
NimbleNet: Efficient Micro-Container Distribution and
Orchestration for the Extreme Edge
Kilian Müller∗

escs.mueller@fau.de

Chair of Electrical Smart City Systems,
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

Maximilian Seidler∗

maximilian.seidler@fau.de

Department of Computer Science 4,
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

Peter Ulbrich
peter.ulbrich@tu-dortmund.de

Department of Computer Science 12, Technische
Universität Dortmund

Norman Franchi
norman.franchi@fau.de

Chair of Electrical Smart City Systems,
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

Abstract
The increasing complexity and customization of products,
coupled with volatile markets, has motivated a shift from
line production layouts to cellular production layouts, where
autonomous robots are used not only for transportation but
also to assist in the actual assembly of products. The problem,
however, is that these general-purpose robots are inherently
limited in their capabilities due to the non-process specific
design. Therefore, we propose to foster collaboration with
IoT nodes already present on the factory floor, introduced
by the advent of Industry 4.0, which provide detailed in-
sights and process-tailored hardware. Robots need to be en-
abled to trigger custom workloads on the IoT devices to gain
knowledge or trigger process-related events. The challenge,
however, is that integrated IoT nodes are highly constrained
devices with a variety of architectures. Spatial isolation must
be maintained together with a small footprint on wireless
communication to prevent inference while keeping response
time low, requiring efficient distribution and orchestration
strategies.

In this paper, we present NimbleNet, a lightweight and
platform-independent distribution and orchestration approach
specifically tailored for IoT devices in the industrial setting.
NimbleNet combines lightweight sandboxing approaches
such as WebAssembly, dynamic dependency management,
and neighbor-first cachingwith centralized fallback to enable
efficient platform-independent deployment of tasks at the
edge. We have implemented NimbleNet and evaluated the
approach through simulation and on our IoT testbed demon-
strating that the developed approach enables the dynamic
deployment and execution of tasks on constrained devices,
while concurrently reducing and balancing the network load
across participating IoT nodes in our mesh configuration.

∗Both authors contributed equally to this research.

CCS Concepts: •Computer systems organization→ Sen-
sor networks; Sensors and actuators; • Networks→ Overlay
and other logical network structures; • Applied computing
→ Command and control.

Keywords: Hierarchical Microcontainers, Edge Computing,
Internet of Things (IoT), Dynamic Task Orchestration, Web-
Assembly (Wasm), Distributed Systems

1 Introduction
The increasing complexity and customization of products,
coupled with the unpredictability of global markets, has
necessitated the development of more sophisticated prod-
uct manufacturing processes. As a result, many companies
have moved from traditional line production to cellular lay-
outs that allow the production process to quickly adapt to
changing conditions or objectives. In the absence of fixed
production positions, autonomous robots have emerged as
the new backbone of the manufacturing process, not only
for transporting parts but also for assisting in the actual
production process.

Conversely, the integration of intelligent technologies on the
factory floor is not a new phenomenon, especially with the
advent of Industry 4.0. This integration has led to the emer-
gence of highly process-tailored sensor systems, which are
already being placed in optimized locations within the man-
ufacturing station to provide access to detailed process data.
Many of them contribute significantly to improving the man-
ufacturing process by providing accurate data to visualize
the process and enable the great potential of Manufacturing
Execution Systems (MESs). However, the contrasting design
philosophies of process-specific sensors and general-purpose
actors in the form of robots hinder the convergence of these
two domains, making the collaborative process ineffective.

https://orcid.org/0009-0002-0781-4798
https://orcid.org/0009-0007-1601-9311
https://orcid.org/0000-0002-4224-9205
https://orcid.org/0000-0002-2777-4722

Müller, Seidler, Ulbrich and Franchi

Node
10

Node
9

Node
11

Node
12

Node
5

Node
7

Node
6

Node
8

Node
1

Node
2

Node
3

Node
4

Global
Registry

R2

Shop floor

Ri Robot 1 - n

Network Link

R1 R3

R4

60 m

80 m

Rn

10 m

Figure 1. The schematic depicts a factory floor with man-
ufacturing islands that host at least one IoT node (Node 𝑖)
per cell. Autonomous robots (R𝑖) can navigate through the
formed grid and connect to nodes within a 10m radius. The
Global Registry serves as the source of workloads.

1.1 Motivating Example
The railway production setting serves as an illustrative exam-
ple. The production process is organized around the objective
of assembling prepared components. Autonomous robots are
constrained in their ability to support this process due to the
complex entry and reachability of positions. In contrast, the
manufacturing of components can be organized in a cellular
manufacturing setting.

The work presented here is limited to an excerpt with sta-
tions arranged in a grid pattern to reduce transportation
distances and to maintain clear access to protected areas and
escape routes. Production islands are equipped with Internet
of Things (IoT) nodes for monitoring production metrics in
near real-time. Cells may include mechanical assembly, weld-
ing, lacquering, or other steps, which opens the potential
for robotic collaboration across different production steps
and supplementary tasks, such as lifting and positioning.
In instances where interaction can benefit from additional
process information that is not accessible to the robot due to
technical limitations, such as the quality, surface or volume
structure, strain, torsion or temperature of the workpiece,
or information that is not accessible due to spatial or tem-
poral constraints, such as the aforementioned parameters
on a different workpiece’s location, the quality of previous
production steps or information about subsequent produc-
tion steps, guidance can be provided by IoT nodes. In order
for the IoT device to process the information and generate

knowledge that can enrich the robot’s interaction, it must
be instructed on how to evaluate its sensor data in relation
to the robot’s current task.

Figure 1 depicts the 80m by 60m shop floor area. It is as-
sumed that each manufacturing cell contains at least one
IoT node. All nodes are connected to one another using a
stable industrial WiFi mesh, forming an interconnected grid.
Robots can connect directly to a node when they enter a
10m perimeter around the node. Workload can be loaded
from the registry, which is connected to exactly one node.
More details on the setup are given in section 5. Without
loss of generality, we refer to our mobile agents as robots for
use-case and consistency reasons. However, later presented
approaches apply to a large number of dynamic scenarios.

1.2 Problem Statement
Although general-purpose robots can access process data us-
ing state-of-the-art protocols, the actor logic must be adapted
each time, which is a significant drawback. This paper ad-
dresses the problem of integrating task offloading in an indus-
trial factory floor environment. We identified the following
challenges:

Challenge 1: Heterogeneous & constrained computing
platforms. Due to the bespoke relationship between sensor
nodes and their processes, hardware platforms are inherently
heterogeneous, encompassing a vast array of architectures
and hardware capabilities. The price sensitivity of IoT de-
vices often results in the use of microcontrollers with limited
processing power and very little memory. Consequently,
integrating state-of-the-art offloading and orchestration soft-
ware is often not possible. Our approach: We employ the
novel bytecode format WebAssembly (WASM), which en-
ables the virtualization of architectures. We modify Web-
Assembly Micro Runtime (WAMR)1 for use on tiny devices
and present a novel approach to stateful intermittency and
subsequent continuation of WASM programs.

Challenge 2: Spatial isolation & untrusted code. When
offloading computational tasks to the IoT platforms, it is im-
perative that the target devices are able to execute their work-
load without being affected in any way. This necessitates
the use of physical isolation, which should be implemented
in a manner that minimizes overhead. Furthermore, even in
closed environments, code can inadvertently introduce bugs
that cause the device to fail. Due to the tight integration with
production process control, this can lead to product quality
degradation or even product failure, which is unacceptable.
Our approach: We leverage WASM’s isolation capabilities
in conjunction with a second core for asynchronous execu-
tion of workloads, allowing for execution with nearly no
impact on the system.

1https://github.com/bytecodealliance/wasm-micro-runtime

https://github.com/bytecodealliance/wasm-micro-runtime

NimbleNet: Efficient Micro-Container Distribution and Orchestration for the Extreme Edge

Challenge 3: Rapid reconfiguration & dynamic loading.
From the perspective of the IoT node, work is initiated when-
ever the robot enters the communication radius. The specific
nature of the work is unknown, as it depends on the ro-
bot’s characteristics, even though it is constrained by the IoT
node’s capabilities. Nevertheless, distinct workloads must
be executable and quickly reconfigurable. Our approach:
Based on the dependency of the node’s capability on the
workloads and the relation of the manufacturing process to
the possible workloads we provide automatically accumulat-
ing local subsets of modules that are commonly used in the
problem domain.

Challenge 4: Communication overhead & uneven distri-
bution. As the size of transmitted data increases due to the
establishment of ML/AI classifiers and the spread of Time
Sensitive Networks (TSN) reserving transmission channels,
the available wireless communication bandwidth is shrink-
ing. Along with sophisticated communication protocols that
reduce communication overhead and improved evaluation
algorithms that reduce size of results, efficient load balancing
that leverages domain knowledge of the physical environ-
ment is essential to prevent congestion from impacting or
paralyzing the production process. Our approach: The use
of efficient nearest-neighbor caching again allows for exploit-
ing local dependency, thereby reducing the load on Global
Repository nodes. Furthermore, using transparent partial up-
dates alleviates the burden on the network.

