge and
subsequently via core 4’s interface.

Figure 2 gives a box plot of the determined latencies
normalized to access times per word (i.e., 32 bit). Median
values are marked by circles, outliers by diamonds. There are
three distinct groups visible: (1) core-local and cached access
to shared memory, (2) non-cached access to shared memory,
and (3) access to the scratchpad of a remote core.

The measurements suggest that the execution time of a task
may vary significantly on an embedded platform with NUMA-
like characteristics depending on where exactly the required
data resides. Especially the near doubling of access times
between core-local and remote scratchpad accesses stuck out.

Considering these numbers with migration in mind, they
indicate potentially significant overheads, either because the
WSS of a task has to be transferred or because the execution
time of a task changed due to the higher access times of
memory accesses, which became remote accesses after the
migration. Depending on the cache-coherency requirements
and available mechanisms, moving data to shared memory is a
no viable solution, as indicated by the increased access times
for non-cached access to shared memory.

For the second experiment, we evaluated the execution
times of tasks derived from the TACLeBench benchmark
suite [16] in a simulated migration scenario. We mapped
the stack and data regions used by the examined task to
different memory regions during linking. On the one hand,
this simulated a complete task execution after a migration to a



Figure 2: Access times for different parts of the memory map

Figure 3: Runtimes for TacleBench benchmarks with their data
residing in different parts of the memory map

different core. On the other hand, this allowed us to compare
further the effects of attempts to circumvent problems coming
with migration by moving data to global shared memory.

Figure 3 showcases execution times of several benchmarks
in three different memory configurations as a boxplot. The data
used by the tasks lay either in the scratchpad of core 0 (normal
case), in the non-cached shared memory (global-nc), or in
the scratchpad of core 4 (remote). The median values of the
measurements are marked by a circle (normal), a cross (global-
nc), and a star (remote), respectively. For easier comparison,
the execution times are normalized to the standard case.

Again, we noticed significant differences in the execution
times depending on where the task data resides in memory.
These are more or less pronounced depending on the specific
benchmark, its memory footprint, and WSS access patterns.

Two conclusions can be drawn from the results, albeit still
depending on the concrete nature of the tasks:

(1) Operating entirely in shared memory may come with
significant overheads. This signifies the reality of scenarios
where migration is beneficial or necessary.

(2) Depending on the target core, migration comes with

Figure 4: Memory access times from different NUMA domains
on M2. Benchmark run on domain 0.

Figure 5: Memory access times from different NUMA domains
on M3. Benchmark run on domain 0.

substantial costs. Thus, we mandate predictable migration with
precise WSS estimation to manage the overhead.

B. x86 NUMA platforms experimental results

On the three larger platforms, we evaluated memory access
times by performing 4096 reads and writes at random indices
of an increasingly larger array and controlling the memory
allocation of said array via numactl2. Figures 4 and 5 display
the measured access times as boxplots. For better readability,
only 4 of the 8 NUMA domains of M2 are displayed, as the
results are equivalent for the other domains. On both machines,
we can see larger access times from across NUMA domains
for larger array sizes.

Additionally, we ran PREEMPT_RT Linux [6] to leverage
the Linux tracing functionality [7]. For a finer resolution of
the results, we splitted the existing sched_switch event
in two, sched_switch_on and sched_switch_off.
Evaluations were performed using the nop tracer, the TSC as
the clock source, and with only our scheduling events enabled.
Real-time throttling was disabled during the measurements.

The task system under observation comprised one high-
priority measurement task and one interference task for
each processor core, which perpetually accessed a WSS
the same size as that of the measurement task. We ex-
perimented with different microbenchmarks as measurement

2https://github.com/numactl/numactl

https://github.com/numactl/numactl


0.
0-

0.
1

0.
1-

0.
2

0.
2-

0.
3

0.
3-

0.
4

0.
4-

0.
5

0.
5-

0.
6

0.
6-

0.
7

0.
7-

0.
8

0.
8-

0.
9

0.
9-

1.
0

normalized WSS

st
binarysearch

iir
prime

complex_updates
filterbank

matrix1
insertsort

lms
minver
fir2dim

countnegative
bsort

petrinet
jfdctint 0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
fre

qu
en

cy

Figure 6: WSS distribution of TACLeBench benchmarks

tasks: one processor-bound (CPU) and one memory-bound
benchmark (MEM). The processor-bound benchmark calculates
primes up to two alternating limits. The memory-bound bench-
mark moves sequentially through a working set of predefined
size reading bytes with a step width of 32B, each read
immediately followed by a write to the following byte. We
use 2KiB as a small, 32KiB as a medium, and 786KiB as
a large WSS. In comparison to the results of our analysis of
embedded benchmarks (see Section IV, these constitute rather
large working-set sizes. To observe worst-case memory effects,
the measurement task switched CPU every few iterations as
indicated by the different colors in Figures 8 to 12.

