
Work-In-Progress:
Migration Hints in Real-Time Operating Systems

Phillip Raffeck, Peter Ulbrich, Wolfgang Schröder-Preikschat
Department of Computer Science, Distributed Systems and Operating Systems

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

Abstract—Task migration is a potent instrument to exploit
multi-core processors. Like full preemption, full migration is par-
ticularly advantageous as it allows the scheduler to relocate tasks
at arbitrary times between cores. However, in hard real-time
systems, migration is accompanied by a tremendous drawback:
poor predictability and thus inevitable overapproximations in
the worst-case execution-time analysis. This is due to the non-
constant size of the tasks’ resident set and the costs associated
with its transfer between cores. As a result, migration is banned
in many real-time systems, regressing the developer to a static
allocation of tasks to cores with disadvantageous effects on the
overall utilization and schedulability.

In previous work, we successfully alleviated the shortcomings
of full migration in real-time systems by reducing the associ-
ated costs and increasing its predictability. By employing static
analysis, we were able to identify beneficial migration points and
thus generate static schedules migrating tasks at these identified
points. In ongoing work, we extend this approach to dynamic
scheduling by providing information about advantageous migra-
tion points to an operating system which then makes migration
decisions at runtime.

I. INTRODUCTION AND RELATED-WORK

Fully exploiting the potential of multi-core platforms in real-

time systems with hard deadlines still is a challenging task.

An important part of this problem is the effective utilization

of cores. For example, a task set τa, τb, and τc with adverse
processor utilization characteristics of 70, 70 and 40 percent

(i.e., 180% utilization) is infeasible to schedule on a system

with two cores (i.e., 200% capacity) when statically allocated.

This issue is addressed by dynamic allocation and migration

of workload, respectively. Such migration can be realized

at the task, job, and instruction level [1]. The former two

variants are relatively easy to implement as the migration

occurs only at scheduling-unit boundaries. However, they still

fail to find a feasible schedule for the previous example, as the

potentially adverse size of scheduling units remains. Migration

on instruction level or full migration, on the other hand,
facilitates the relocation of work at virtually any time. It thus

allows splitting up jobs and distributing their utilization across

cores. An abundance of multi-core scheduling algorithms [1],

[2] rely on such fine-grained migration to exploit the potential

of multi-core systems. Here, a widespread assumption is that

migration works much like preemption and that overheads are

practically constant. However, migration comes at consider-

able costs in practice, as the operating system not only has

to preempt a task but also transfer its resident set (i.e., active

working set) between core-local memories. In contrast to core-

local preemption, these costs are non-constant and highly

dependent on the point of migration [3], [4]. Their overheads

may even jeopardize deadline tardiness and feasibility [5]. To

nevertheless comply with the assumption of constant migration

costs, worst-case execution time (WCET) analysis is forced to

assume a pessimistic bound on the resident-set size and the

resulting migration costs at any time of a task’s execution.

One possible solution to the problem is the choice of an

advantageous hardware platform. Especially for unified mem-

ory architectures (UMAs) with multi-level cache hierarchies,

Bastoni et al. [6] have shown that, due to the consistent

memory latencies, preemption and migration costs are com-

parable and dominated by cache-related costs. In particular, in

UMA systems, the resident-set size is largely negligible for the

estimation of migration costs. However, these considerations

do not apply to non-unified memory architectures (NUMA) [4]

and NUMA-like systems [3] that lack cache coherency or

use other forms of inter-core communication. For the Infineon

AURIX™ platform (TC277), for example, we measured sub-

stantial migration overheads of up to 2.5 times for inter-core

reads. Moreover, as for the flat memory hierarchy, the transfer

cost scale linearly with resident-set size.

A way to increase predictability and reduce costs is to

restrict task displacement in the first place. For preemption,

thresholds for the apt placement of preemption points were

studied [7], [8]. Anderson et al. [9] extended this concept

to restricted migration, but lack a implementation. Automatic

analysis and generation of multi-core systems [10]–[12] for

non-preemptive scheduling has been studied. Sarkar et al. [5]

proposed hardware-assisted migration, which can hide laten-

cies but does not solve the fundamental issue of WCET

overapproximation. Jahn et al. [13] proposed an optimized

transfer of memory pages to reduce latencies. None of these

approaches facilitates full migration and tight WCET bounds.

