Constrained Data-Age with Job-Level Dependencies:
How to Reconcile Tight Bounds and Overheads

Tobias Klaus*, Matthias Becker", Wolfgang Schroder-Preikschat®, Peter Ulbrich?
*Friedrich-Alexander-Universitdt Erlangen-Niirnberg (FAU), Germany
{klaus, wosch}@cs.fau.de
"KTH Royal Institute of Technology, Sweden
mabecker @kth.se
Technische Universitit Dortmund, Germany
peter.ulbrich@tu-dortmund.de

Abstract—Many industrial real-time systems rely on the im-
plicit register communication paradigm to minimize overheads
and ease distributed development. Here, tasks follow a simple
input-processing-output scheme, and data is passed without
synchronization by the last-is-best semantics. In these systems,
the age of data is the primary real-time objective, which is defined
by data-flow chains that span from the system’s inputs to outputs.
Consequently, a real-time analysis aims to provide guarantees on
worst-case data age. In general, there are two main approaches:
(1) Task-level scheduling such that inter-task communication is
arranged at the beginning and end of a task’s execution interval,
which guarantees a deterministic yet highly pessimistic data age.
(2) Job-level dependencies (JLD) that are added at critical points
in the schedule to link specific job instances of tasks of a multi-
rate data-flow chain, which provides tighter upper bounds on
data ages. However, the drawback is that JLDs induce substantial
synchronization overheads, impact the overall schedulability, and
are much more challenging to implement.

In this paper, we address the trade-off between tight data-
age guarantees, synchronization overheads, and schedulability
in multi-core settings. Our proposed solution is to combine the
potential of job-level optimization with the determinism and low
overheads of static, task-level approaches. Therefore, we present
a novel execution model to efficiently map data-age constrained
tasksets with job-level dependencies on event-triggered systems
by automated system analysis and transformation. Experimental
results of an extensive real-world case study substantiate that our
approach can further tighten data-age bounds, reduce overheads,
and ease schedulability.

I. INTRODUCTION

Practical real-time system development is often character-
ized by non-technical constraints that prevent the use of the
best available concepts and techniques. Therefore an example
and the starting point of this paper is the so-called concurrent
engineering paradigm [1], which is widely used in the automo-
tive industry. In essence, the numerous functions of a car are
developed by different vendors and eventually integrated into
a whole system by the manufacturer. The economic benefit
of this approach is that development can take place largely
independently. However, this loose coupling typically is con-
tinued in the system design with numerous (periodic) tasks
that follow the input-processing-output scheme. For simplicity,
data exchange between the software components is done via
implicit register communication (last-is-best semantics).

However, many application domains require strong timing
guarantees on the propagation of data through a chain of tasks,

i.e., data chains [2]-[5]. In particular, automatic control, as the
predominant application scenario, is highly sensitive to timing
variations [6] due to its connection to the physical world. For
example, the age of sensor values has a detrimental impact
on the achievable control performance. In a broader context,
the fundamental problem is that precedence constraints and
dependencies inherent to the application are sacrificed for
simplicity and not explicitly implemented. As a result, estab-
lished scheduling and timing analysis methods either cannot be
applied, or they are subject to a high degree of pessimism. For
example, the response time of the output task has no bearing
on the age of the input data that was used to compute the
setpoint in the first place. The decisive factor in systems with
implicit register communication is instead the data-propagation
delay, which only loosely correlates with traditional scheduling
parameters (e. g., period, deadline) of individual tasks. In every
step of the processing chain, it must ultimately be assumed
that the data of the predecessor has just reached its maximum
age when read. This effect is especially pronounced in multi-
rate multi-stage chains that cause complex over- and under-
sampling situations.

Accordingly, there is a large body of research (cf. Sec. II)
that refers to the data age as a real-time objective. These
works aim, analog to worst-case response time analysis, to
provide guarantees on worst-case age of data. In general,
there are three main approaches: (1) An intuitive solution
is to align the communication of tasks such that adverse
overlapping is impossible. A well-known representative of this
type is the Logical Execution Time (LET) paradigm [7]-[9],
which fixes data exchange according to the deadlines and
WCET of tasks. As a result, the average case corresponds
to the worst case, which guarantees a deterministic yet highly
pessimistic data age. (2) Another possibility is to reintroduce
precedence constraints [10]-[12] at critical points to link
specific job instances of a data chain. These, often called
job-level dependencies (JLDs), serialize the communication
whenever there is a possibility that predecessors could overtake
their successors according to traditional scheduling criteria;
otherwise, the tasks remain independent. Accordingly, JLDs
can guarantee the latest data and thus provide tighter upper
bounds on data ages. The drawback, however, is that they
require significant changes to the implementation of the system

and induce substantial synchronization overheads, which in
turn thwarts the simplicity of implicit register communication.
Anticipating our evaluation illustrates the underlying issue:
Given the example four-task chain in Figure 1, the maximum
data age is 60 (17 = 12, 743 uses data from 7y ;). Adding
JLDs to the chain allows for tightening the bound to 36. How-
ever, this improvement is accompanied by synchronization
overheads that, even worse, substantially impact overapproxi-
mations of static WCET analysis. One reason is the generally
poor analyzability of system calls [13], [14], in particular,
in generic operating systems (e.g., FreeRTOS, Linux) with
reconfiguration capabilities [15], [16]. For example, Schuster
et al. observed overapproximation of up to 178 percent in
their WCET analysis of FreeRTOS’s system calls. For the
previous example, we found an increase in overall utilization
by 2.27 base points, measured on a Cortex-M4 @ 80 Mhz using
FreeRTOS, by mere two semaphores necessary to implement
the above example. We show the magnitude of necessary
synchronization that can be found in real-world scenarios in
Section VI. (3) Such overheads can be avoided by implicit syn-
chronization and the adjustment of release times and deadlines
of individual task instants. There are implementations of this
schema for time-triggered multi-core systems [12] as well as
for event-triggered single-core settings [10], [17]. Both do not
apply to our system model of data chains on a shared priority-
driven multi-core executive.

A. Problem Statement

This paper’s research objective is the specific require-
ments of multilevel, potentially crossing data chains with
hard maximum data age constraints. Our primary concern
is the poor temporal analyzability of such chains and the
resulting pessimistic bounds. The fundamental challenge is in
the development paradigm of such systems, which aims at
decoupling of tasks (i.e., application components) and mini-
mizing development and runtime costs and, therefore, typically
refrains from explicit task coordination—which may also be
hard to generalize for complicated product lines. Existing
approaches so far compromise on data-age predictability, run-
time overheads, and overall schedulability or require recurring
manual intervention. We believe that this is due to a lack of
analysis and exploitation of data chains’ specific properties, a
shortcoming that is especially pronounced for crossing chains
and multi-core settings.

In our work, we focus on practical aspects, with the primary
goal to develop techniques that can be implemented in tools
that are useful for developers. Our proposed solution is to
combine the potential of job-level optimization with the de-
terminism and low overheads of static, task-level approaches.
Therefore, we perform an extended system analysis and unroll
all job instances to dedicated tasks. Thereof, we infer task
subsets that (a) contain all independent tasks and (b) tasks that
are part of a JLD. On the one hand, this enables us to adjust the
temporal parameters of specific job instances individually. On
the other hand, we provide transformation to tailor dependent
tasksets to tighten data-age bounds further and improve run-

time overheads while preserving schedulability. For example,
our tool-based approach can automatically merge tasks on an
implementation level to eliminate unnecessary synchronization
and preemption overheads. In particular, our approach is, to the
best of our knowledge, the first to explicitly consider crossing
chains: job instances that are part of multiple parallel chains.