The traced execution times of the measurement task during
these experiments are displayed in Figures 8 to 11. For the
CPU benchmark, we identified two execution-time clusters
on all machines, which fit the code’s behavior. M3 shows a
pattern of execution time spikes followed by regions of lower
execution times. The effect is better observable in a zoomed-in
comparison (see Figure 12): For the MEM benchmark, higher
costs are visible at switches to a new processor, followed by
faster executions as the caches warm up. At the beginning and
the crossing of NUMA domains, distinct spikes are seeable,
indicating higher overheads for crossing NUMA domains. The
comparison with the execution times of the CPU benchmark
shows that memory access latencies are responsible for the
observed pattern. Additionally, we evaluated a WSS of 8MiB
for M3 as the size the access experiments (Figure 5) where
NUMA effects become more prevalent. In comparison with
Figures 11c and 12b, we can identify higher cost after switch-
ing NUMA domains but not after switching cores, indicating
that the influence of caches declines at such huge WSSs,
while the NUMA influence remains. For M1, no clear effect
distinguishes preemption and migration, reaffirming the obser-
vations of Bastoni et al. [5]. On M2, the effect is less prevalent,
indicating that NUMA architectures do not necessarily come
with detrimental overheads.

In summary, these results suggest that dissimilarities be-
tween preemption and migration are likely more prevalent
in NUMA systems, requiring the explicit consideration of
migration for sound and precise WCET estimates.

Figure 7: WSS distribution over an exemplary trace of the
benchmark st

IV. DISTRIBUTION OF WORKING-SET SIZES

The results of Section III imply that restricting migration to
smaller WSSs is beneficial. In a second step, we studied the
evolution of WSSs over the lifetime of a task. Therefore, we
applied the analysis described in Section II-B on TACLeBench
benchmarks [16], which serve us as representatives for typical
application patterns.

Figure 6 shows a heat map of the resulting WSS distribution.
For easier comparison, the results are normalized twice: first,
for each benchmark (i.e., each row), the WSS is normalized
to the interval of its respective minimum and maximum size.
Second, the occurrence frequency is normalized in the same
way. Each column represents a tenth of the WSS interval,
while the color of each field indicates how many of the
observed WSSs for the benchmark lie within the interval of the
column; darker colors denote a higher frequency. We found all
working sets in absolute numbers to be smaller than 10KiB
by our analysis.

The distribution shows no clear trend across all bench-
marks but rather a high degree of variation. While some
benchmarks (e.g., filterbank, jfdctint, petrinet) exhibit a WSS
equivalent to near the worst-case estimate most of the time,
others (e.g., prime, st) show a wider distribution and several
peaks over different WSS ranges.

As an example, Figure 7 shows the progression of the WSS
over one possible execution trace of the st benchmark. Every
bar represents the WSS at one instruction. Instructions are
ordered from left to right by their time of occurrence in
the trace. Note that the selected trace does not necessarily
represent the worst-case execution but rather just one potential
execution. As the figure shows, there are notable differences
in the WSS throughout the execution, indicating that the data
to be transferred in the case of migration strongly depends on
the exact point in time the migration takes place.

Two conclusions can be drawn from these analysis: (1)
Whether the worst-case WSS is representative of a task
execution strongly depends on the nature of the task, as it
may as well access only a far smaller WSS most of its time.
(2) Predictable migration is essential to improve worst-case



100000

120000

140000

0 100 200 300 400 500
Execution Iteration

E
xe

cu
tio

n 
T

im
e 

(T
S

C
 c

yc
le

s)

Numa Domain 0

M1 cpu

(a) M1

40000

50000

60000

70000

0 100 200 300 400 500
Execution Iteration

E
xe

cu
tio

n 
T

im
e 

(T
S

C
 c

yc
le

s)

Numa Domain 0
1

2
3

4
5

6
7

M2 cpu

(b) M2

50000

60000

70000

80000

90000

0 100 200 300 400 500
Execution Iteration

E
xe

cu
tio

n 
T

im
e 

(T
S

C
 c

yc
le

s)

Numa Domain 0 1 2 3

M3 cpu

(c) M3

Figure 8: Trace results for CPU.