A. Problem Statement

Assuming that migration costs correlate with the resident-

set size on a given hardware platform, the design of hard real-

time systems faces a dilemma: Migration should be avoided

or limited to task/job-level migration to maintain temporal

analyzability of tasks. However, the granularity of scheduling

units is a crucial factor for schedulability as well as potential

utilization. In contrast, full migration facilitates high utilization

but comes with additional migration overheads. The funda-

mental issue is in the variability of indirect costs that depend

on the resident-set size, which implies pessimism in the WCET

528

2019 IEEE Real-Time Systems Symposium (RTSS)

2576-3172/19/$31.00 ©2019 IEEE
DOI 10.1109/RTSS46320.2019.00056

Authorized licensed use limited to: Auckland University of Technology. Downloaded on May 29,2020 at 14:59:53 UTC from IEEE Xplore. Restrictions apply.

bounds. We believe that there are two things necessary to solve

the dilemma: (a) avoiding migration wherever possible and (b)

increasing its predictability.

The first step in this direction is to cut scheduling units to a

beneficial size by static code analysis. However, cutting code

to match a certain size is a tedious process as the execution

time is a non-functional property and thus hard to correlate

with the source code. The fundamental challenge is to identify

split points that are valid for all possible execution paths across
branches and preserve the task’s functional properties. Fur-

thermore, choosing scheduling units only by size still suffers

from the same issues as full migration, namely potentially

high migration costs. A split point that results in optimally

sized scheduling units may coincide with an unfavorably large

resident set. In the worst case, the additional migration costs

may again jeopardize the schedulability gained by changing

the granularity in the first place. Here, the challenge is in the

identification of split points that benefit both aspects.

Advantageous scheduling units with minimal migration

costs facilitate high utilization and guarantee deadline ad-

herence in the worst case. However, with jobs typically not

exploiting their WCET migration may be omitted in the

average case. Here, the challenge is operating-system support

to leverage the knowledge inferred by static analysis and to

restrict migration to the beneficial split points at runtime.

B. Our Approach and Contribution
In this paper, we present MIGROS (anticipatory MIGration

support in Real-time Operating Systems), our ongoing work

to address the aforementioned issues. Its first pillar is the

static code analysis of the system, which we partially de-

scribed in our previous work [14]. At compile time, our

analysis framework identifies potential split points with the

desired granularity by a heuristic estimation of execution cost

while ensuring that program semantics are preserved across

all control-flow branches. Subsequently, the granularity of

the resulting scheduling units is verified by a target-specific

WCET analysis. We optimize both the scheduling-unit size and

the associated migration cost simultaneously by extending the

search for split point candidates to the vicinity of the optimal

scheduling-unit granularity. This way, we can choose split

points with beneficial resident-set sizes. Finally, our toolchain

performs the actual cutting of code with the resulting units

facilitating optimized static scheduling.

However, in a static schedule, any migration is always per-

formed, even if it is unnecessary under the current execution

conditions. Therefore, we propose OS support to leverage our

split-points at runtime by what we call migration hints. As part
of our ongoing work on MIGROS, we present three variants

for such a hinted migration mechanism: job-level migration,
migration as exception, and on-demand migration. Thereby,
we strive to mitigate migration overheads further and improve

the overall system performance for the average case.

II. SYSTEM MODEL AND ASSUMPTIONS

We consider a hard real-time system with m cores that
allows full preemption and full migration. We define the latter

to permit migration at each instruction of the application

code but to prohibit migration during the execution of system

calls and other operating-system code. A set τ of n sporadic
tasks with occurrence rate Ti is scheduled on m processors.
Each task τi contains a set of l scheduling units J (a.k.a.
jobs) and has a processor utilization Ui. The number of tasks

n, the period and their respective worst-case execution time
(WCET) Ci determine the theoretical schedulability. A system

is theoretically schedulable on m cores if the total utilization
of all tasks is less or equal than the number of cores m.

As a non-functional requirement for the static analysis, we

assume that upper bounds on the number of iterations for

all loops are given. Additionally, cache-related overhead is

already covered in the timing analysis by the overapproxima-

tions required to incorporate preemption effects and delays.

We further assume that the target hardware features a RISC

processor with in-order execution and explicitly managed, non-

coherent caching mechanisms, for instance, scratchpads. Gen-

erally, we assume that on the considered hardware platform,

migration costs increase with the resident-set size.