B. Contribution and Outline

This paper makes the following four contributions: (1) A
novel execution model for data-age constrained systems that
eliminates the need for explicit synchronization. (2) Meth-
ods and algorithms that facilitate inference of tight data-age
bounds. (3) Toolchain to automatically transform a given task
system and its implementation to our model. (4) Extensive
case-study based on real-world automotive benchmarks and
the WATERS’17 industrial challenge.

The remainder is organized as follows. Section II discusses
related work. In Section III, we detail our system model and
present relevant background information. Our task model and
approach to the efficient implementation of data chains on
event-triggered multi-core systems are presented in Section I'V.
Section VI provides our extensive case-study and experimental
results. Finally, we conclude our work in Section VII.

II. RELATED WORK

Data-propagation delay constraints are central to many in-
dustrial domains, such as automotive [7], [18] or avionics [5].
Their analysis is the subject of various research works.

The timing analysis of data propagation delays in periodic
multi-rate systems with communication via shared registers
has been studied by Feiertag et al. [3]. Besides the timing
analysis, the authors also highlight the different end-to-end
delay semantics that exist (data age, reaction delay, etc.).
This timing analysis has further been implemented in different
industrial tools used in the automotive domain [19], [20].
In [11], [21], Becker et al. study the timing analysis of
these systems at various abstraction levels, where only limited
information of the final implementation may be available. Data
propagation delays in the multi-periodic synchronous model
are studied by Forget et al. in [5]. Data propagation delays
on multi-core platforms and under fixed-priority preemptive
scheduling are studied in [22]-[25]. Sporadic Data Chains
on distributed systems are subject of [26]. The effect of
the Logical Execution Time (LET) paradigm on the data
propagation delay has been considered in [7]-[9]. Martinez et
al. [27] investigate different communication praradigms found
in automotive systems, implicit, explicit, and LET communi-
cation, and present a timing analysis for mixed preemptive
scheduling as it is the case in AUTOSAR.

In addition to research on the temporal analysis of data
chains, there has been an effort to modify system parameters
such that data propagation delay constraints are met. Schlatow
et al. [28] focus on the optimization for multi-core platforms,
where task priorities, offsets, as well as the mapping of tasks
to processor cores is selected by leveraging a Mixed Integer
Linear Programming formulation of the problem. Davare et
al. [29] optimize task periods to affect the resulting data

propagation delays in distributed automotive systems. The
optimization of the priorities assigned to tasks and messages,
as well as the mapping of tasks to cores and signals to
messages is addressed in [30]. Verucchi et al. [31] consider
multi-rate DAG tasks and present a transformation to single
rate DAG that optimize schedulability, as well as age and
reaction delays. The work of Becker et al. [11] utilizes the
timing analysis of data propagation delays at higher abstraction
levels to define job-level dependencies, a partial order of jobs
such that data propagation delays are met. This allows main-
taining selected design parameters, such as task periods, while
only the execution order between specific jobs is relevant to
meet all data propagation delay constraints. In [32], Constraint
Programming is used to create a time triggered schedule for
a clustered many-core platform that also considers JLDs.

Chetto et al. [17] show how precedence constraints between
individual non-repeating jobs on a single core can be consid-
ered by modification of a task’s timing parameters, i.e., its
release time and the deadline. This encoding is optimal in the
class of dynamic-priority single-core schedulers. Le., if there
exists a dynamic priority scheduling algorithm that respects
the task’s deadlines, as well as the precedence constraints,
the method finds an assignment. Since only task parameters
are modified, an EDF schedulability test can be used. A
fixed-priority scheduling policy for periodic tasksets with
precedence constraints is proposed in [33]. This approach does
not rely on semaphore synchronization.

Pagetti et al. [10] consider precedence constraints between
jobs as part of their multi-task implementation of multi-
periodic synchronous programs on single-core systems. In
the first step of their approach, the PRELUDE specification
is transformed into a dependent taskset where precedence
constraints are inserted when required (if this is done for
tasks of different periods, as for job-level dependencies, not all
jobs are affected). This initial dependent taskset is then further
transformed into an independent taskset. If the final system is
scheduled by Earliest Deadline First (EDF), deadlines of jobs
that are subject to precedence constraints are adjusted such
that the specified execution order is maintained [17]. Systems
scheduled by the Deadline Monotonic (DM) scheduling algo-
rithm are scheduled using the methods of [33].

In [12], we studied the integration of job-level dependencies
into a compiler-based tool (RTSC) [34], [35] targeting time-
triggered real-time systems. This work considers the effect
of different offline allocation and scheduling algorithms to
generate static schedules for systems with data-age constraints.

Instead of guaranteeing that a consumer instance starts
its execution only after the producer instance has finished,
Sofronis et al. [36] propose the Dynamic Buffering Protocol
(DBP) that utilizes buffers to store multiple values such that
the correct communication sequence can be achieved.

In contrast, this paper contributes property-preserving trans-
formation rules of the initial taskset to not only adhere
to prescribed JLDs but also to optimizes the resulting OS
overheads, while targeting a multi-core system dynamically
scheduled by partitioned EDF.

ITI. BACKGROUND AND SYSTEM MODEL

In this section, we describe the application model, the
application’s timing constraints, and the concept of JLDs that
are used to describe job-orderings during execution.

1) Platform and Application Model: An application T'
consists of a set of n tasks {71, 72,...,7,}. Each of the tasks
can be described by the tuple (C;, C;, D;, T}, ¢;), where C;
describes the task’s Worst-Case Execution Time (WCET), C;
describes the Best-Case Execution Time (BCET), D; denotes
its deadline relative to its release time, 7; describes the tasks
period, and ¢; its offset. Initially, all tasks in this work are
subject to implicit deadlines, i.e., T; = D;, and have no offset,
ie., ¢; = 0. The application is dynamically scheduled by
an Earliest Deadline First (EDF) scheduler. The k*" job of
a task 7; is described by 7; 1, has an absolute release time of
ri.k = k- T; + ¢;, and an absolute deadline d; ;, = r; 1 + D;.

Additionally, a set of data chains Z is specified that pose
semantic relations between tasks. A data chain (€ Z is a
Directed Acyclic Graph (DAG), with vertexes V' and edges
E. A vertex in (is represented by a task 7; € I'. An edge
between two nodes denotes communication between the two
tasks. While a data chain can have forks and joins, it must
have a single entry and exit node. This structure allows the
decomposition of a data chain into several sequential chains
that are subject to the same timing constraints.

Different tasks communicate using register communication.
In register communication, a sending task writes the value to
a global register, and a receiving task reads the value from the
global register. This type of communication has the benefit that
no signaling between sending and receiving tasks is necessary.
However, if the sending and receiving tasks execute at different
periods, over- and under-sampling effects occur, i.e., values
are overwritten before they are read, or the same value is
read more than once. To increase determinism, each task
uses the implicit communication paradigm. In the implicit
communication paradigm, access to communication variables
is performed at the beginning and end of the execution, while
the task operates on a local copy during the execution. This
form of communication has the benefit that a task has a
consistent view of all communication variables during one job,
even if the value in the communication register has changed.

2) Data-Propagation Delay Constraints: In addition to
the tasks local deadlines, the application is subject to data-
propagation delay constraints, i.e., the time for data to prop-
agate through a chain of tasks is constrained.