15000

17500

20000

22500

25000

0 100 200 300 400 500
Execution Iteration

E
xe

cu
tio

n 
T

im
e 

(T
S

C
 c

yc
le

s)

Numa Domain 0

M1 2k

(a) M1

25000

50000

75000

100000

125000

0 100 200 300 400 500
Execution Iteration

E
xe

cu
tio

n 
T

im
e 

(T
S

C
 c

yc
le

s)

Numa Domain 0
1

2
3

4
5

6
7

M2 2k

(b) M2

10000

15000

20000

25000

0 100 200 300 400 500
Execution Iteration

E
xe

cu
tio

n 
T

im
e 

(T
S

C
 c

yc
le

s)

Numa Domain 0 1 2 3

M3 2k

(c) M3

Figure 9: Trace results for MEM with a WSS of 2k.

40000

50000

60000

0 100 200 300 400 500
Execution Iteration

E
xe

cu
tio

n 
T

im
e 

(T
S

C
 c

yc
le

s)

Numa Domain 0

M1 32k

(a) M1

5e+04

1e+05

0 100 200 300 400 500
Execution Iteration

E
xe

cu
tio

n 
T

im
e 

(T
S

C
 c

yc
le

s)

Numa Domain 0
1

2
3

4
5

6
7

M2 32k

(b) M2

30000

40000

50000

0 100 200 300 400 500
Execution Iteration

E
xe

cu
tio

n 
T

im
e 

(T
S

C
 c

yc
le

s)

Numa Domain 0 1 2 3

M3 32k

(c) M3

Figure 10: Trace results for MEM with a WSS of 32k.

550000

600000

0 100 200 300 400 500
Execution Iteration

E
xe

cu
tio

n 
T

im
e 

(T
S

C
 c

yc
le

s)

Numa Domain 0

M1 786k

(a) M1

10000

20000

30000

40000

50000

0 100 200 300 400 500
Execution Iteration

E
xe

cu
tio

n 
T

im
e 

(T
S

C
 c

yc
le

s)

Numa Domain 0
1

2
3

4
5

6
7

M2 786k

(b) M2

400000

450000

500000

550000

0 100 200 300 400 500
Execution Iteration

E
xe

cu
tio

n 
T

im
e 

(T
S

C
 c

yc
le

s)

Numa Domain 0 1 2 3

M3 786k

(c) M3

Figure 11: Trace results for MEM with a WSS of 786k.



60000

70000

80000

0 25 50 75 100 125
Execution Iteration

E
xe

cu
tio

n 
T

im
e 

(T
S

C
 c

yc
le

s)

Numa Domain 0 1

M3 cpu

(a) CPU

375000

400000

425000

450000

475000

0 25 50 75 100 125
Execution Iteration

E
xe

cu
tio

n 
T

im
e 

(T
S

C
 c

yc
le

s)

Numa Domain 0 1

M3 786k

(b) MEM 786k

Figure 12: Zoomed version of the trace results on M3.

4e+06

5e+06

6e+06

7e+06

8e+06

0 100 200 300 400 500
Execution Iteration

E
xe

cu
tio

n 
T

im
e 

(T
S

C
 c

yc
le

s)

Numa Domain 0 1 2 3

M3 8M

(a) Trace results.

4e+06

5e+06

6e+06

7e+06

8e+06

0 25 50 75 100 125
Execution Iteration

E
xe

cu
tio

n 
T

im
e 

(T
S

C
 c

yc
le

s)
Numa Domain 0 1

M3 8M

(b) Zoomed version of the trace results.

Figure 13: Trace results for MEM with a WSS of 8M on M3.

analyses by avoiding unnecessary pessimistic WSS estimates.
Knowledge of the exact point in time a migration happens
facilitates precise WSS and, hence, overhead estimation.