1.3 Contribution and Outline
To address the above-mentioned challenges, we propose
NimbleNet, a novel approach for efficient containerized
computing in the extreme edge. In summary, we claim the
following contributions:

1. This paper demonstrates how related manufacturing
processes can be leveraged to split programs into
smaller subroutines, enabling efficient local and nearest-
neighbor caching and smoothing unequal load on the
central nodes.

2. We present a novel approach to the intermittency and
continuation of WASM program execution. The ap-
proach involves stringing together WASM states and
leveraging the error mechanism to escape execution
without function termination.

3. We provide extensive measurements obtained from
our real-world test bench and our Nimblenet(-lite)
implementation, designed to operate in highly con-
strained devices with only a few kilobytes of random-
access memory (RAM). Furthermore, additional simu-
lation results are presented to supplement these find-
ings.

The remainder is organized as follows: In Section 2, we
present potential solutions from the literature and discuss
why they are not sufficient. In Section 3, we present our
system model and relevant background information. Sec-
tion 4 outlines the inner workings of NimbleNet. Section 5
describes the evaluation scenario, and Section 6 presents the
results. We conclude with a summary in Section 7.

2 Related Work
Before outlining our methodology, we want to highlight ex-
isting research in related fields to demonstrate that although
the approaches may appear similar, they do not address the
fundamental issues.

Dynamic updating. To fully leverage the capabilities of
IoT nodes, it is necessary to modify the node’s program
code. This process is analogous to the well-researched and
practically relevant field of device updates. However, typical
solutions for IoT devices are developed from a top-down
approach, assuming that one device actively pushes updates
in infrequent cycles. Approaches are tailored to firmware
updates, which provide one new, monolithic binary, the typ-
ical method of distributing microcontroller software. Con-
sequently, research is focused on authentication, integrity,
freshness and validity, which represents a distinct area of
interest [7, 9, 20, 26, 27, 39]. Moreover, many of these solu-
tions are vendor-specific, such as Nordic’s DFU [3] or Texas
Instruments’ OAD [4], or tailored to a specific operating
system, e.g., Deluge [22] and Sparrow [8]. Package man-
ager solutions, such as YUM [5], APT [1], or TUF [15, 40],
utilized by Google Fuchsia, employ techniques, including de-
pendency resolving, which is costly but not necessary for our
purposes. Furthermore, this approach necessitates using ad-
vanced hardware and often file support or a Linux operating
system, which is unavailable on constrained devices.

Workload management across devices. The transfer of
workloads across devices, particularly from IoT nodes to
edge or cloud services, is a topic that has been extensively
researched. Given that WASM already addresses some of the
aforementioned challenges, a plethora of works also exist
within the context of cloud migration and offloading. Mi-
croservice architecture [11] allows for applications being
composed of small, independent services that communicate
over well-defined APIs. Well-established frameworks are
Kubernetes for packaging and orchestrating microservices,
Eureka for discovery, NGINX for routing, and RabbitMQ
for messaging. Nurul-Hoque and Harras [35], Kreutzer et
al. [25], and Nieke et al. [34] have developed frameworks
that facilitate strong and weak migration, whereby the ap-
plication’s state is transmitted or left out, respectively. The
solutions address additional research questions, such as lever-
aging service-oriented architectures or improving security.
Li et al. [29] suggest that single functions be offloaded to the

Müller, Seidler, Ulbrich and Franchi

edge, with static annotations in the source code. Ouacha [36]
optimizes the OLSR protocol for the transmission of VMs.
Cloud4IoT [37] provides an execution-format independent
solution based on Kubernetes agents and OpenStack-based
middleware, which is similar to Benomar et al. [14] in the
latter. Ada-Things [46] provides insights into load balanc-
ing for VM migration, adapting the migration method by
analyzing memory page modifications. However, all of these
solutions are designed to execute their workload in the cloud,
edge cloud, network infrastructure devices, or fog, with the
expectation that at least tens of MBs of RAM will be avail-
able, and often a Linux operating system. As a result, they
are not applicable to IoT nodes due to the constraints im-
posed by the limited resources. Furthermore, scheduling in
a multi-node system is not addressed by any of the works.
Yousafzai et al. [48] present a process-based migration that
requires a compatible process model, namely a Linux operat-
ing system and similar architectures. Wu et al. [47] present
an approach where nearby IoT nodes are taken into account
as an offloading target. To execute code on heterogeneous
architectures, the prototype employs HQEMU [21], a retar-
getable dynamic binary translation based on QEMU and
LLVM. This approach, in conjunction with the costly mem-
ory remapping, necessitates the execution on more powerful
edge devices. Evaluations conducted on devices with several
GBs of RAM substantiate this assertion. Dynamic linking ap-
proaches, such as LLL [33], Zephyr’s LLEXT [6], Contiki’s dy-
namic loader [2], or custom approaches, are complex, prone
to errors, and highly architecture and OS specific.

Distributed data management. In unstructured peer-to-
peer overlay networks, data is distributed in a manner that
is not dependent on the intrinsic properties of the data it-
self. This offers insights into potential routing algorithms.
Nevertheless, algorithms are inherently incapable of execu-
tion and orchestration, including all the challenges those
topics introduce. Furthermore, the objective of caching is
typically the routing targets rather than the data itself. Still,
insights can be provided into this topic from a distribution
perspective, as it may be related. The three most-known
algorithms are Freenet [16], which leverages a depth-first
search combined with a least recently used (LRU) cache;
Gnutella [42], which uses a flooding technique with a speci-
fied radius; and BitTorrent [23], which depends on a central-
ized repository for tracker nodes, which are responsible for
monitoring the availability of files on individual nodes. The
KaZaA [28] protocol employs a hybrid model comprising
super-peers, which employ Gnutella requests each. More-
over, delay-tolerant networking protocols [13] are similarly
concerned with the efficient delivery of data in intermittent
settings. Here, caches are often employed for the store and
forward functionality of different routing protocols. How-
ever, in our case, this results in a suboptimal cache utilization
on single nodes due to tasklets stored for the purpose of store

and forward being often irrelevant for the forwarding node
itself. Nearest-neighbor caching [32, 45] is a strategy used
in distributed systems to improve data access efficiency by
caching data close to where it is most frequently accessed.
From a purely theoretical standpoint, we are grappling with
the same fundamental issue, albeit on a much smaller scale.
Consequently, the proposed solutions and heuristics appear
to be overly complex and unnecessary.
.

3 System Model and Background
In the following section, the system model and necessary
definitions are introduced.

3.1 Hardware Platform
We consider highly constrained devices, particularly those
utilized for monitoring tasks, may possess sophisticated ex-
ternal measurement hardware yet remain constrained in
their available computing (i.e., few cores) and memory ca-
pacities. This is primarily attributed to cost considerations, al-
though some devices may also be designed to operate within
a limited energy budget due to their battery-powered nature.

This paper examines the general applicability of our ap-
proach to said constrained devices located on the extreme
edge, where software orchestration and execution can be
conducted in concurrently. Nodes are interconnected in a
mesh topology, with some nodes directly connected to repos-
itory nodes, as illustrated in Figures 2 and 1.

3.2 Software Framework
Without loss of generality, we mainly base our work on
WebAssembly (WASM), a new bytecode format initially in-
troduced to the browser environment but has been adapted
to IoT. WASM provides a low bytecode size combined with
near native-speed execution. Hardware details are abstracted,
making WASM executable on various devices. As the lan-
guage is constructed as a compile target and utilizes well-
established compiler frameworks, i.e., LLVM, it can be com-
piled from various source languages and with enhanced
optimizations. Further, WASM’s bytecode assures memory
isolation by combining a restrictive typing system with run-
time checks. Interaction with the host system is possible via
WASM’s import feature, registering native function callbacks
as executable. [18, 44]

We further assume that, as is typical in the industrial domain,
applications are composed of many smaller functional units
and are only loosely coupled in the sense of cause-effect
chains [24]. Well-known examples are the AUTOSAR [12]
application components, comprising tasks and runnables,
and the implicit register communication [17] used there.
Other examples are dividing tasks into subtasks, the actor
model [10], i-lets [43], or servlets.