Several types of data-propagation delay constraints can be
specified [3]; in this work, the main focus is on the data-
age constraint. Data-age constraints are commonly found in
control applications, as the age of data influences the control
quality. The data age is defined as the time between the
initial first reading of an input value by the first task in
the data chain, and the last time this data affects the output
of the last task in the data chain. Other significant metrics
for evaluating the achievable control quality are mean data
age and jitter, whose optimization we also address with our
approach: generally, the smaller and steadier, the better [37],

Plain (last-is-best)
maximum data age

1 B 1 1 2
T2 L) T
737 I Te L

data flow
T4 T T 0 Ta3 J,

M sameinput ——* dy s

from 7—1’1

k— K+

T41

Decomposition (adjust time)
maximum data age

1L) L {)

%1 m]

%1 :

T4) \ l

B di3 ,d2,3) dso

TC same core T TJ/ T m y \I/\I/
3 Ta3 I32 Ty3 dys

Job-Level Dependencies (sync)

maximum data age
I
I

#17 0 ﬁl_iﬁ 0 L
1E 1)

2] =
. “—— constructive
TBT $ 7 sync. req. J/

. —
T4)) l

task cluster (C) of a data chain A

Decomposition (optimized merge)

. maximum data age
r

G) L T)
71 m L 1
71
il bfches R .

BT % T Z By |

—

TC any cores

Figure 1. Illustration of our approach’s variants and their effects on scheduling and resulting (maximum) data ages for a given data chain 71 » 72+ 73> 74.
Each task 7; spawns task instants 7; ; (i.e., taskset 7;) that are executed on a shared multi-core platform (i.e., only deadline adherence guaranteed). Plain is
the baseline without precedence constraints between tasks. JDL enforces constraints by costly constructive synchronization. We can transform this to implicit
synchronization again, by Decomposition of the tasksets into subsets 7; and 7; that hold relevant (i. e., cluster tasks) and non-relevant task instants, respectively.

[38]. We want to emphasize that over- and undersampling are
an inherent property of our system class. Control stability and
safety assessment are a regular part of application development
and based on adherence with the specified constraints—our
approach neither changes nor influences this methodology.
3) Job-Level Dependencies and Their Generation: JLDs

are used to specify a partial ordering between tasks’ jobs. A
Kl . . .
JLD 7; u> 7; describes that the Eth job of 7; must finish

before the [job of 7; can start its execution. As a JLD
describes a relation between jobs of 7; and 7;, the ordering is
applied to these jobs in each hyperperiod LCM{T;, T;}. The
set J contains all JLDs that are specified for the taskset.

Job-level dependencies are typically not defined by the
system designer. In [11], a method to generate JLDs for a
taskset with specified data-age constraints is proposed. This
approach operates solely on the taskset information and is
therefore agnostic of the applied scheduling algorithm and
platform. If the method of [11] succeeds in determining a set
of JLDs, it guarantees that all specified data-age constraints are
met as long as each task meets its timing constraints, and the
partial ordering of jobs defined by the JLDs is maintained.
Hence, the set of JLDs J that is input to the proposed
approach is determined by [11].

IV. APPROACH

This section presents our approach by a step-by-step evo-
lutionary process of transformation variants, which we each
implemented and evaluated in our toolchain. By a simple
example, we first put our work into the context of existing

approaches, which serve us as a baseline. Based on this, we
introduce our execution model and the transformation of JLDs
into it, which is a decomposition of tasksets into relevant
(determining) and non-relevant task instants. Subsequently, we
detail our transformation variants, ranging from adjusting the
timing parameters to the optimized merging of relevant tasks.
Finally, we turn to data-age bounds and the temporal analysis.

A. Running Example

Figure 1 introduces a running example of the four-task data
chain 7y » 79+ 73+ 74. Plain (top left) shows a scheduling trace
that may be the result of a larger multi-core system, where
no measures are taken to affect the chain’s data age (last-is-
best semantics). In the absence of task coordination, data flows
can arrange unfavorably: the same input value from 7 ; is, for
example, determining for two successive output instances 74 2
and 74 3. Consequently, the bound on the maximum data-age

is far the worst. The data age can positively be affected by

the addition of job-level dependencies (top right): 7 @)

(1,1) (2,3) . .
To, T9 —> 73, and 73 — 74. This coordination results

in the execution order shown by the red arrows between the
relevant task instances. Note that JLDs are defined for the
hyperperiod of the constraint tasks, hence 7 &b, 73 defines
the ordering 75 1 — 73,1 (not shown) and 79 3 — 732. These
two extremes represent the starting point and baseline for our
transformations, which we detail in the following.

B. Transformation of Job-Level Dependencies
Of a task, JLDs only affect specific jobs (instances). This
requires the task’s conditional coordination, which is complex

to implement and analyze (i.e., bloats WCET) or demands an
operating system (OS) mechanism that supports such condi-
tional task dependencies. To avoid these problems we apply
the following transformations: Tasks that are not constraint by
a JLD in J are directly included in IV, without modifying
their parameters. For tasks that are constraint by JLDs, we
apply a transformation that creates individual tasks for each
of the task’s jobs, that are then added to I"”. This is done
for all jobs of the original task that are released within the
hyperperiod of all tasks that are part of a JLD, which we
denote by T/EP . After this transformation, a job 7; ; of an
original task 7; is represented by the task 7;.. 7;» has the same
WCET and relative deadline as the original task, but its period
is set to T7LP and its offset is set to the release time of Ti ke
With this, the execution window of 7;x and 7; , are identical
and merely the representation in the task model changes. For
clarity, we denote the set of all transformed tasks that result
from the same task 7; in I" by 7;.

Besides converting the tasks, an analogues transformation is
needed for the JLDs. We denote the transformed set of JLDs
by J’. Thus, JLDs are transformed so that the execution of
I is constraint by 7’ in the same as I' is constraint by 7.
Since all transformed tasks have the same period, TILD 4
JLD between any of the new tasks results in a simple one-to-
one precedence constraint in 7’. With decomposed JLDs, for
each transformed task 7;, we can define the subset of tasks
that is not constrained by any JLD, 7;.

Although this transformation increases the number of tasks,
the scheduler’s queue length remains unchanged as each newly
generated task is only released at its implicit predecessor’s
deadline. However, we can leverage the added tasks for a
fine-grained adaptation of specific task parameters such that
JLDs are met.

C. Adjusted Timing Properties

To enforce dependencies without explicit synchronization
on a single-core, we now adjust release times and deadlines of
dependent tasks, as described by Chetto et al. [17] and [10],
[33]. The modification of the task deadline is based on the
observation that the urgency of a task is determined not only
by its own deadline but also by the deadline of its successor
tasks: (1) For each task 7; that is part of a dependency but has
no successor, we set d; = d,. (2) Then we select a dependent
task 7;, whose deadline has not yet been adjusted, but whose
successors’ deadlines have already been adjusted. If no such
task exists, all deadlines have been adjusted. (3) We assign
d; = min(d;, miny,, |, -, (d}, — Cp)) and return to (2).

In [17], it is further observed that the earliest start time of
a task is determined by its release but also by the deadline
of predecessor tasks. Task offset ¢ are therefore adapted
vice-versa: (1) For each task 7; that is the beginning of a
dependency chain and thus has no predecessors, we assign
@7 = ¢;. (2) We select a dependent task 7; whose offset has
not yet been adjusted, but whose successors’ have. If no such
task exists, all offsets were already adjusted. (3) We assign

¢ = max(¢;, maxyy, |r, -7, (¢5, — Cn)) and return to task
selection (2).