V. RELATED WORK

Since the beginning of multitasking, working-set estimation
has been a research topic with a large body of work [17]–
[19], especially in (virtual) memory management. Brown et
al. [20] presented a technique for working-set prediction to
make thread migration more efficient. They highlight the need
to precisely identify the actual current working set to prevent
unnecessary data transfers. In real-time systems, Calandrino et
al. [21] and Bastoni et al. [5] identified the WSSs to impact
the worst-case timing analysis significantly. Beyond these
general investigations, we have studied the specific properties
of typical application benchmarks in this work.

Likewise, preemption and migration costs are a vast area
of research. For example, Bastoni et al. [5] measured pre-
emption and migration delays on a 24-core UMA machine.
They observed no significant differences between preemptions
and migrations in systems under load, as with increasing
preemption length, cache affinity is lost either way completely.
Contrary, in a comparable experiment, Calandrino et al. [21]
observed worst-case migration costs to be higher due to
forced data invalidation and cache-coherency overheads. Work
on cache-related preemption delays (CRPD) [22], [23] aims

to determine the effects of preemption more accurately or
minimize them systematically. However, we are not aware of
any work that considers migration between NUMA domains.

VI. CONCLUSION & OUTLOOK

Using the tracing capabilities of PREEMPT_RT Linux,
we were able to validate previous results for preemption
and migration overheads and extend them to the broader
range of NUMA and embedded NUMA-like platforms. Our
results substantiate the general intuition that migration and
preemption deserve nuanced consideration in such scenarios,
as the former is associated with more uncertainties and costs.

Further, static analysis of representative application bench-
marks indicates that the (worst-case) resident set is an exten-
sive overapproximation of the actual working set for most of
the execution. Migration at predictable points in the execution,
thus, helps to avoid unnecessary pessimism, as the WSS can
be determined more precisely section by section.

Overall, we conclude that, generally, migration cannot be
treated like preemption. Especially on NUMA-like systems,
migration requires special consideration to precisely determine
and incorporate overheads in the system design.

In previous work [4], we outlined possible approaches to
enable predictable migration with known overheads by static
and dynamic scheduling. The results presented in this paper
will help us to refine these approaches and put them into
practice.



ACKNOWLEDGMENT

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – project numbers 146371743;198891422.

REFERENCES

[1] S. K. Dhall and C. L. Liu, “On a Real-time Scheduling Problem,”
Operations Research, vol. 26, no. 1, pp. 127–140, 1978.

[2] D. S. Milojičić, F. Douglis, Y. Paindaveine, R. Wheeler, and S. Zhou,
“Process migration,” ACM Computing Surveys, vol. 32, no. 3, pp. 241–
299, 2000.

[3] T. Klaus, P. Ulbrich, P. Raffeck, B. Frank, L. Wernet, M. R. von
Onciul, and W. Schröder-Preikschat, “Boosting Job-Level Migration by
Static Analysis (Best Paper Award),” in Proc. of the 15th Intl. Work.
on Operating Systems Platforms for Embedded Real-Time Applications,
2019, pp. 33–44.

[4] P. Raffeck, P. Ulbrich, and W. Schröder-Preikschat, “Work-in-progress:
Migration hints in real-time operating systems,” in Proc. of the 40th

IEEE Intl. Real-Time Systems Symp. IEEE, 2019, pp. 528–531.
[5] A. Bastoni, B. Brandenburg, and J. Anderson, “Cache-related Preemp-

tion and Migration Delays: Empirical Approximation and Impact on
Schedulability,” in Proc. of the 6th Intl. Work. on Operating Systems
Platforms for Embedded Real-Time Applications, 2010, pp. 17–22.

[6] Real-time linux. [Online]. Available: https://wiki.linuxfoundation.org/r
ealtime/start

[7] Ftrace - function tracer. [Online]. Available: https://www.kernel.org/doc
/Documentation/trace/ftrace.txt

[8] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proc. of the Intl. Symp. on Code
Generation and Optimization, Washington, DC, USA, 2004, pp. 75–86.

[9] F. Scheler and W. Schröder-Preikschat, “The Real-time Systems Com-
piler: Migrating Event-triggered Systems to Time-triggered Systems,”
Software: Practice and Experience, vol. 41, no. 12, pp. 1491–1515,
2011.

[10] F. Franzmann, T. Klaus, P. Ulbrich, P. Deinhardt, B. Steffes, F. Scheler,
and W. Schröder-Preikschat, “From intent to effect: Tool-based gen-
eration of time-triggered real-time systems on multi-core processors,”
in Proc. of the 19th IEEE Intl. Symp. on OO Real-Time Distributed
Computing. Washington, DC, USA: IEEE, May 2016, pp. 134–141.