NimbleNet: Efficient Micro-Container Distribution and Orchestration for the Extreme Edge

Private
Registry Node
Namespace: Q

Q.1 Q.2 Q.3

Network Edge

Global
Registry Node
Namespace: G

G.1 G.2 G.3

Extreme Edge / Shop FloorCloud / Network Core

Node 1
P.1

Node 2

P.2

Node ...
G.1

G.3

Node i Node j
Q.3 P.1P.3

Node i

Orchestrator

P.3

Local Registry

Tasklet P.3
Local Code

Call Tasklet

Local Code

Call Tasklet G.3

P.1

Fa
llb

ac
k

* e.g. hosted in
on-site data center

P.1 1. Local Acquisition2. Global AcquisitionG.3

Private
Registry Node
Namespace: P

P.1 P.2 P.3Tasklet
G.1

Waiting for:

Executor n

Mesh
Network

P.1

Figure 2. Schematic description of NimbleNet’s environment and core architecture: One or more Global registry nodes are
responsible for providing Tasklet binaries, which are grouped by namespaces. Each tasklet may contain calls to other tasklets
or local code. Nodes are connected in a mesh layout and cache tasklets in their Local registry, depending on the tasklet size
and their available memory. Additionally, each node contains an Orchestrator handling transmission and scheduling and an
Executor to execute the tasklet.

3.3 Tasklets
For our work, we assume that said functional units are small,
platform-independent code snippets that are practically self-
contained and exhibit an easy-to-estimate execution time.
We, therefore, adopted the notion of tasklets introduced by
Schäfer et al. [41] in a slightly modified form. In particular,
our underlying tasklet executor supports cooperative sched-
uling, which allows tasklets to call other tasklets, which we
will refer to as sub-tasklets, during their execution and relin-
quish control flow to the scheduler. Note that the analysis
and the identification of optimal scheduling strategies for
systems is beyond the scope of this work.

3.4 Taskset
In this paper, we refer to sets of tasklets, or tasksets, as the
units of analysis in this work. In particular, one set,𝑇𝑚 , serves
as a baseline, while the other,𝑇𝑛 , is employed to illustrate the
system’s advantages. Both sets of tasklets execute the same
compute load and are fundamentally identical regarding ex-
ecution time and binary size of their tasklets. In contrast
to 𝑇𝑚 , which consists of monolithic tasklets containing all
compute load, 𝑇𝑛 comprises those same tasklets split into
top-level tasklets, or chains, 𝑡𝑓 , and sub-tasklets, or algo-
rithms, 𝑡𝑎 . Each repeating algorithm 𝑡𝑎 is separated into its
own tasklet, which can be reused between top-level tasklets
𝑡𝑐 . The execution nature and structure of a tasklet can be
observed in Figure 3. Details about runtime, dependency, and
call behavior are given in section 6.

4 Approach
As previously stated in Section 1, our approach is designed
for industrial applications where it is assumed that the work-
load exhibits a spatial dependency. Subsequent production
steps or actions related to permanently installed bodies are
logically related and, therefore, mostly in the same problem
domain. This suggests that underlying concepts are likely
to be shared, and that the same libraries can be used. This
motivates the selection of tasklets, as introduced in Section 3.
Consequently, NimbleNet is constructed based on tasklets,
which allows the combination of shared libraries into sub-
tasklets, shared among tasklets. This greatly increases the
shared code base, thereby enabling the formation of fine-
grained caches per node and the formation of local subsets
of frequently used algorithms that can be reused between
neighboring nodes.

Figure 2 includes a schematic tasklet, which is a unit of
executable code that can contain any number of local code
sections, interspersed with calls to other sub-tasklets. These
sections can be of any executable code, including native
instructions, as long as the corresponding executor is present
on the node. The executor either interprets the local code
instructions or, when encountering a tasklet call, requests
the sub-tasklet and executes it before continuing with the
original one. In theory, any depth of tasklets is possible,
although in practice, this is limited by the available memory.

The following paragraphs present a detailed account of the
fundamental inner works of NimbleNet. To facilitate com-
prehension, the subsequent section is organized in accor-
dance with the typical lifecycle of a tasklet, encompassing

Müller, Seidler, Ulbrich and Franchi

the stages of acquisition, execution, and offloading/eviction.
Figure 2 provides a conceptual overview of NimbleNet.

4.1 Tasklet Acquisition
Before tasklets can be executed, their binary and metadata
must be acquired. Initially, tasklets are stored in global and
private registries. Those serve as tasklet archives and can
introduce new tasklets into the system. Further, this system
of independent registries natively allows for hierarchical
tasklet organization. This is an advantage, e.g. when, on
the one hand, having a globally hosted registry with stan-
dard tasklets (e.g., drivers, hardware-specific tasklet) and,
on the other hand, having a local registry with confiden-
tial or process-tailored tasklets (e.g., local classifiers in a
factory environment). To improve load balancing, response
time, and overall network load, tasklets can also be loaded
directly from all participating nodes that currently hold the
respective tasklet.

Preloading. Additionally, it is possible to load all required
sub-tasklets of a given tasklet together with its initial acqui-
sition. This increases the initial acquisition time and overall
memory footprint; however, the tasklet can be executed sub-
sequently with almost no overhead.

Acquisition algorithm. The acquisition of a tasklet is per-
formed in accordance with Algorithm 1. Initially, it is verified
whether the tasklet is already present in the local cache. If
this is the case, it is marked as reserved, signifying that the
tasklet is required during subsequent execution and must
not be offloaded. If the tasklet cannot be located in the local
cache, it must be acquired from global/private registries or
other nodes.

As previously stated, for load balancing and response time
purposes and to decrease overall network load, it is desirable
to acquire the tasklet from a node as close as possible to
the requesting node. Therefore, the acquisition process is
divided into three steps. Initially, a tasklet request is broad-
casted to the direct neighbors of the respective node (one hop
away, TTL = 1). Only responses indicating the availability
of a tasklet and timeouts are considered, as it is irrelevant
whether a node lacks the tasklet or is not present in dynamic
environments.

In the event that no direct neighbor has the requested tasklet
in its local cache, a second global broadcast is initiated fol-
lowing the expiration of the local timeout. The node that
responds with the fastest latency is selected as the winner.
This approach has several advantages. Firstly, it reduces
overall response time by eliminating the need to wait for
a specific timeout. Secondly, it preserves locality in mesh
networks by ensuring that responses from closer nodes with
similar hardware reach us more quickly than those from
more distant nodes.

Should both acquisition attempts fail, as a fallback, the cor-
responding global/private registry is via a direct call.

Upon identifying a node with the given tasklet, the exchange
of taskletmetadata ensues. Thismetadata encompasses, among
other elements, the tasklet size and hash. The local cache is
then evaluated to ascertain its capacity to accommodate the
tasklet’s binary. In the event that this capacity is insufficient,
other tasklets that are not required are evicted. Subsequent
to this evaluation, the tasklet binary is exchanged, stored in
the local cache, and marked as reserved.

Algorithm 1 Tasklet acquisition
Input: 𝑖𝑑 ⊲ Tasklet identifier
Output: None | tasklet ⊲ The requested tasklet
1: 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ← 5
2: ℎ𝑜𝑝𝑠𝑛 ← 1
3: 𝑡𝑜𝑢𝑡𝑛 ← 0.1
4: ℎ𝑜𝑝𝑠𝑎 ← 255
5: 𝑡𝑜𝑢𝑡𝑎 ← 0.5
6: while 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ≠ 0 do
7: 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 = 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 − 1
8: if 𝑡_𝑖𝑑 ∈ 𝑐𝑎𝑐ℎ𝑒 then ⊲ Check cache
9: cache.reserve(id) ⊲ Reserve tasklet
10: return 𝑐𝑎𝑐ℎ𝑒 [𝑖𝑑]
11: end if
12: src = gather(𝑖𝑑 ,ℎ𝑜𝑝𝑠𝑛 , 𝑡𝑜𝑢𝑡𝑛) ⊲ Local search
13: if src == None then
14: src = gather(id,ℎ𝑜𝑝𝑠𝑎 , 𝑡𝑜𝑢𝑡𝑎) ⊲ Global search
15: end if
16: if src == None then
17: src = gather_fallback(t_id) ⊲ Fallback
18: end if
19: if src == None then
20: continue
21: end if
22: tasklet_meta = get_metadata(src) ⊲ Get metadata
23: if tasklet_meta.size > cache.free_size then
24: success = cache.free(tasklet_meta.size) ⊲ Evict
25: if not sucess then
26: continue
27: end if
28: end if
29: tasklet = get_tasklet(src) ⊲ Fetch tasklet
30: cache.add(𝑖𝑑 , tasklet_meta, tasklet)
31: cache.reserve(𝑖𝑑) ⊲ Reserve tasklet
32: return tasklet
33: end while
34: return None ⊲ Tasklet could not be acquired

4.2 Tasklet Execution
Once a tasklet has been acquired, it can be executed by a
local executor instance. Different executors support different

NimbleNet: Efficient Micro-Container Distribution and Orchestration for the Extreme Edge

Tasklet
(Chain A)

Sub-Tasklet
(Algorithm a)

Sub-Tasklet
(Algorithm b)

Sub-Tasklet
(Algorithm c)

...Running ...