With the notion of a resident set, we refer to the currently
active (i.e., alive and resident in memory) part of a process’s

working set, for example, local variables or the state of the

stack. For reasons of generality, we consider the set elements

as bytes. This fine-grained view can ultimately be mapped

to any type of higher-order memory management (e.g., lines,

pages). We restrict this definition to comprise only core-local

data and assume that all other data is globally accessible.

III. STATIC ANALYSIS AND TAILORING

In previous work [14], we presented an entirely static

approach for the identification of beneficial migration points

using the proposed concept of a split-point graph. This work
constitutes the starting point for our dynamic migration ap-

proach presented in this paper. Therefore, we quickly summa-

rize our previous work in the following. As a first intermediate

step, we leverage static source-code analysis and knowledge

about the semantics of the targeted operating system to derive

all truly existing scheduling units and their respective control-

flow graphs. Subsequently, we infer additional information to

assess the suitability of potential split points, which is the size

of the active resident set as well as a heuristic execution-time

estimation. Finally, we embed this information in a split-point

graph, where edges correspond to the possible split points and

nodes represent all instructions between them.

We then use the split-point graph to identify program points

with minimal migration cost, where splitting yields scheduling

units of suitable size. To achieve this, we assess each possible

split point according to two criteria: distance (δ) to the intrinsic
split point and the associated resident-set size (ω), that is,
migration costs. Intrinsic split point hereby refers to the
program point where a migration-cost–agnostic algorithm only

considering the execution time would split the scheduling unit.

We can instrument our analysis to consider the scheduling-unit

size in two ways: It either searches for precisely one split point

529

Authorized licensed use limited to: Auckland University of Technology. Downloaded on May 29,2020 at 14:59:53 UTC from IEEE Xplore. Restrictions apply.

Figure 1: Working set and lifespan of automatic vari-

ables, showcasing the need to simultaneously consider both

scheduling-unit size and resident-set size to obtain optimal

split points with minimal overhead.

making a task set schedulable or aims to identify multiple,

about equidistant split points.

Figure 1 illustrates the interplay of the two optimization

parameters δ and ω. In the example, splitting between lines
seven and eight would lead to the optimal target size of the

resulting scheduling units. However, in this case, we suffer

from significant migration costs, as j and z have to be
transferred. By employing the size of the resident set at a

given program point to additionally consider the migration

cost, our proposed algorithm identifies the split point between

lines five and six. This split point has a minimal distance

from the intrinsic split point, while simultaneously just the

intermediate result stored in x has to be transferred.
By employing the proposed approach, we are able to

improve the schedulability of statically scheduled systems

automatically. This results in up to 70% more schedulable
task sets and up to 76% reduced migration cost overhead.
As we consider static schedules, each migration happens

unconditionally at a fixed migration point, maybe needlessly.

We thus propose to reuse the analysis part of our static

approach to identify suitable migration points, but postpone

migration decisions to runtime. Bringing our approach to

dynamic systems allows us to overcome such inflexibilities,

reducing the overhead even further.

IV. OS SUPPORT AND DYNAMIC SCHEDULING

By splitting tasks and allocating the resulting scheduling

units to different processor cores, we embed the information

about advantageous migration points as fixed migrations in

the generated schedule. As the scheduling algorithm has to

work with the WCET of each scheduling unit, a migration

deemed necessary in the worst case might actually be skipped

in most cases. Consider, for instance, the scenario depicted

in Figure 2. We have a set of three tasks with a deadline of

10ms and a WCET of 6ms (see Figure 2a). With the use
of migration, this task set is schedulable on a two-processor

system. For this migration, our analysis identified a beneficial

migration point (MP) in τ1 after 3ms. Our static approach,
therefore, generates the static schedule depicted in Figure 2b.

However, as τ2 has an average-case execution time (ACET)
of 2ms, an online scheduling algorithm can, in the average

case, scheduled the jobs as depicted in Figure 2c, completely

avoiding the costly migration.

As in the static schedule the migration is rigidly embedded,

there is no possibility to skip the migration in cases where

tasks execute for less than their WCET. We aim to overcome

this inflexibility by exploiting knowledge about advantageous

migration points at runtime. For this, we perform the same

analysis as in our previous approach but perform no split-

ting of scheduling units. We rather pass information about

advantageous migration points on to the operating system as

migration hints. In the following, we propose three concepts
how operating systems can make use of such migration hints.