The new relative deadlines are then computed as D} =
df — ¢f. In case that all tasks of a dependency chain are
allocated to the same processor, these timing properties can
not only ensure enforcement of dependencies without OS
mechanisms but can also be used for schedulability tests for
dependent tasks. Allocating all dependent tasks to the same
core may seem quite restrictive. However, since these tasks are
both sequential and do exchange messages, a joint allocation
is desirable and not a significant restriction since they cannot
execute in parallel. For a multi-core allocation of a chain, this
adjustment would reduce actual contention on synchronization
mechanisms but does not avoid their usage.

The running example of Fig. 1 (bottom left) depicts the
decomposed taskset, where all tasks that are constraint by
JLDs are depicted on the same level. The decomposed JLDs
thus are 73 — 793, Tos — 732, and 732 — T43. After the
adjustment of the dependent tasks’ deadlines and offsets, the
red marked release and deadlines are maintained, which under
EDF results in a schedule that maintains the specified JLDs.

D. Statically Tailored Tasks

To sum up the steps until now, we have transformed the jobs
of the original taskset over the hyperperiod that decomposed
the initial JLDs into 1:1 dependencies between tasks. New
release times and deadlines have been computed such that the
ordering that is required by the dependencies is maintained.
As long as all dependency connected tasks are allocated to the
same processors, this new taskset is guaranteed to enforce all
dependencies [10], [17].

To alleviate further steps, we define clusters of tasks C
that are directly connected by dependencies. Such a cluster
can then further be decomposed into so-called batches B of
tasks that form a sequential chain. Thus, they are connected by
exactly one dependency each. That is, 7; and 7; are added to
the same batch B; if the following condition holds 37; — 7; €
T Npri =1 € I NPy = 75 € T A1y & {7, 7;}. This is
demonstrated with an example in Fig. 2. The shown tasks all
connect via dependencies; thus, they are all part of the cluster
C;. Six batches can be formed that contain sequential task
chains, Bl = {7’71,7’13}, 82 = {7'22,7'52,7'84}, 83 = {7'31},
By = {7192}, Bs = {7142}, and Bg = {764}. Additionally, the
figure shows the data flow between tasks as underlays of the
dependencies: tasks in a single batch can belong to different
data chains (e. g., Bo).

The next logical step is to reduce scheduling overheads
and improve the average case latency of data passing through
batches. Scheduling overheads due to context switches can
effectively be decreased by reducing the number of tasks
through task merging [39]. Thus, tasks that are part of a batch
B, are merged and scheduled sequentially in a dedicated task
7B,. For a given cluster Cy, all tasks 7, that are the result of
merging batches B; € Cj are part of the same set 7. Note
that our toolchain can also split tasks [40] according to their

(a) Dependency cluster C1 and the resulting batches 31 to Bg. Colored
underlays represent the three different original data chains.

batch sync. barrier

B, T |1 1

5, 7 - |

B3| | G

TBa T C2 To2 |
TBs T)
7B Tos Cs | |

max.T— . . 'Y~ min. d
phasing interval

(b) Resulting multi-core schedule that takes the different crossing data
chains into account.

Figure 2. Task cluster that contains different batches and its merged multi-core execution.

runtime, which can be leveraged in a subsequent step to regain
utilization if necessary.

The task parameters of 75, are determined by the different
tasks of the batch. The period T, is equal to the period
of the tasks in B;. Since all such tasks are subject to task
transformation (see Sec. IV-B), their periods are identical.

Two different approaches are proposed to determine the
exact composition of the merged tasks, as well as their
parameters ¢p, and Dpg,. The first approach maintains all
properties of the original taskset, while the second approach
has the potential to further increase the system’s schedulability
by intentionally weakening the original taskset properties.

1) Property-Preserving Merge: In the property-preserving
merge, offset and deadline of 73, are selected such that 7, can
only execute during the interval in which all tasks of B; can
execute. That means that all tasks 7;= are not to be released
before the release time of their origin job 7;, and their absolute
deadlines D;x shouldn’t be put after the original D;, . As it is
not guaranteed that all tasks of the batch B; actually overlap in
their execution, the property-preserving merging of the batch
can result in several individual tasks.

To determine where to split up the batch, we use the
following constructive approach. The initial task of the batch
sequence is selected as 7p,. The next task in the sequence,
let’s call it Tgf”, is selected as a candidate to be merged with
7B,. The tasks are merged if they overlap in their execution
for at least Cs, + CE°* time units:

min(dg,, d’éf“) > (mam(rgi,rgf”) + Cp, + C’gf:”t) (1)

7,2 and Tg1 merged

Tg1 1\ \1,

\’ \

T221\= \!,

? v

—| no overlap of 7,9 and merged task

Figure 3. Example to illustrate the property-preserving merge.

If they are merged, the WCET of Tgf” is added to C',, the
deadline is set to dp, = min(dp,, "), and the release time
to r, = max(rg,, rg’""). This procedure is repeated with the
merged task 75, and successor Tgf“ in the batch sequence, as
long as the intersection of their execution windows is at least
large enough to allow both tasks to execute (see Equation 1).
If this is not the case, a new batch task B! is introduced,
and the scheme continued. This is illustrated by Fig. 3. All
tasks are part of the same batch and are executed in the order
To2 » Tgl » Tyo + T32, i.e., from top to bottom in the figure.
The proposed merging strategy starts with task 752, and, as
da2 > rg1, the task is merged with 7g1. 73, receives the release
time of 7g, and the deadline of 752. As 749 does not overlap in
its execution with the previously merged tasks 75,, a new task
is started, and 740 is merged with 732. Note that the resulting
tasks are subject to precedence constraints. However, as their
intervals between release time and deadline do not overlap,
the precedence order is implicitly maintained.

In Fig. 1 (bottom right), this results in two batch tasks that
do not overlap in their execution interval and thus maintain
the required ordering. 73 is merged with 7,3, inheriting the
deadline of 75 and the release time of 753. As this merged
task’s deadline is before the release of 732, 732 is merged
with 743 as a dedicated merge task.

2) Schedulability-Enhancing Merge: The schedulability-
enhancing merge is based on the supposition that a trans-
formed task 7;x, that is part of a batch B; can execute before
its intended release or after its intended deadline, if:

1) 7;+ is not the source or sink of any data chain (€ Z.

2) There is no data chain (€ Z of which 7;x is part of,

which also includes tasks that are not part of B;.
3) Other tasks of B; that are part of the same data chains
¢ € Z as 1, always appear in the same order.
This is the case as tasks within a batch must be scheduled
sequentially. Their makespan’s union is equal to or laxer than
the typically overlapping execution windows of batch tasks.
Therefore, when merging computation-only batch tasks, we
can assign the earliest release time and the latest deadline of
all tasks — thereby maximizing the execution window of the

merged task. This ensures maximum laxity of the new task and
generally improves schedulability. Thus, a task 7;» can violate
its prescribed release and deadline if it is communicating only
with other tasks of the same batch. Which would, therefore,
lead to an execution with the same input data and provide the
same output data to the same succeeding tasks as if it would
adhere to its original release time and deadline. Hence, the
same functionality is maintained. This can be observed at the
example of 752 in Fig. 2, which is part of two data chains
whose respective predecessor and successor tasks are in the
same batch Bs.