...

Running

Waiting ... Waiting

Time

*Fetch (c)
Schedule (c)

Save State (A)

Save Return (c)

Schedule (A)
Load State (A)

Figure 3. Exemplary tasklet chain execution on a single
core: The tasklet (Chain A) is comprised of three sub-tasklets
(algorithms, a, b, and c). The execution of the tasklet contin-
ues until an algorithm is reached, at which point execution
is transferred to it. The state of A is saved, the algorithm
is fetched and executed, and then execution is returned to
Chain A.

programming languages and intermediate representations,
allowing for the transparent mixing of programming lan-
guages between a tasklet and its sub-tasklets. This provides
the option to incorporate device-specific, hardware-tailored
sub-tasklets, if needed. Furthermore, tasklets support coop-
erative scheduling. In a simple case, as illustrated in Figure 3,
the top-level tasklet serves as a chain, combining multiple
sub-tasklets, e.g., signal processing algorithms, into a single
execution unit. In this case, after Chain A is initiated, it trans-
fers control flow to other sub-tasklets (Algorithm a, b and
c) and awaits their results. In particular, when only a single
executor is available, context switching must occur between
tasklets. The typical procedure commences with the local
saving of the state of the currently running tasklets. In the
event that this has not already been done, the new tasklet
must then be acquired from another node. Subsequent to
this, the binary of the called tasklet is loaded and the corre-
sponding executor is initialized with the arguments of the
calling tasklet and the binary of the new sub-tasklet.

In our implementation, where tasklets are expressed inWASM
binaries, the actual execution is carried out by the WAMR.
Sub-tasklet execution leverages WASM’s import feature to
transfer execution to the host system. We employ a wrap-
per function to each tasklet call, i.e., native call. The native
handler will store the parameters it is called with and the
sub-tasklet id to call together with the current state of the
execution.

The execution state is completely represented by the WASM
call and operand stacks containing all local variables, the
WASM heap, and the runtime’s state after initialization. This
state is saved in order to improve recovery speed, as it avoids
the need to re-parse the binary and create instances of static
objects, such as populating function reference tables, load-
ing initial values of globals, and binding native addresses to

WASM functions. Subsequently, the native handler transi-
tions to an error state, immediately terminating the WASM
execution.

Upon the initiation of the sub-tasklet execution, the WAMR
executor utilizes the previously allocated memory area to
prevent heap fragmentation, a crucial consideration on con-
strained devices. The stored sub-tasklet arguments are loaded
and execution is initiated.

To restore the top-level tasklet, the saved WASM state is
loaded. The runtime’s configuration is applied, and the operand
stack, the heap, and global values are replaced with those
from the initial state. The call stack is modified by removing
the last stack frame and decrementing the instruction pointer
to restart the sub-tasklet call, i.e., the native call instruction.
By providing the results from the preceding sub-tasklet exe-
cution on invocation, the native handler will promptly return
those values in lieu of entering an error state.

4.3 Tasklet Eviction
Once a tasklet has completed its execution, its reservation flag
is revoked. It is then up to the eviction strategy to determine
whether the tasklet should remain in the local cache or be
evicted. However, this eviction strategy is highly dependent
on the system’s environment.

In many cases, straightforward eviction strategies, such as
least recently used (LRU), least frequently used (LFU), or hy-
brid variants like adaptive replacement cache (ARC)[31], are
sufficient. However, the optimal eviction strategy is highly
dependent on additional features, including tasklet size, last
acquisition time, and the number of neighboring nodes. There-
fore, it is essential for each node to learn optimal eviction
patterns to incorporate these features and more complex
environment-dependent access patterns efficiently. Never-
theless, for the purposes of this paper, we demonstrate the
applicability of the overall approach, even when utilizing
simple eviction strategies like, in our case, simple LFU caches.
Consequently, the subject of sophisticated eviction strategy
optimization is not addressed in this work and may be the
subject of future research.

4.4 Additional Advantages
Even if not further investigated in this paper, the presented
approach has many more application areas, especially in the
extreme edge.

Serverless computing. Due to NimbleNet’s highly sand-
boxed design, tasklets can be transparently executed on other
nodes with the current approach. This opens up the possibil-
ity of efficient task offloading and overall serverless comput-
ing in the extreme edge.

In-network computing. Especially In-network computing,
where data is (pre)processed on the way to its destination,

Müller, Seidler, Ulbrich and Franchi

0 25 50 75 100 125 150 175 200
Tasks

0

2

4

6

8

10

Re
sp

on
se

 ti
m

e
(s

)

Chain overhead
Algorithms

0 25 50 75 100 125 150 175 200
Tasks

0

500

1000

1500

2000

2500

3000

Ta
sk

 si
ze

 (b
yt

es
)

Chain overhead
Algorithms

Figure 4. Evaluation taskset, sorted by response time. The left graph shows the response time, the right graph shows the
tasklet’s size

routing nodes can highly profit from fast reconfiguration
times and small network overhead. Especially in this sce-
nario, it is highly probable, that adjacent nodes share the
same main workload due to load balancing and overprovi-
sioning. Further, when opening up in-network computing
to the public, code has to be delivered from multiple global
code repositories and has to be computed in a sandboxed
way.

On-demand loading. Due to NimbleNet’s design, espe-
cially for the proposed data processing chains, it is possible
due to dynamic loading/unloading of sub-tasklets to execute
chains with an overall larger binary size than the system’s in-
ternal cache. However, the system’s response time increases
due to tasklets not being preloaded in this case.

5 Experimental Setup
In this section, we outline the overall experimental setup.

5.1 Scenario
Our experimental setup follows our use case, which we al-
ready presented in Section 1.1. In our scenario, multiple
robots move pseudorandomly through a factory floor, trig-
gering different sensing tasks on nearby constrained devices
in order to enhance their perception of the environment.

During the simulation, themovement patterns and the thereof
resulting list of called tasklets are generated for deterministic
reasons. During evaluation on the testbed, these call patterns
are then played back on the real testbed in order to simulate
the tasklet calls from the mobile agents on the factory floor.
This ensures that the same tasklet calls will be observed in
simulations and on the testbed.

5.2 Simulation
Prior to execution on our testbed, a scenario is first simulated
on our discrete-event (network) simulator. The simulator is
based on the NetworkX [19] and SimPy [30] libraries.

The simulator represents the number and types of tasklet
executors per node, as well as memory and CPU constraints.
However, it is assumed that networking operations (receiv-
ing, sending, and forwarding packages) can occur in parallel
with the actual orchestration and execution of tasklets. Addi-
tionally, the raw response time of tasklets in the simulation
is adjusted to reflect the computational capabilities of the
target platform. Consequently, the actual response time for
given tasklets is initially measured on the target platform
prior to the system being simulated. The simulation is in-
tended to provide an initial estimation of the performance
of the system and to test and compare different protocols.
Currently, complex interactions and side effects, especially
for highly constrained systems that only utilize one core for
network communication and orchestration, are not simu-
lated due to their highly dependent nature on the system’s
implementation details.

The simulation setup is oriented towards the motivating ex-
ample presented in Section 1.1. The 80m by 60m area is
simulated with an interconnected node grid, hosting sensor
nodes spaced 20m apart as depicted in Figure 1. The Global
Registry is connected to Node 1. Continuous pseudo-random
movement patterns are generated for the autonomous robots
using continuous noise functions. An illustrative example of
a robot trajectory is presented in Figure 5. Upon the robot’s
entry into the node’s 10m radius, a connection is establish-
able, and the robot initiates the execution of its task chains
on that node at regular, uniformly distributed intervals. The
network traffic and the execution on the node are then sim-
ulated. Moreover, the initiated tasks are documented during

NimbleNet: Efficient Micro-Container Distribution and Orchestration for the Extreme Edge

0 20 40 60 80
Floor width (m)

0

10

20

30

40

50

60

Fl
oo

r l
en

gt
h

(m
)

1 2 3 4

5 6 7 8

9 10 11 12

Node1 12
Position R1(t = 0)

0.0

0.2

0.4

0.6

0.8

1.0

R 1
 sp

ee
d

(m
/s

)
Figure 5. Exemplary robot 1 trace over 1800 s on our 80m×
60m shop foor area together with IoT node positions

the simulation and subsequently reproduced during the eval-
uation on real hardware testbed.

5.3 Taskset Generation
Without loss of generality, the response time of tasklets in
our use case is mainly CPU-bound and network-bound. For
later evaluation, two synthetic tasklet sets are generated.

Nimble tasklet set. The initial nimble taskset 𝑇𝑛 comprises
task chains in the form of top-level tasklets combined with
sub-tasklets. These showcase individual but shareable algo-
rithms. During the generation process, all tasklet sizes and re-
sponse times are drawn independently and uniformly. Subse-
quently, the algorithms representing the sub-tasklets are ran-
domly and uniformly distributed to the top-level tasklets. Fur-
thermore, additional response time is distributed uniformly
between tasklet calls to reach the specified total response
time, simulating additional data pre- and post-processing
performed by the top-level tasklet before and after calling
further algorithm sub-tasklets.