A. Job-level Migration
The obvious approach to dynamically exploit advantageous

migration points is to keep the splitting mechanism of the

static approach and create new jobs at exactly these boundaries

where migration is cheap. But instead of generating a static

schedule for this job set and pinning each job to a dedicated

processor core, we defer allocation and scheduling to an online

algorithm capable of job-level migration. As in the static

case, we benefit from low migration cost. Additionally, we

are able to save the migration-cost overhead in cases, where

jobs execute for less than their WCET and thus increase the

slack time available on a processor core. The online scheduling

algorithm may then be able to schedule the jobs of a previously

split task on the same core, thus skipping the migration.

In contrast to the rigid schedule of the static approach, this

splitting into jobs without pinning them to a core but rather

performing the allocation on demand at runtime is able to

induce migration overhead only when necessary.

As previous work [15] has shown, partitioned EDF schedul-

ing benefits from splitting tasks into two jobs and assigning

the first part a WCET-constrained deadline. That means, the

first resulting job is assigned a deadline equal to its execution

time. Our analysis can be instrumented to generate such job

sets with an additional focus on minimal migration cost.

B. Migration as Exception
As an even further extension, we can try to leverage the

ACET of a task. Placing an advantageous migration point

after the ACET enables the operating system to check the

need for migration in a straightforward fashion. If the job has

executed for its ACET when reaching the migration point, it is

on its worst-case path (or a similar one), meaning it will need

more execution time and has to be migrated. If, on the other

hand, the job has not yet depleted its ACET budget, it will

finish execution in time, obviating the need for migration. This

approach facilitates migration decisions and helps to avoid the

migration most of the time, requiring it only in the exceptional

case, where a job executes for longer than its ACET.

As it might be impractical to statically identify one mi-

gration point definitely after the ACET, or even the ACET

itself, we can offload this task to the runtime system. For this,

we instrument the static analysis to create migration points

scattered across the whole task so that there are few migration

points at the beginning and increasingly more towards the end

530

Authorized licensed use limited to: Auckland University of Technology. Downloaded on May 29,2020 at 14:59:53 UTC from IEEE Xplore. Restrictions apply.

Time [in ms]

τ 1

τ 2

τ 3

WCETACET
MP

D

2 3 6 10

(a) Taskset with suitable migration point

Time [in ms]

D

1 3

2 1

Π1

Π2

2 3 6 10

(b) Static Schedule

Time [in ms]

D

1

2 3

Π1

Π2

2 3 6 10

(c) Dynamic Schedule

Figure 2: Scenario showcasing how the flexibility of a dynamic approach allows to save migration costs.

of a task. This ensures that scheduling units are more fine-

grained after the ACET and, thus, migration decisions happen

in shorter intervals. Combining this with runtime monitoring

of execution times, to enable measuring the ACET, enables

an operating system to make migration decisions based on

the average-case budget of a job, as described in the previous

paragraph. In this case, however, there is no requirement of

computing the ACET at compile time.

C. On-demand Migration
Lastly, we can use the size criterion to insert multiple ben-

eficial migration points which are approximately equidistant.

Instead of splitting tasks, we can inject traps into the pro-

gram code. By combining this mechanism with a slack-aware

scheduling algorithm, the operating system can at runtime at

each migration point decide if the currently running task has

to be migrated or if it can be dispatched again on the current

processor until at least the next potential migration point. This

concept is similar to partial preemption, in the sense that there

are predefined points at which a task might be migrated.

D. Thoughts on Efficiency
The switch from offline to online scheduling naturally

comes with overhead induced by making scheduling decisions

at runtime. To keep this additional overhead small, we can,

in the case of on-demand migration, instead of traps, we

can inject special-tailored constructs for each migration point,

triggering the migration of the resident set at this program

point. Making these constructs toggleable by the operating

system obviates the needs to activate the operating system at

each migration point. Instead, the operating system can asyn-

chronously set the flag accordingly, deactivating mirgration

points known to be unnecessary in the current execution.

Additionally, we can instrument tasks to migrate themselves

proactively at an advantageous migration point. This way,

neither a scheduling decision nor other interaction with the

operating system is necessary, greatly reducing the overhead.

V. CONCLUSION

In this paper, we presented our ongoing work on MIGROS,

an approach to boost migration in hard real-time systems. An

essential component of MIGROS is the automated analysis

of tasks at the source-code level, which we presented in

parts in [14]. Our analysis yields beneficial split points with

minimal migration costs resulting in tighter WCET bounds.