Considering the above criteria, an original batch B5; is
divided such that intermediate tasks do not communicate with
tasks outside the batch. For each resulting batch B, the offset
is set as ¢p: = Pyirsi(s,), and the deadline as dg: = djgsi(5;)-
Where first(B;) returns the first task of B; and last(B;) the
last task of B;, respectively. Again, the relative deadline Dp:
is computed as dg; — gbg;. The WCET CB; is equal to the
sequential execution of all tasks of the batch B*.

E. Multi-core Considerations

The adjustment of tasks offsets and deadlines of Sec. IV-C
guarantees that dependencies are met as long as dependent
tasks are executed on the same processor. This, for example,
means that the cluster C; of Fig. 2 is required to execute on
the same processor. However, several batches could potentially
be executed in parallel on a multi-core platform. To leverage
multi-core allocation of batches, either OS mechanisms are
required to enforce dependencies between tasks on different
cores, or additional modification of the dependent tasks is
required such that a preceding task must finish its execution
before a succeeding task can start its execution. To reduce
explicit synchronization overheads, batch synchronization bar-
riers are introduced over which the dependent task parameters
are selected in a way that multi-core execution is possible.

If there exists a dependency between different batches
of a cluster, the respective tasks overlap in their execution
window [11]. As this overlap gives rise to potential wrong exe-
cution on multi-core processors, logical barriers are introduced
such that execution overlap between the dependent batches
of a cluster are avoided. For each task that is a successor
task, a batch synchronization S; = {S? Ted,Sf“C} is created,
that contains a set of predecessor and successor tasks that
need to be synchronized. For each set, all predecessor tasks
of the initial task are added. Sets that have shared predecessor
tasks are merged together. For the example in Fig. 2, this
leads to 3 sets. S; = {{B1, B3}, {B2}}, S2 = {35’2}, {Ba}},
and Sz = {{Bs,Bs},{Bs}}. As By is in S&™" and SE™°,
the two are merged in So. Finally, this leaves two sets:
81 = {{61,83}, {BQ}} and 82 = {{BQ, 86}, {84, 85}}

Each batch synchronization translates to one logical barrier,
which can be placed at any point in the so-called phasing

interval:
(rBi)) (d&)])

A logical barrier of a batch synchronisation S; therefore
requires that all batch tasks in S*"“* finish latest at the barrier,

min

[max
V7, €SPred

V7, €Suc

and all batch tasks in S start earliest at the barrier. The
phasing intervals are highlighted in the example of Fig. 2b.
Deadlines of tasks in SP"¢ and release times of tasks in S5%°
can be set to the same value within the phasing interval, en-
suring execution of all predecessors before successor release.
There are many potential optimization criteria for choosing
a common release and deadline within the phasing interval. In
this paper, we set values to be in the middle of the interval.

F. Timing Analysis and Allocation

Up to this point, the original taskset I" and the set of JLDs
J have been transformed into almost independent tasks I/ that
can be executed by a partitioned EDF, if overlapping tasks of
a cluster are allocated to the same core [10], [41]. If batch
synchronization barriers are used, all precedence constraints
are implicitly coded by the tasks’ timing parameters. Thus
all allocation and scheduling algorithms that are capable
of handling asynchronous periodic tasksets can be used to
execute I'. The same holds true for schedulability tests.

For the remainder of this paper, we use worst-fit heuristic
allocation to allocate jobs to cores and schedule them using
partitioned EDF. The worst-fit heuristic is chosen for task
allocation as it has shown the best performance for task sets
with JLDs [12]. For tasksets, without batch synchronization
barriers, we employ a slightly adapted version of the Worst-Fit
algorithm that ensures that all batches of a cluster are allocated
to the same core. Prior to execution, we test each core with
the processor demand criterion for schedulability.

G. Tight Data-Age Delay Analysis

Besides the schedulability of individual tasks, meeting data-
age constraints is crucial. The baseline analysis of [11] con-
siders only execution times and periods to determine the job’s
read and data interval. While this provides data-age bounds
agnostic of the concrete platform or scheduling algorithm,
it also leads to pessimistic bounds. The method proposed
in this paper transforms the initial taskset I' such that tasks
constrained by JLDs are represented by individual tasks, and
such transformed tasks may further be part of a batch and,
therefore, subject to merging. As these transformations restrict
the tasks’ execution freedom, they can lead to less pessimistic
data age bounds [21].

Therefore we present a data-age delay analysis that takes the
concrete modifications of the taskset into account, providing
tighter data age bounds than the baseline of [11]. As it is also
the basis for our analysis, we refer the interested reader to [11]
for a detailed description of the baseline analysis.

1) Read and Data Interval: The data-age analysis is per-
formed on the original taskset I', where a job 7; ; is assigned a
read interval RI; ;, and a data interval D1I; ;. The read interval
spans the time during which the job may read its input data,
where Ry, (7; ;) and Ry,qq(7; ;) define the earliest and latest
time this can happen, i.e. RI; ; = [Rmin(Ti;), Rmaz(7i ;)]
Similarly, the data interval starts at the earliest time the output
data of the job can be available, and ends at the time the
successor job 7; ;41 must have overwritten the data, that is

DI; j = [Dmin(Ti,j), Dmax(7i,5)]-

If there exists an execution where a job 73 ; can consume the
output data of a job 7; ;, then RIj ;N DI; ; # (. Hence, there
must exist a point in time where the data that is produced by
7;,; may be read by 73 ;. Let follows(7; j, 7k,1) be a function
that returns true if this is the case and no JLD is specified
that prohibits this execution sequence, and false otherwise.

Eq. (3) and (4) present the boundaries of the read interval,
dependent if a job of a original task 7; € I is transformed
into separate tasks, is part of a batch, or has been unchanged.

T3 ifTiED/\Tij¢Bk

Rmm(Ti,j) = TB, if , € DATy € By 3)
r;; otherwise
dij—Ci ifTiED/\Tij¢Bk
Rmax(ﬂ'y]’) = dBk - C; ifr,eD N T ¢ By, 4)
di; — C; otherwise

The boundaries of the data interval are dependent on
Rypnin(7i,5). The data produced by a job may be available at
its output C; time units after the earliest read time. On the
other hand, the latest time the data produced by a job must be
overwritten is when the next job of the same task must have
finished, i.e., its deadline. Expressed by (3) and (4) this leads

to:

Diin(7ij) = Rmin(7i5) + Ci)

Dma.’r(Ti,j) = Rm,(mt(Ti,j—i-l) + Cz (6)

2) Determining Maximum Data Age: The analysis of a data
chain ¢ examines each initial job of the chain. Initial jobs are
all jobs of the first task in (that are released in the hyperperiod
of I'. The analysis first computes the maximum data age that
is possible starting at each initial job.

Starting from an initial job, a depth-first approach is used
along the tasks of (to determine the data propagation path
along the tasks’ jobs that leads to the maximum data age. If
T;,; is the initial job, and 7y is the second task in ¢, then the
data propagation path is extended to the job of 73 that has the
largest release time among all jobs where follows() returns
true. This process continues until a job of the last task in (
is reached, or if follows() does not return true for any of
the jobs. In this case the last segment of the data propagation
path is removed and the next earlier job is examined. If a job
of the last task of the data chain is reached, the maximum data
age of the data propagation tree is determined by Eq. 7. If the
complete data propagation tree is evaluated without reaching
a job of the last task in (, the data produced by the initial job
is overwritten before it reaches the end of the data chain, no
maximum data age exists starting from the investigated initial
job. Due to the last-is-best communication between tasks, it is
however guaranteed that there exists a data propagation path
for at least one of the initial jobs of (.