Monolithic tasklet set. Secondly, all top-level tasklets from
the nimble tasklet set are converted into monolithic tasksets
𝑇𝑚 by inlining the algorithm code taken recursively from the
respective sub-tasklets. Consequently, they form multiple
large top-level only tasklets while maintaining the same
characteristics in terms of runtime and total binary size.

An exemplary overview of the tasklet-chain composition, its
response time, and tasklet size distribution can be observed
in figure 4.

Core 0 Core 1

RAM
(256 kB)

Flash (2 MB)

WASM
ExecutorLocal Registry

Orchestrator

Tasklet Store
(50 kB RAM-Disk)

(ARM-Cortex M0+)

Node 1 - 12 (based on RPi Pico W)

(ARM-Cortex M0+)

Modem
(CYW43439)

Figure 6. A node’s system implementation overview: Core 0
hosts the orchestrator and the registry, while Core 1 is exclu-
sively dedicated to the WASM Executor. Tasklets are stored
in RAM, while the flash contains static code.

5.4 Testbed
As illustrated in figure 1, our testbed comprises of twelve
constrained nodes and a thirteenth registry node, which is
initially utilized for tasklet storage.

Node hardware. The Raspberry Pi Pico W[38] was selected
as the baseboard for the twelve highly constrained nodes to
align with the hardware platform requirements outlined in
section 3. This device was chosen due to its constrained CPU
(ARM Cortex M0+ operating at 133MHz) and limited mem-
ory (256 kB RAM). Additionally, its two CPU cores facilitate
the execution of tasks in parallel.

The tasklet binaries are stored in a 50 kB RAM disk as de-
picted in figure 6. All additional tasklet meta-information
is stored and managed outside the RAM disk. All software
components required for orchestration and tasklet acquisi-
tion run on Core 0, enabling exclusive tasklet execution on
Core 1.

Network. A semi-virtual software-based networking approach
has been selected for the testbed, offering rapid reconfigura-
bility and reproducibility. All nodes are connected to a central
access point, which serves as the gateway for all traffic be-
tween nodes. Sophisticated routing rules are employed on
the access point to ensure that each node can only reach the
neighbors it is connected to in our network structure, thus
emulating the desired topology. The access point facilitates
the transparent forwarding of packets to the subsequent
node on a designated route within the emulated topology.

In the emulated network, nodes perform the same forward-
ing operations for unicast and broadcast operations as they
would in the real network. Figure 7 depicts an exemplary
message forward pass. As the objective is to compare 𝑇𝑛
and 𝑇𝑚 on their relative acquisition time and memory over-
head only, this represents an ideal compromise between a
real-world hardware setup and fast reconfigurability.

Müller, Seidler, Ulbrich and Franchi

Node
1

Node
2

Node
3

Node
4

Node
1

Node
2

Node
3

Node
4

AP

2.

1. 1.

2.

Real NetworkEmulated mesh network

Figure 7.Message forwarding in the real vs. the emulated
network utilizing a central access point

Table 1. Setup parameters

Parameter Min Max
Duration (s) 3600
Chains 200

Chain RT (s) 0.1 0.5
Chain Mem (bytes) 100 500

Algorithms 50
Algorithm RT (s) 0.01 2

Algorithm Mem (bytes) 100 500
Algorithms per Flow 3 7

Robots 20
Chains per Robot 20
Trigger Interval (s) 9 11
Robot speed (m/s) 0 1
Cache Size (bytes) 32768

6 Evaluation and Results
In this section, NimbleNet is evaluated initially through
simulation and subsequently on the testbed. First, six simu-
lations with parameters as outlined in Table 1 are executed.
Thereafter, the same generated taskset is executed on the
real-world testbed. For the purposes of this analysis, we
have chosen to compare the different response times, net-
work load, and network load distribution in order to gain
an initial impression of the advantages and limitations of
the system on the chosen testbed. Furthermore, the discrep-
ancies between the simulation and testbed results will be
discussed.

6.1 Evaluation Parameters
As illustrated in Table 1, we adhere to the original configura-
tion of 20 robots and 12 nodes, with one registry connected
directly to node 1. Without loss of generality, we further
assume that each agent attempts to initiate a task chain,
i.e., a top-level tasklet, every 9 - 11 s on an arbitrary node
in its immediate vicinity (10m). Each tasklet chain com-
bines three to seven algorithm sub-tasklets. For algorithm

sub-tasklets, we assume a response time between 0.01 and
2 s to accommodate both short-running tasklets and rela-
tively long-running tasklets, including complex classifiers.
Similarly, the algorithm size lies within our case between
100 and 500 bytes. This encompasses algorithms of vary-
ing complexity, from simple sorting and signal processing
to more memory-intensive algorithms such as small deep
neural network (DNN) classifiers. Overall, we observe an
expected average algorithm size and response time of 300
bytes and ≈ 1 s, respectively. For the complete tasklet chain,
we obtain an average expected size and response time of
1800 bytes and ≈ 5.3 s, respectively, not including overheads
due to tasklet acquisition and calls. Consequently, the same
response time and size estimates are obtained when convert-
ing the tasklet chains into monolithic tasklets. In particular,
the tasklet sizes were chosen to be relatively small in order
to demonstrate that even with small algorithms, NimbleNet
still outperforms the monolithic approach.

Tasklet share. As anticipated, when tasklets are not reused
between chains, NimbleNet performs slightly worse than
the monolithic approach due to additional communication
overhead. However, the load-balancing advantages remain.
Conversely, reusing almost all tasklets between all chains
leads to NimbleNet vastly outperforming the monolithic
approach. This, however, is not a realistic scenario. There-
fore, we proceeded with a more realistic scenario in which
200 distinct chains were established, each sharing 50 distinct
algorithms. Each robot was assigned 20 random chains, re-
sulting in a balanced distribution of shared and unique flows
between robots.

Total tasklet calls. As previously stated in this evaluation
scenario, agents move at speeds between 0 and 1 m/s due
to the potential for carrying heavy loads and due to safety
restrictions imposed by the environment. Given the nature
of this scenario, there exist instances where agents have no
direct contact with any node. This phenomenon occurs in
≈23,% of all tasklet calls, resulting in a reduction in the total
number of executed chains/monolithic tasklets from ≈ 7200
down to ≈ 5470.

6.2 Network Traffic Distribution
Figure 8 depicts the total network traffic, the sum of sent (TX)
and received (RX) bytes, of each individual node running
both NimbleNet and monolithic programs for one hour. The
left graph presents the simulation results, while the right
graph displays the results from our real-world testbed. The
measurements demonstrate that the sent bytes for node 1 are
reduced by a factor of four and five for the simulation and
test-bed measurements, respectively, when comparing the
nimble and monolithic approaches. Overall, as can be seen,
the total network traffic is more evenly distributed between
all nodes. This illustrates the dispersion of the source for
programs when queried. The data received in both cases is

NimbleNet: Efficient Micro-Container Distribution and Orchestration for the Extreme Edge