On the one hand, subdividing tasks into smaller scheduling

units at compile-time improves the schedulability of static

allocation schemes. On the other hand, knowledge about split

points can be used by the RTOS as migration hints that serve
as an enabler for migration thresholds; analogous to limited

preemptive scheduling [8]. We further presented our ongoing

efforts on runtime support that leverages the migration hints

acquired by static analysis: job-level migration, migration as
exception, and on-demand migration.

ACKNOWLEDGMENT
This work is supported by the German Research Foundation (DFG) under grants
no. SCHR603/13-1, SCHR603/9-2, the CRC/TRR 89 Project C1.

REFERENCES

[1] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. H. Anderson, and
S. K. Baruah, “A Categorization of Real-time Multiprocessor Scheduling
Problems and Algorithms,” in Handbook of Scheduling, 2004.

[2] R. I. Davis and A. Burns, “A Survey of Hard Real-time Scheduling
for Multiprocessor Systems,” ACM Computing Surveys, vol. 43, no. 4,
p. 35, 2011.

[3] E. W. Briao, D. Barcelos, F. Wronski, and F. R. Wagner, “Impact of
Task Migration in Noc-based Mpsocs for Soft Real-time Applications,”
in Int’l Conf. on Very Large Scale Integration, Oct. 2007, pp. 296–299.

[4] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H.
Anderson, “LITMUSˆRT : A Testbed for Empirically Comparing Real-
Time Multiprocessor Schedulers,” in Proc. of RTSS ’06, Dec. 2006, pp.
111–126.

[5] A. Sarkar, F. Mueller, H. Ramaprasad, and S. Mohan, “Push-assisted
Migration of Real-time Tasks in Multi-core Processors,” Sigplan Notes,
vol. 44, no. 7, pp. 80–89, 2009.

[6] A. Bastoni, B. Brandenburg, and J. Anderson, “Cache-related Preemp-
tion and Migration Delays: Empirical Approximation and Impact on
Schedulability,” in Proc. of OSPERT ’10, 2010, pp. 17–22.

[7] B. Peng, N. Fisher, and M. Bertogna, “Explicit Preemption Placement
for Real-Time Conditional Code,” in Proc. of ECRTS ’14, Jul. 2014, pp.
177–188.

[8] G. C. Buttazzo, M. Bertogna, and G. Yao, “Limited Preemptive Schedul-
ing for Real-time Systems. A Survey,” IEEE Trans. on Industrial
Informatics, vol. 9, no. 1, pp. 3–15, 2013.

[9] J. H. Anderson, V. Bud, and U. C. Devi, “An EDF-based Restricted-
migration Scheduling Algorithm for Multiprocessor Soft Real-time
Systems,” Real-time Systems, vol. 38, no. 2, pp. 85–131, Feb. 2008.

[10] T. Klaus, F. Franzmann, M. Becker, and P. Ulbrich, “Data Propagation
Delay Constraints in Multi-rate Systems: Deadlines Vs. Job-level De-
pendencies,” in Proc. of RTNS ’18, ser. RTNS ’18. New York, NY,
USA: ACM, 2018, pp. 93–103.

[11] F. P. Franzmann, T. Klaus, P. Ulbrich, P. Deinhardt, B. Steffes, F. Scheler,
and W. Schröder-Preikschat, “From Intent to Effect: Tool-based Gener-
ation of Time-Triggered Real-Time Systems on Multi-Core Processors,”
in Proc. of ISORC ’16, 2016.

[12] F. Nemati, M. Behnam, and T. Nolte, “Efficiently migrating real-time
systems to multi-cores,” in Proc. of ETFA -09. IEEE, 2009, pp. 1–8.

[13] J. Jahn, M. A. A. Faruque, and J. Henkel, “Carat: Context-aware
runtime-adaptive task migration for multi-core architectures,” in DATE,
March 2011, pp. 1–6.

[14] T. Klaus, P. Ulbrich, P. Raffeck, B. Frank, L. Wernet, M. R. von Onciul,
and W. Schröder-Preikschat, “Boosting Job-Level Migration by Static
Analysis (Best Paper),” in Proc. of OSPERT ’19, 2019, pp. 33–44.

[15] A. Burns, R. I. Davis, P. Wang, and F. Zhang, “Partitioned EDF
Scheduling for Multiprocessors Using a C=D Task Splitting Scheme,”
Real-Time Systems, vol. 48, no. 1, pp. 3–33, Jan. 2012.

531

Authorized licensed use limited to: Auckland University of Technology. Downloaded on May 29,2020 at 14:59:53 UTC from IEEE Xplore. Restrictions apply.