The maximum data age that results of a specific initial job
7;,; can then be computed by A(7; ;), between 7; ; and the
job 7, of the last task in the chain:

A(Ti,j) = Rmam(To,p) + Co - Rmin(Ti,j) (7)

The maximum data age of a data chain (can then be computed
as the maximum value A(7; ;) for all initial jobs of (.

H. Post-Allocation Data-Age Optimization

To minimize the average and worst-case data age, we chose
to tighten the deadlines of chain tasks. Generally, smaller
deadlines decrease the reachability of an initial job as it
reduces R,,q, and D4, of its predecessor job. Additionally,
decreasing a output task’s deadline lowers A(7; ;) directly.

However, we are not aware of an algorithm that con-
structively minimizes deadlines for multiple tasks at once
while preserving the system’s schedulability, as the algorithm
minD [42] does for a single task. However, by applying minD
sequentially on each I/O task, one would implicitly favor the
first task the algorithm is applied to. This would not decrease
deadlines for all tasks evenly, as we desire. Therefore we use
the following iterative approach to equally tightening deadlines
without decreasing the system’s overall schedulability. To de-
crease the potential effect on schedulability, we do not tighten
the deadlines of all chain-related tasks but only of I/O tasks,
i.e., beginning and end of a chain. This is beneficial since the
deadline of the end task is part of Eq. (7) The deadlines of all
selected tasks are then set to Di*" = C%, +p- (D — Cjx). p
is initally set to O and iteratively increased until the taskset is
schedulable according to the processor demand schedulability
test. Assuming that the original taskset was schedulable with
initial release times and deadlines, this algorithm stops at least
at the original laxity D;x —Cj.. If the taskset is schedulable for
p = 0, all tasks have their relative deadlines D,» set to their
WCET Cjx. Since the processor demand schedulability test is
only meaningful for allocated systems, this optimization must
take place after the allocation of jobs to computing cores.

V. IMPLEMENTATION

Our concepts are only half the story; they do not solve the
concurrent engineering paradigm’s dilemma of loose coupling,
extensive legacy code, and product line complexity. Therefore,
the other half is tooling for their use in existing systems.

We implemented our approach within the RTSC [34], a
static analysis tool based on the LLVM-framework, and made
it available online'. Figure 4 illustrates its workflow: as inputs,
it takes an abstract system model specified in AMALTHEA,
the C source code of the application tasks, and the JLDs (as
XML), which we infer from the abstract system model by the
approach presented by Becker et al. [11], [43].

These artifacts are imported and transformed to a platform-
agnostic internal representation. While temporal properties of
tasks stem from the system description, the global control-
flow is inferred by static analysis from the source code.
Subsequently, tasks with precedence constraints are unrolled

Uhttps://www4.cs fau.de/Research/RTSC/mechaniserdynamic

https://www4.cs.fau.de/Research/RTSC/mechaniserdynamic

JLDs [11]
SOl Static Analysis Tool

Executable

Merge Tasks

Property
Preserving
Schedulability
Enhancing

« Dynamic Data-Age Logging
« Target OS APls
« Adjustable

* Load Function :
+ Seed

Properties
Data Age
Analysis

=
2
g
§E
22
V7=
o
g

Amalthea
Taskset

=
=2
s
s
o

=
=
®

8
=<

<]
<

Adjust Timing

WCET Analysis

Figure 4. Overview of the developed static analysis tool.

to the chains’ hyperperiod. Then, according to our model (cf.
Section IV-B), we add task bodies for each dependent task on
the LLVM-IR level (holding the actual implementation). We
also verify that all register communication is realized via C11
atomic_load and atomic_store.

The next step implements the transformations and optimiza-
tions from Sections IV-C ff. as individual LLVM passes. By
this, we can selectively apply them and, even more important,
omit parts of the source system that do not contain data chains
(i.e., tasks not to be affected). In the case of modifying passes,
LLVM-IR is injected to achieve the desired behavior. For
example, simple jumps to concatenate merged jobs or system
calls of the target RTOS to enforce remaining dependencies.
Because these transformation steps have a potential impact
on the WCET of the tasks, we selectively rerun the WCET
analysis. Various backends can be coupled with our toolchain,
for example, commercial tools like AbsInt’s aiT [44]. While
sound WCET analysis is appropriate to rule out temporal
interference of merged jobs, their spatial isolation is subsumed
by the merge. Our toolchain can enforce spatial isolation at
option by weaving in code for protection domain switches
(i.e., MMU/MPU reconfiguration). While these techniques are
available [34], [40], [45], we deem isolation considerations out
of the scope of this paper.

Finally, all code required for compiling the target system is
generated, including target RTOS system calls. Various target
platforms are supported, Litmus™ [46] acts as the execution
platform for our experiments.

We are aware that unrolling the chains’ hyperperiod raises
fears about the scalability of our approach. Therefore, we
shall detail this aspect before diving into the actual evalu-
ation. Analysis-wise, unrolling affects only the abstract task
configuration and therefore scales relatively well. Figure 5
gives the runtime of our tool including all analyses depending
on the number of processed tasks: even for a few hundred
tasks, the runtime is in the minute range, which we consider
feasible for everyday work. Execution-wise, we assume a run-
to-completion semantics of jobs; an automated conversion of
a process-oriented implementation is possible but outside the
scope of this paper. Consequently, we can reuse the existing
process stacks. The number of process control blocks will
grow depending on the selected target output. In our running
example, the number of processes increases from an initial
four to 14 for adjust time and decomposition. This number can

moving average $
4 single measurments

250 1

average

200 A

150 A

100 A

duration of transformation [s] —

T T T
600 800 1000

tasks—

T T
200 400

Figure 5. RTSC runtime depending on the number of processed tasks

be reduced again by merging (12 in this case). However, we
can also generate processes such that they count activations
and execute jobs conditionally. This way, the process count
remains constant.

VI. EVALUATION

After showing our approach’s scalability in the former
section, we study its effectiveness by applying it to two
previously published real-world case studies: interleaved data
chains and Waters Industrial Challenge *17. Additionally, we
analyzed its impact on schedulability by a broader set of
synthetic benchmark systems.

Table I
OVERVIEW OF EVALUATION VARIANTS AND IDENTIFIERS.

ID Variant Overhead Data-Age Sched’ity
£ PLN Plain (last-is-best) -
Té JLD Job-Level Dependencies - -
m ADJ Adjust Time Parameters -
PLNopt Plain (optimized 1/O)
5 JLDopt JLD (optimized 1/0) - -
g MRG Merge
<°~ MRGmax Merge (max. laxity)
5 MRGpe Merge (multi core)
© MRGpt Merge (optimized 1/O)
MRG Merge (combinations) /

A. Experimental Setup

In the first step, for each of the experimental setups,
we generated JLDs, according to [11]. We then applied the
transformation variants described in Section IV. These are
summarized in Table VI, which gives the identifiers used in the
following along a rough evaluation of the properties achieved
in each case. The baseline for our experiments is given by
PLN, JLD, and ADJ, which represents uncoordinated, explicit,
and implicit synchronization as described in IV-C, respectively.
Furthermore, we have also applied our optimization of the
scheduling parameters to PLNg, and JLD,p for compari-
son. Finally, the group of merge variants can be divided
into individual transformation objectives: MRG is the basic
property-preserving merge described in Section IV-D without
any specific optimizations and objectives. MRG,,x aims to

Task_19 Task_03

3
=)
@

Task_06

o
)
o
2
3

—_—a

Task_07 Task_08 Task_15 Task_16

T2 1o —
—

] B> - [T=1s
Task_20 > Task_02

Task_10

i) I (5| I (s—b EE

Task_11

Task_09

. g
j_|_E
5 Task_14

| I p—p| [p— [

Task_17 Task_13
| D

Task_04.