TX: 5.0 MiB
RX: 1.2 MiB

1

TX: 2.3 MiB
RX: 1006.4 KiB

2

TX: 989.2 KiB
RX: 885.0 KiB

3

TX: 68.9 KiB
RX: 504.8 KiB

4

TX: 1017.8 KiB
RX: 796.3 KiB

5

TX: 499.6 KiB
RX: 998.2 KiB

6

TX: 523.9 KiB
RX: 1.1 MiB

7

TX: 67.0 KiB
RX: 554.1 KiB

8

TX: 72.4 KiB
RX: 501.7 KiB

9

TX: 69.0 KiB
RX: 590.2 KiB

10

TX: 63.3 KiB
RX: 550.3 KiB

11

TX: 67.8 KiB
RX: 489.6 KiB

12

Monolithic

TX: 1.1 MiB
RX: 1.2 MiB

1

TX: 998.9 KiB
RX: 1006.4 KiB

2

TX: 872.2 KiB
RX: 885.0 KiB

3

TX: 393.0 KiB
RX: 504.8 KiB

4

TX: 782.9 KiB
RX: 796.3 KiB

5

TX: 1.0 MiB
RX: 998.2 KiB

6

TX: 1.2 MiB
RX: 1.1 MiB

7

TX: 503.6 KiB
RX: 554.1 KiB

8

TX: 370.9 KiB
RX: 501.7 KiB

9

TX: 561.9 KiB
RX: 590.2 KiB

10

TX: 536.5 KiB
RX: 550.3 KiB

11

TX: 374.9 KiB
RX: 489.6 KiB

12

Nimble

0.0 B 2.0 MiB 4.0 MiB 6.0 MiB 8.0 MiB 10.0 MiB
Total Network Traffic Simulation

TX: 5.8 MiB
RX: 1.4 MiB

1

TX: 2.3 MiB
RX: 1.0 MiB

2

TX: 430.1 KiB
RX: 955.4 KiB

3

TX: 16.4 KiB
RX: 534.5 KiB

4

TX: 1.6 MiB
RX: 842.8 KiB

5

TX: 759.8 KiB
RX: 1.0 MiB

6

TX: 204.8 KiB
RX: 1.1 MiB

7

TX: 9.2 KiB
RX: 601.1 KiB

8

TX: 160.8 KiB
RX: 529.4 KiB

9

TX: 298.0 KiB
RX: 624.6 KiB

10

TX: 170.0 KiB
RX: 591.9 KiB

11

TX: 12.3 KiB
RX: 508.9 KiB

12

Monolithic

TX: 1.1 MiB
RX: 1.2 MiB

1

TX: 1.2 MiB
RX: 1.3 MiB

2

TX: 1.0 MiB
RX: 1.0 MiB

3

TX: 416.8 KiB
RX: 579.6 KiB

4

TX: 788.5 KiB
RX: 878.6 KiB

5

TX: 1.0 MiB
RX: 1.0 MiB

6

TX: 1.0 MiB
RX: 1.1 MiB

7

TX: 502.8 KiB
RX: 606.2 KiB

8

TX: 401.4 KiB
RX: 593.9 KiB

9

TX: 501.8 KiB
RX: 600.1 KiB

10

TX: 483.3 KiB
RX: 577.5 KiB

11

TX: 426.0 KiB
RX: 579.6 KiB

12

Nimble

2.0 MiB 4.0 MiB 6.0 MiB 8.0 MiB 10.0 MiB
Total Network Traffic Testbed

Figure 8. Load distribution simulations monolithic and nimble approach with the simulation results depicted on the left and
the tesbed results shown on the right.

0 500 1000 1500 2000 2500 3000 3500
Time (s)

0.0 B

5.0 MiB

10.0 MiB

15.0 MiB

20.0 MiB

25.0 MiB

30.0 MiB

Co
m

bi
ne

d
Tr

af
fic

 A
ll

No
de

s S
im

ul
at

io
n

Total Nimble
Total TX Nimble
Total RX Nimble
Total Monolithic
Total TX Monolithic
Total RX Monolithic

0 500 1000 1500 2000 2500 3000 3500
Time (s)

0.0 B

5.0 MiB

10.0 MiB

15.0 MiB

20.0 MiB

25.0 MiB

30.0 MiB
Co

m
bi

ne
d

Tr
af

fic
 A

ll
No

de
s T

es
tb

ed Total Nimble
Total TX Nimble
Total RX Nimble
Total Monolithic
Total TX Monolithic
Total RX Monolithic

Figure 9. Total network load simulations monolithic and nimble approach six simulations

equivalent due to the identical programs being utilized in
both instances. The difference between the simulation and
the testbed results can be attributed to two major causes.

Housekeeping packages. In the simulation, the network
traffic is exclusively related to the NimbleNet. In contrast,
in the real testbed, additional messages are distributed within
the network for housekeeping purposes. These include sim-
ple ARP, DHCP, and NTP messages, as well as more complex
routing protocol messages.

Non determinism. Nevertheless, these housekeeping mes-
sages represent a relatively minor component of the overall
additional network traffic. In the simulation, connections are
always assumed to have no package drop. However, this is

not the case in the testbed, where, during package bursts,
packages can be dropped due to the limited forwarding ca-
pacity of highly constrained nodes. These packages must
then be retransmitted, which increases the overall network
traffic slightly. The most significant impact on the overall
network traffic is the result of non-determinism in the tasklet
acquisition process. As previously outlined in section 4, for
our greedy tasklet acquisition approach, we assume that the
response time for a tasklet acquisition request is highly corre-
lated with the hop distance to the respective node in relation
to the requesting node. However, due to the constrained na-
ture of nodes, there are instances where request messages
are dropped or not answered in time. Consequently, in the
real testbed, the response from nodes situated at a greater

Müller, Seidler, Ulbrich and Franchi

distance can reach the requesting node in advance of the
response from local nodes, resulting in an increase in over-
all network traffic. As these effects are observed in both
NimbleNet and the monolithic approach, this does not af-
fect the conclusions drawn from the findings.

6.3 Total Network Toad
Figure 9 depicts the total network load over time, with the
left graph representing the simulation and the right graph
representing the testbed. It can be observed that the cumula-
tive load of the NimbleNet approach is slightly higher in the
initial phase. This is due to the additional routing and query-
ing overhead that has been introduced. The break-even point
is reached at 𝑡 = 300 s and 𝑡 = 400 s, respectively, for the
simulation and the testbed. At this point, the smaller caching
units and the nearest neighbor acquisition begin to demon-
strate their advantage. Moreover, the observed trend in the
simulation can be found in the real-world implementation.
As previously stated in section 6.2, the real-world testbed
exhibits a slight increase in network traffic compared to the
simulation.

6.4 Response Times
NimbleNet’s enhanced caching functionality and nearest
neighbor acquisition enable faster tasklet acquisition due
to successful requests on neighboring nodes. Consequently,
the overall response time is reduced. Figure 10 illustrates
this phenomenon by depicting the mean response time of
all completed tasklets in a sliding window of 100 s. It can
be observed that while the raw tasklet execution times are
nearly equivalent, the total time for acquisition is faster
for the NimbleNet approach compared to the monolithic
approach. This phenomenon is primarily caused by the long
hop delay of 100ms per hop in this mesh scenario. However,
when limited by link speed (e.g., when using larger tasklets),
the same effect occurs. Further, the marginal discrepancy
in execution time for NimbleNet of ≈30ms on average is
attributable to the necessity of executing a greater number
of code loadings and setups. Furthermore, the advantage of
caching is corroborated by the previous measurement, which
shows the same break-even point after 300 and 400 s.

Figure 10 illustrates that both the simulation and the actual
execution on the testbed demonstrate a similar initial pat-
tern, where the overall response times significantly increase
until the majority of the tasks are propagated into the system
itself. After approximately 400 s for the testbed, the response
time improvements resulting from the nearest neighbor ac-
quisition and local caching become evident, and NimbleNet
outperforms the monolithic approach most of the time.

7 Conclusion
This paper presents NimbleNet, a lightweight and platform-
independent distribution and orchestration approach target-
ing highly constrained devices attempting to reuse existing,
process-tailored IoT devices to assist general-purpose robots
in cellular manufacturing processes. The paper demonstrates
how to address heterogeneous device architectures and spa-
tial isolation. It also utilizes the process dependency to em-
ploy efficient nearest-neighbor caching for program acquisi-
tion. We present a novel approach to intermittent execution
of WASM programs and to save and restore program state.
Extensive evaluation results were obtained from a network
simulation and confirmed by a real-world testbed imple-
mented on Rasbperry Pi Pico W microcontrollers with only
a few hundred kilobytes of RAM.

The results of the measurements demonstrated that the cen-
tral node experienced a reduction in communication load and
that communication among the nodes became more equal.
Moreover, the network usage was generally lower and the
response times were faster than those observed in the mono-
lithic approach. These findings indicate that NimbleNet is
well-suited to address the challenges presented and to fulfill
the requirements of the use case.

References
[1] Apt: Advanced Package Tool. https://wiki.debian.org/

PackageManagement.
[2] ContikiOS: The Dynamic Loader. https://github.com/contiki-os/

contiki/wiki/The-dynamic-loader.
[3] Nordic Semiconductor Device Firmware Update. https:

//infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.
infocenter.sdk5.v15.0.0%2Flib_bootloader_dfu_process.html.

[4] Texas Instruments Over the Air Download (OAD). https://software-
dl.ti.com/lprf/sdg-latest/html/oad-ble-stack-3.x/oad.html.

[5] YUM: Yellow Dog Updater. http://yum.baseurl.org/.
[6] Zephyr Linkable Loadable Extensions (LLEXT). https://docs.

zephyrproject.org/latest/services/llext/index.html.
[7] 2012. LwM2M. http://openmobilealliance.org/release/

LightweightM2M/V1_0-20121127-C/OMA-AD-LightweightM2M-
V1_0-20121127-C.pdf.