[11] M. Stilkerich, J. Schedel, P. Ulbrich, W. Schröder-Preikschat, and
D. Lohmann, “Escaping the bonds of the legacy: Step-wise migration
to a type-safe language in safety-critical embedded systems,” in Proc.
of the 14th IEEE Intl. Symp. on OO Real-Time Distributed Computing,

G. Karsai, A. Polze, D.-H. Kim, and W. Steiner, Eds. IEEE, Mar. 2011,
pp. 163–170.

[12] I. Stilkerich, C. Lang, C. Erhardt, and M. Stilkerich, “A practical get-
away: Applications of escape analysis in embedded real-time systems,”
in Proc. of the 14th ACM SIGPLAN/SIGBED Conf. on Languages,
Compilers and Tools for Embedded Systems, 2015, pp. 1–11.

[13] C. Lang and I. Stilkerich, “Design and implementation of an escape
analysis in the context of safety-critical embedded systems,” ACM Trans.
on Embedded Computing Systems, vol. 19, no. 1, 2020.

[14] Aurix Tc3xx User Manual Part 1, Infineon, 2020, v1.6.0.
[Online]. Available: https://www.infineon.com/dgdl/Infineon-
AURIX_TC3xx_Part1-UserManual-v01_00-EN.pdf?fileId=
5546d462712ef9b701717d3605221d96

[15] Lauterbach power debug interface usb3. [Online]. Available: https:
//www.lauterbach.com/powerdebugusb3.html

[16] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange,
M. Schoeberl, R. B. Sørensen, P. Wägemann, and S. Wegener,
“TACLeBench: A Benchmark Collection to Support Worst-Case Ex-
ecution Time Research,” in Proc. of the 16th Intl. Work. on Worst-
Case Execution Time Analysis, ser. OpenAccess Series in Informatics
(OASIcs), M. Schoeberl, Ed., vol. 55. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016, pp. 2:1–2:10.

[17] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts,
10th ed. John Wiley & Sons, 2012.

[18] P. Denning, “Working sets past and present,” IEEE Trans. on Software
Engineering, vol. SE-6, no. 1, pp. 64–84, 1980.

[19] P. Bryant, “Predicting working set sizes,” IBM Journal of Research and
Development, vol. 19, no. 3, pp. 221–229, 1975.

[20] J. A. Brown, L. Porter, and D. M. Tullsen, “Fast thread migration
via cache working set prediction,” in IEEE 17th Intl. Symp. on High
Performance Computer Architecture, 2011, pp. 193–204.

[21] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H.
Anderson, “LITMUSˆRT : A Testbed for Empirically Comparing Real-
Time Multiprocessor Schedulers,” in Proc. of the 27th IEEE Intl. Real-
Time Systems Symp., Dec. 2006, pp. 111–126.

[22] L. Ju, S. Chakraborty, and A. Roychoudhury, “Accounting for cache-
related preemption delay in dynamic priority schedulability analysis,”
in 2007 Design, Automation Test in Europe Conf. Exhibition, 2007, pp.
1–6.

[23] R. Mancuso, H. Yun, and I. Puaut, “Impact of DM-LRU on WCET:
a Static Analysis Approach,” in 31th Euromicro Conf. on Real-Time
Systems, ser. Leibniz Intl. Proc. in Informatics (LIPIcs), S. Quinton,
Ed., vol. 107. Stuttgart, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2019, conference, pp. 17:1–17:25.

https://wiki.linuxfoundation.org/realtime/start
https://wiki.linuxfoundation.org/realtime/start
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.infineon.com/dgdl/Infineon-AURIX_TC3xx_Part1-UserManual-v01_00-EN.pdf?fileId=5546d462712ef9b701717d3605221d96
https://www.infineon.com/dgdl/Infineon-AURIX_TC3xx_Part1-UserManual-v01_00-EN.pdf?fileId=5546d462712ef9b701717d3605221d96
https://www.infineon.com/dgdl/Infineon-AURIX_TC3xx_Part1-UserManual-v01_00-EN.pdf?fileId=5546d462712ef9b701717d3605221d96
https://www.lauterbach.com/powerdebugusb3.html
https://www.lauterbach.com/powerdebugusb3.html