S—
L= (=
P— e P

Age Constraint = 40 ms

Age Constraint = 40 ms

Age Constraint = 40 ms

Figure 6. Case Study with 3 data chains that share common tasks in their data path.

maximize laxity of batches and thus to enhance overall schedu-
lability. MRGy,. employs batch synchronization to allow for
multi-core allocation. MRGyy strives to improve the timing
of relevant input and output jobs. Also, we have evaluated
all combinations of the merge variants. MRGuaxope 18, for
example, the combination of MRGy,,x and the proposed post-
allocation optimization. However, for the sake of simplicity,
we only show those combinations in the experiments where
they produce different results. In Table VI, MRG,: represents
the results of the combinations.

If executed, systems are implemented on Linux Testbed for
Multiprocessor Scheduling in Real-Time Systems (Litmus™)
and scheduled by partitioned Earliest Deadline First (EDF).
For the non-multi-core variants, we adapted the worst-fit
allocation algorithm to allocate all members of a cluster to the
same core, not to violate the assumptions made in Sec. IV-C.
In both case studies, we executed the systems with each variant
for 100 hyperperiods and with a varying fraction 0.1, 0.3, 0.5,
0.7, 0.9 of the specified WCETs and logged the actual data
ages of each data chain. Where applicable, we normalize data
ages to the worst-case data age of their data chain without any
precedence constraints. We refer to this as the LET-value, as
the obtained bound equals the one of the LET paradigm [47].

B. Case Study: Interleaved Data Chains

The first system we examined as a case study is based on an
automotive application [2]. A component view of the system is
shown in Figure 6. In this system, the functionality is realized
by 20 tasks that are activated at different periods. Three
different data chains are specified, where different chains share
tasks along their path. After the task transformation, the system
consists of 40 independent periodic data chain related tasks
with a period of 2s and differing phases each, as well as the
five untouched Tasks Task_06—08, and Task_15—16.

1) Additional Load: To study the effect of our approach
on the composability of tasksets and the impact of composed
systems on data age performance, we added additional load
without data propagation constraints to the base system. Since
an additional task has the most interference with an existing
one when being released at the same time, we duplicated the
base tasks and adjusted their deadlines in the following ways.
First, we duplicated the deadlines, resulting in a composed
system /.0 where both systems are initially equally prioritized
by an EDF-scheduler. Second, we loosened the deadlines of

the additional taskset by multiplying its relative deadlines by
1.1, prioritizing the base system, including its data propagation
chains. This composed system is referred by /.1 in the follow-
ing. Third, we tightened the additional taskset’s deadlines by
multiplying them with 0.9, resulting in a composed system 0.9
that prioritizes the extra load when scheduled by EDF.

2) Data Age Results: Figure 7 depicts maximum and mean
data ages observed during the execution of the case study
as well as the system’s average upper bound grouped by
the additional load and applied transformation. To calculate
single statistical values over all chains, we normalized all
measured data age values to the chain’s maximum data age,
without JLDs. Please note that both, the maximum data-age
results, as well as the maximum observed data-age results
are average values over all systems. Therefore, the maximum
observed values can be higher than the analytical results in
this visualization. Considering the maximum data ages, one
can see the positive effects of adding JLDs as well as the
positive impact of our approach. Additionally, all theoretical
upper bounds retain stable for all load configurations. While
all variants besides PLN,) generate comparable maximum and
average data ages, the simple MRG approach produces slightly
bigger maximum and average data ages. Interestingly, although

s MRG
. LD

s PLN mm JLDope

e PLNop

= ADJ
= MRGop

1.00 A

ot

1%

S
L

mean obs. data age —
o
1N}
S
L
| | |

max obs. data age —

0.00 -

0.40 4

0.00 -

1.00

max data age —
<}
12
S
L

0.00
base 11 1.0 0.9

load configuration
Figure 7. Measurements of our approach’s variants for the three data
propagation chains in varying load scenarios: Data ages are normalized to
their chains upper data-age bound according to the LET paradigm.

0.1
0.3
0.5
0.7
0.9
potential

JLDpe
o

MRG: —

ADJ -

T T T T
0 5000 10000 15000 20000

Figure 8. Count of actual blocking synchronization for each optimization
variant during actual execution. Interleave chain system on four cores.

all optimized variants (ALL,y) exhibit better theoretical data
ages, they performed comparable to JLD. This indicates that
our optimization is rather beneficial for the analysis, and a
better fit for the actual execution, than for the performance.
Observed data-ages are also stable for all load configurations
while the simple overhead reduced variants MRG and ADJ
seem to be beneficial for base and 1.0 when it comes to
average data ages.

3) Overhead reduction: For Figure 8, we logged all
semaphore synchronizations during execution and if they lead
to a blocked job. The higher the load fraction, i.e., run-time
utilization, the more often blocking occurs in the JLD systems.
However, since our optimized-overhead variants ADJ« and
MRG: are synchronized implicitly, no blocking or explicit
synchronization occurs and can, therefore, be neglected for
WCET and schedulability analysis.

C. Case Study: Waters Industrial Challenge ’17

To demonstrate the scalability of our approach, we ap-
plied it to the Waters Industrial Challenge ’17, available for
download [18]. This system comprises three independent data
chains (see Fig. 9) that include nine periodic and one sporadic
runnables. Additionally, the system consists of 46 sporadic and
1194 periodic nonpartisan runnables and initially consists of
21 container tasks. To show the effectiveness of our merging
algorithm for tasks developed by the concurrent-engineering
paradigm we broke up the container task and interpreted each
runnable as a task on its own. To fit our system model, we
transformed the sporadic into periodic tasks with their minimal
intermediate-arrival time as a period. We executed the system
for 100 chain hyperperiods to measure data-ages. Although
being a rather complex system, it only features three simple yet
diverse data chains, wherefore we discuss them individually
in the following. Fig. 9 depicts the structures of chains ECI,
EC2, and EC3 and Fig. 10 shows all data-age measurements
aggregated across the fractions of WCETs. As those three
chains do not cross, we omitted the multi-core variants.

ECI consists of 4 tasks, each released with the same period
10ms. Its LET data age without dependencies is, therefore,
40ms. To guarantee the (artificial) data age constraint of
15ms, JLDs are generated between all tasks, lowering the
worst case to 10ms. Since these JLDs are defined between
tasks with the same period, they are actually simple 1:1
dependencies Fig. 10 shows the impact of JLDs and our
approach to measured data ages. While the plain variant goes

. R_579 R_1009 R 1129 R_416
ECL:
Age Constraint = 15 ms
EC2: R_31 R_78 R_400
: | 2ms |
Age Constraint = 100 ms
EC3: R_397 R_90 R_1107
: | 2ms | [s0ms |
Age Constraint =51.3 ms

Figure 9. Waters Industrial Challenge *17: data propagation chains.

up to 32ms, i.e., nearly to its worst-case, all JLD-affected
executions stay well below their worst-case value of 10 ms.
As expected, the merge and the opt variants show a better
average performance than unoptimized JLD execution. Due to
its pessimism, adjtime produces a range of observed data-ages
almost 3 times bigger than opt.