[8] 2022. Sparrow. https://github.com/sics-iot/sparrow.
[9] 2024. mcumgr. The Apache Software Foundation.
[10] Gul Agha. 1986. Actors: a model of concurrent computation in distributed

systems. MIT press.
[11] Nuha Alshuqayran, Nour Ali, and Roger Evans. 2016. A Systematic

Mapping Study in Microservice Architecture. In 2016 IEEE 9th Inter-
national Conference on Service-Oriented Computing and Applications
(SOCA). 44–51. https://doi.org/10.1109/SOCA.2016.15

[12] AUTOSAR. 2013. Specification of Operating System (Version 5.1.0).
[13] Fatima Zohra Benhamida, Abdelmadjid Bouabdellah, and Yacine

Challal. 2017. Using delay tolerant network for the Internet of
Things: Opportunities and challenges. In 2017 8th International Con-
ference on Information and Communication Systems (ICICS). 252–257.
https://doi.org/10.1109/IACS.2017.7921980

[14] Zakaria Benomar, Francesco Longo, Giovanni Merlino, and Antonio
Puliafito. 2020. Cloud-Based Enabling Mechanisms for Container
Deployment and Migration at the Network Edge. ACM Transactions
on Internet Technology 20, 3 (June 2020), 25:1–25:28. https://doi.org/

https://wiki.debian.org/PackageManagement
https://wiki.debian.org/PackageManagement
https://github.com/contiki-os/contiki/wiki/The-dynamic-loader
https://github.com/contiki-os/contiki/wiki/The-dynamic-loader
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v15.0.0%2Flib_bootloader_dfu_process.html
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v15.0.0%2Flib_bootloader_dfu_process.html
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v15.0.0%2Flib_bootloader_dfu_process.html
https://software-dl.ti.com/lprf/sdg-latest/html/oad-ble-stack-3.x/oad.html
https://software-dl.ti.com/lprf/sdg-latest/html/oad-ble-stack-3.x/oad.html
http://yum.baseurl.org/
https://docs.zephyrproject.org/latest/services/llext/index.html
https://docs.zephyrproject.org/latest/services/llext/index.html
http://openmobilealliance.org/release/LightweightM2M/V1_0-20121127-C/OMA-AD-LightweightM2M-V1_0-20121127-C.pdf
http://openmobilealliance.org/release/LightweightM2M/V1_0-20121127-C/OMA-AD-LightweightM2M-V1_0-20121127-C.pdf
http://openmobilealliance.org/release/LightweightM2M/V1_0-20121127-C/OMA-AD-LightweightM2M-V1_0-20121127-C.pdf
https://github.com/sics-iot/sparrow
https://doi.org/10.1109/SOCA.2016.15
https://doi.org/10.1109/IACS.2017.7921980
https://doi.org/10.1145/3380955
https://doi.org/10.1145/3380955

NimbleNet: Efficient Micro-Container Distribution and Orchestration for the Extreme Edge

0 500 1000 1500 2000 2500 3000 3500
Time (s)

0

1

2

3

4

5

6

7

Re
sp

on
se

 ti
m

e
(s

)

Acq. + Exec. Nimble
Acq. + Exec. Monolithic
Executor Nimble
Executor Monolithic

0 500 1000 1500 2000 2500 3000 3500
Time (s)

0

1

2

3

4

5

6

7

Re
sp

on
se

 ti
m

e
(s

)

Acq. + Exec. Nimble
Acq. + Exec. Monolithic
Executor Nimble
Executor Monolithic

Figure 10. Response time testbed monolithic and nimble approach (sliding window 100 s)

10.1145/3380955
[15] Justin Cappos, Trishank Karthik Kuppusamy, shua Lock, ina Moore,

and Lukas Pühringer. 2023. The Update Framework Specification.
https://theupdateframework.github.io/specification/v1.0.33/.

[16] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong.
2001. Freenet: A Distributed Anonymous Information Storage and
Retrieval System. In Designing Privacy Enhancing Technologies: Inter-
national Workshop on Design Issues in Anonymity and Unobservability
Berkeley, CA, USA, July 25–26, 2000 Proceedings, Hannes Federrath
(Ed.). Springer, Berlin, Heidelberg, 46–66. https://doi.org/10.1007/3-
540-44702-4_4

[17] Julien Forget, Frédéric Boniol, Emmanuel Grolleau, David Lesens,
and Claire Pagetti. 2010. Scheduling Dependent Periodic Tasks with-
out Synchronization Mechanisms. In 2010 16th IEEE Real-Time and
Embedded Technology and Applications Symposium. IEEE. https:
//doi.org/10.1109/RTAS.2010.26

[18] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer,
Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai, and JF
Bastien. 2017. Bringing the Web up to Speed with WebAssem-
bly. In Proceedings of the 38th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI 2017). Asso-
ciation for Computing Machinery, New York, NY, USA, 185–200.
https://doi.org/10.1145/3062341.3062363

[19] Aric Hagberg, Pieter Swart, and Daniel S Chult. 2008. Exploring
network structure, dynamics, and function using NetworkX. Technical
Report. Los Alamos National Lab.(LANL), Los Alamos, NM (United
States).

[20] José L. Hernández-Ramos, Gianmarco Baldini, Sara N. Matheu, and
Antonio Skarmeta. 2020. Updating IoT Devices: Challenges and Po-
tential Approaches. In 2020 Global Internet of Things Summit (GIoTS).
1–5. https://doi.org/10.1109/GIOTS49054.2020.9119514

[21] Ding-Yong Hong, Chun-Chen Hsu, Pen-Chung Yew, Jan-Jan Wu, Wei-
Chung Hsu, Pangfeng Liu, Chien-Min Wang, and Yeh-Ching Chung.
2012. HQEMU: A Multi-Threaded and Retargetable Dynamic Bi-
nary Translator on Multicores. In Proceedings of the Tenth Interna-
tional Symposium on Code Generation and Optimization (CGO ’12).
Association for Computing Machinery, New York, NY, USA, 104–113.
https://doi.org/10.1145/2259016.2259030

[22] Jonathan W. Hui and David Culler. 2004. The Dynamic Behavior of a
Data Dissemination Protocol for Network Programming at Scale. In

Proceedings of the 2nd International Conference on Embedded Networked
Sensor Systems (SenSys ’04). Association for Computing Machinery,
New York, NY, USA, 81–94. https://doi.org/10.1145/1031495.1031506

[23] IAB and Gonzalo Camarillo. 2009. Peer-to-Peer (P2P) Architecture:
Definition, Taxonomies, Examples, and Applicability. Request for Com-
ments RFC 5694. Internet Engineering Task Force. https://doi.org/10.
17487/RFC5694

[24] Simon Kramer, Dirk Ziegenbein, and Arne Hamann. 2015. Real World
Automotive Benchmarks for Free. In Proceedings of the 6th International
Workshop on Analysis Tools and Methodologies for Embedded and Real-
time Systems (WATERS).

[25] Marius Kreutzer, Maximilian Leonhard Seidler, Konstantin Dudzik,
Victor Pazmino Betancourt, and Jürgen Becker. 2024. Migration of
Isolated Application Across Heterogeneous Edge Systems. In 2024
IEEE 8th International Conference on Fog and Edge Computing (ICFEC).
Philadelphia, USA, 1–7.

[26] Antonio Langiu, Carlo Alberto Boano, Markus Schuß, and Kay Römer.
2019. UpKit: An Open-Source, Portable, and Lightweight Update
Framework for Constrained IoT Devices. In 2019 IEEE 39th Interna-
tional Conference on Distributed Computing Systems (ICDCS). 2101–
2112. https://doi.org/10.1109/ICDCS.2019.00207

[27] Teemu Laukkarinen, Lasse Määttä, Jukka Suhonen, Timo D. Hämäläi-
nen, and Marko Hännikäinen. 2011. Design and Implementation of a
Firmware Update Protocol for Resource Constrained Wireless Sensor
Networks. International Journal of Embedded and Real-Time Commu-
nication Systems (IJERTCS) 2, 3 (2011), 50–68. https://doi.org/10.4018/
jertcs.2011070103

[28] N. Leibowitz, M. Ripeanu, and A. Wierzbicki. 2003. Deconstructing
the Kazaa Network. In Proceedings the Third IEEE Workshop on Internet
Applications. WIAPP 2003. 112–120. https://doi.org/10.1109/WIAPP.
2003.1210295

[29] Borui Li, Wei Dong, and Yi Gao. 2021. WiProg: A WebAssembly-
based Approach to Integrated IoT Programming. In IEEE INFOCOM
2021 - IEEE Conference on Computer Communications. 1–10. https:
//doi.org/10.1109/INFOCOM42981.2021.9488424

[30] Norm Matloff. 2008. Introduction to discrete-event simulation and the
simpy language. Davis, CA. Dept of Computer Science. University of
California at Davis. Retrieved on August 2, 2009 (2008), 1–33.

[31] Nimrod Megiddo and Dharmendra S Modha. 2003. {ARC}: A {Self-
Tuning}, low overhead replacement cache. In 2nd USENIX Conference

https://doi.org/10.1145/3380955
https://theupdateframework.github.io/specification/v1.0.33/
https://doi.org/10.1007/3-540-44702-4_4
https://doi.org/10.1007/3-540-44702-4_4
https://doi.org/10.1109/RTAS.2010.26
https://doi.org/10.1109/RTAS.2010.26
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1109/GIOTS49054.2020.9119514
https://doi.org/10.1145/2259016.2259030
https://doi.org/10.1145/1031495.1031506
https://doi.org/10.17487/RFC5694
https://doi.org/10.17487/RFC5694
https://doi.org/10.1109/ICDCS.2019.00207
https://doi.org/10.4018/jertcs.2011070103
https://doi.org/10.4018/jertcs.2011070103
https://doi.org/10.1109/WIAPP.2003.1210295
https://doi.org/10.1109/WIAPP.2003.1210295
https://doi.org/10.1109/INFOCOM42981.2021.9488424
https://doi.org/10.1109/INFOCOM42981.2021.9488424

Müller, Seidler, Ulbrich and Franchi

on File and Storage Technologies (FAST 03).
[32] Hassan Naderi Mohammad Reza Abbasifard, Bijan Ghahremani. 2014.

A Survey on Nearest Neighbor Search Methods. International Journal
of Computer Applications 95, 25 (June 2014), 39–52. https://doi.org/10.
5120/16754-7073

[33] Joy Mukherjee and Srinidhi Varadarajan. 2005. Develop Once Deploy
Anywhere Achieving Adaptivity with a Runtime Linker/Loader Frame-
work. In Proceedings of the 4th Workshop on Reflective and Adaptive
Middleware Systems (ARM ’05). Association for Computing Machinery,
New York, NY, USA. https://doi.org/10.1145/1101516.1101517

[34] Manuel Nieke, Lennart Almstedt, and Rüdiger Kapitza. 2021.
Edgedancer: Secure Mobile WebAssembly Services on the Edge. In Pro-
ceedings of the 4th International Workshop on Edge Systems, Analytics
and Networking (EdgeSys ’21). Association for Computing Machinery,
New York, NY, USA, 13–18. https://doi.org/10.1145/3434770.3459731

[35] Mohammed Nurul-Hoque and Khaled A. Harras. 2021. Nomad: Cross-
platform Computational Offloading and Migration in Femtoclouds
Using WebAssembly. In 2021 IEEE International Conference on Cloud
Engineering (IC2E). 168–178. https://doi.org/10.1109/IC2E52221.2021.
00032

[36] Ali Ouacha. 2021. Virtual Machine Migration in IoT Based Predicted
Available Bandwidth and Lifetime of Links. International Journal of
Computing and Digital Systems 10 (April 2021). https://doi.org/10.
12785/ijcds/110104

[37] Daniele Pizzolli, Giuseppe Cossu, Daniele Santoro, Luca Capra,
Corentin Dupont, Dukas Charalampos, Francesco De Pellegrini, Fabio
Antonelli, and Silvio Cretti. 2016. Cloud4IoT: A Heterogeneous, Dis-
tributed and Autonomic Cloud Platform for the IoT. In 2016 IEEE
International Conference on Cloud Computing Technology and Science
(CloudCom). 476–479. https://doi.org/10.1109/CloudCom.2016.0082

[38] Raspberry Pi Ltd. Raspberry Pi Pico and Pico W. https:
//www.raspberrypi.com/documentation/microcontrollers/raspberry-
pi-pico.html

[39] Kristina Sahlmann, Vera Clemens, Michael Nowak, and Bettina Schnor.
2021. MUP: Simplifying Secure Over-The-Air Update with MQTT
for Constrained IoT Devices. Sensors 21, 1 (Jan. 2021), 10. https:
//doi.org/10.3390/s21010010

[40] Justin Samuel, Nick Mathewson, Justin Cappos, and Roger Dingledine.
2010. Survivable Key Compromise in Software Update Systems. In
Proceedings of the 17th ACM Conference on Computer and Communica-
tions Security (CCS ’10). Association for Computing Machinery, New
York, NY, USA, 61–72. https://doi.org/10.1145/1866307.1866315

[41] Dominik Schafer, Janick Edinger, Justin Mazzola Paluska, Sebastian
VanSyckel, and Christian Becker. 2016. Tasklets: "Better than Best-
Effort" Computing. In 2016 25th International Conference on Computer
Communication and Networks (ICCCN). 1–11. https://doi.org/10.1109/
ICCCN.2016.7568580

[42] Ian J. Taylor and Andrew B. Harrison. 2009. Gnutella. In From P2P
and Grids to Services on the Web: Evolving Distributed Communities,
Ian J. Taylor and Andrew B. Harrison (Eds.). Springer London, London,
181–196. https://doi.org/10.1007/978-1-84800-123-7_10

[43] Jürgen Teich, Jörg Henkel, Andreas Herkersdorf, Doris Schmitt-
Landsiedel, Wolfgang Schröder-Preikschat, and Gregor Snelting. 2011.
Invasive computing: An overview. Multiprocessor system-on-chip:
hardware design and tool integration (2011), 241–268.

[44] Stefan Wallentowitz, Bastian Kersting, and Dan Mihai Dumitriu.
2022. Potential of WebAssembly for Embedded Systems. In 2022
11th Mediterranean Conference on Embedded Computing (MECO). 1–4.
https://doi.org/10.1109/MECO55406.2022.9797106

[45] Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. 2021.
A comprehensive survey and experimental comparison of graph-based
approximate nearest neighbor search. Proceedings of VLDB Endow. 14,
11 (jul 2021), 1964–1978. https://doi.org/10.14778/3476249.3476255

[46] Zhong Wang, Daniel Sun, Guangtao Xue, Shiyou Qian, Guoqiang
Li, and Minglu Li. 2019. Ada-Things: An Adaptive Virtual Machine
Monitoring andMigration Strategy for Internet of Things Applications.
J. Parallel and Distrib. Comput. 132 (Oct. 2019), 164–176. https://doi.
org/10.1016/j.jpdc.2018.06.009

[47] Chao Wu, Yaoxue Zhang, and Yongheng Deng. 2019. Toward Fast
and Distributed Computation Migration System for Edge Computing
in IoT. IEEE Internet of Things Journal 6, 6 (Dec. 2019), 10041–10052.
https://doi.org/10.1109/JIOT.2019.2935120

[48] Abdullah Yousafzai, Ibrar Yaqoob, Muhammad Imran, Abdullah Gani,
and Rafidah Md Noor. 2020. Process Migration-Based Computational
Offloading Framework for IoT-Supported Mobile Edge/Cloud Com-
puting. IEEE Internet of Things Journal 7, 5 (May 2020), 4171–4182.
https://doi.org/10.1109/JIOT.2019.2943176

Received 31 May 2024

https://doi.org/10.5120/16754-7073
https://doi.org/10.5120/16754-7073
https://doi.org/10.1145/1101516.1101517
https://doi.org/10.1145/3434770.3459731
https://doi.org/10.1109/IC2E52221.2021.00032
https://doi.org/10.1109/IC2E52221.2021.00032
https://doi.org/10.12785/ijcds/110104
https://doi.org/10.12785/ijcds/110104
https://doi.org/10.1109/CloudCom.2016.0082
https://www.raspberrypi.com/documentation/microcontrollers/raspberry-pi-pico.html
https://www.raspberrypi.com/documentation/microcontrollers/raspberry-pi-pico.html
https://www.raspberrypi.com/documentation/microcontrollers/raspberry-pi-pico.html
https://doi.org/10.3390/s21010010
https://doi.org/10.3390/s21010010
https://doi.org/10.1145/1866307.1866315
https://doi.org/10.1109/ICCCN.2016.7568580
https://doi.org/10.1109/ICCCN.2016.7568580
https://doi.org/10.1007/978-1-84800-123-7_10
https://doi.org/10.1109/MECO55406.2022.9797106
https://doi.org/10.14778/3476249.3476255
https://doi.org/10.1016/j.jpdc.2018.06.009
https://doi.org/10.1016/j.jpdc.2018.06.009
https://doi.org/10.1109/JIOT.2019.2935120
https://doi.org/10.1109/JIOT.2019.2943176

	Abstract
	1 Introduction
	1.1 Motivating Example
	1.2 Problem Statement
	1.3 Contribution and Outline

	2 Related Work
	3 System Model and Background
	3.1 Hardware Platform
	3.2 Software Framework
	3.3 Tasklets
	3.4 Taskset

	4 Approach
	4.1 Tasklet Acquisition
	4.2 Tasklet Execution
	4.3 Tasklet Eviction
	4.4 Additional Advantages

	5 Experimental Setup
	5.1 Scenario
	5.2 Simulation
	5.3 Taskset Generation
	5.4 Testbed

	6 Evaluation and Results
	6.1 Evaluation Parameters
	6.2 Network Traffic Distribution
	6.3 Total Network Toad
	6.4 Response Times

	7 Conclusion
	References