Data chain EC2 comprises 3 tasks with strictly decreasing
periods from source “R_31” to sink “R_400” of 100 ms,
10 ms, and 2 ms. This implies a LET-data-age of 212 ms, while
the generated JLDs allow to guarantee 100 ms. The strictly
decreasing periods, however, lead to more or less equally
distributed data ages between close to Os and the maximum
JLD data age, since at least every 2ms a 2ms older data
age value is recorded. Therefore, the observed violations of
data age constraints for plain execution are by far less than
for ECI. Accordingly, the benefit of JLDs as a whole and
our optimization are somewhat limited but visible. However,
the additional laxity introduced by MRG, increases the
maximum data age significantly. Although our optimization
eases this effect for MRGuaxopi, it stays above the other
variants that incorporate JLDs.

Contrarily the data chain EC3 features strictly increasing
periods from Tg 5397 = 700ps to Tr 1107 = 50ms. This
pattern implies that for all unoptimized worst-case scenarios
Tr 1107 dominates the worst-case analysis. That means that
even with generated JLDs, the worst-case data age 51.3 ms is
only slightly better than the LET based analysis with 53.3 ms.
Since the worst-case, i.e., reading predecessor data at release
time and writing it shortly before its next release time, for
R_1107 never happens during actual execution, the measured
data ages are far less than the worst-case values. That’s where
our optimization comes into play: The theoretical execution
window of R_1107 is adjusted to the actual execution window
by tightened deadlines that the worst analysis is as low as
8.13ms of the original analysis but still sound. Again the
additional laxity of the MRGy,,, variant increases the upper
bound significantly. However with 6.1 ms the MRGaxopt has
the lowest bound, reaching 11 % of the original value.

D. Schedulability

To assess the impact of our approach on schedulability, we
applied it to a representative benchmark [12]. Its 433 systems
are based on the characteristics of automotive applications
reported in [2]. Each one comprises of randomly generated

%107 EC1 %108 EC2 x107 EC3
[A —— o mmmmmmommmm oo™ TT-"""-"--------moo--- A e g LLLLEEEET EEEEEY -
=== baseline (LET)
3 baseline+JLD[11] 1.5 47
= tight analysis 3
21 1.0
24
1 T |—| 0.5 14
04 I I Yz 0.0 4 0d F =« ¥ EF I = = I =
T T
o6 & s . AR N N AR &
QY OO & of ofF & S N QY O @ o oFf &S N Qd OO & of o & &
< Q@ O Y E e \4&0 \§S> o <Q QVe v Y& @Q.o §‘gga o < Q@ vy & v\qb \&e‘” o
& & &

Figure 10. Analyzed and observed data age depending on optimization for each chain. Given lines mark sound upper bounds per analysis technique.

tasksets with a utilization between 0.6 and 2.0, leading to an
average of 1.2. Occurring task periods are 1, 2, 5, 10, 20,
50, 100, 200, 1000 ms, and WCET ranges from [50,150] ps.
The systems consist of 59 to 1000 tasks each and contain
1 to 3 data chains. Figure 11 depicts the systems’ schedula-
bility tested by the processor demand criterion after having
partitioned the systems by worst-fit allocation to two cores.
Schedulability of JLD serves as the lower baseline as it is
a worst-case schedulability analysis for a dependent taskset,
including additional WCET used for explicit synchronization.
PLN however, is our upper baseline: No dependent task,
no additional synchronizations overheads and thus the best
schedulability, at the cost of worst data-age guarantees.
While the schedulability of most variants that feature JLDs,
including MRG variants are in the middle between our two
baseline variants, the scheduling enhanced merge MRGyx i

1.0
0.8 1
—— ADJ

1 MRGop
Z 0.6 { — MRG
K —— MRGmaxmCopt
-,3 —— PLN
5 049 — o
e MRGmax

024 — MRGwmcopt

) MRGwmc

—— JLDgyt

0.0 T T T
4
5
£ 0.6
3 ———
o
L
&
80 (0.4 1
8
©
©
£ 02
£
X
©
=

0.0

T T T T T T
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
utilization

Figure 11. Schedulability and data age reduction of the experiment’s system
set depending on the integration mechanism used. For data age reduction, we
only considered systems with JLDs, as our optimizations are based on JLDs.

consistently better than the others. However, MRGy,.x is out-
performed by MRGaxmcopt, the combination of MRGax, the
multicore optimization MRGyc and our data-age optimization
opts Which almost reaches the same schedulability as PLN.
That means that 50 % more systems with utilization of 1.8 are
schedulabel by MRGpaxmcop: than by JLD. When it comes to
data-age performance MRGycope and MRG,, perform best,
while the best schedulability variant MRGaxmcope 18 slightly
worse, but still considerably better than the variants that
feature JLDs but no additional optimization. Additionally, it
can be seen that the more utilization a system has, the less
effective our data-age optimization is. This is because our
optimization cannot tighten deadlines of IO task if the system
has no more laxity. The largest improvement between JLD and
our proposed methods is 20 % for MRGy at 0.6 utilization.

VII. CONCLUSION AND FUTURE WORK

We presented a novel approach to map data-age con-
strained tasksets onto multi-core real-time systems efficiently.
We addressed the fundamental challenge of data-age bounds,
synchronization overheads, and overall schedulability by an
automated system transformation and analysis. Our transfor-
mation variants improve the scheduling of decisive jobs of
data chains that impact data age and are, to the best of our
knowledge, the first to explicitly consider crossing chains. Our
evaluation proves that compared with traditional JLDs we can
substantially reduce synchronization overheads, improve the
schedulability up to 50 percent points, and reduce data-age
analysis pessimism by up to 20 percent points.

To this end, our approach resembles a time-driven exe-
cution in sections by using tight execution windows. Con-
sequently, our approach does not interfere with priority
preemptive scheduling methodology in general yet requires
deadline/release-time adherence. We are currently working on
adapting our approach to fixed-priority preemptive schedul-
ing by leveraging Chetto et al. [17] to map the precedence
constraints, respectively.

ACKNOWLEDGMENT

This work was partially funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) — project
number 146371743 — TRR 89 “Invasive Computing” and grant
no. SCHR 603/15-2 and SCHR 603/9-2.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES

B. Prasad, Concurrent Engineering Fundamentals. Prentice Hall
Englewood Cliffs, NJ, 1996, vol. 1.

S. Kramer, D. Ziegenbein, and A. Hamann, “Real world automotive
benchmarks for free,” in Proceedings of the 6" International Workshop
on Analysis Tools and Methodologies for Embedded and Real-time
Systems (WATERS), 2015.

N. Feiertag, K. Richter, J. Norlander, and J. Jonsson, “A compositional
framework for end-to-end path delay calculation of automotive systems
under different path semantics,” in Proceedings of the I*' International
Workshop on Compositional Theory and Technology for Real-Time
Embedded Systems (CRTS), 2008.

R. Wyss, F. Boniol, C. Pagetti, and J. Forget, “End-to-end latency
computation in a multi-periodic design,” in Proceedings of the 28™
Annual ACM Symposium on Applied Computing, 2013, pp. 1682-1687.
J. Forget, F. Boniol, and C. Pagetti, “Verifying end-to-end real-time
constraints on multi-periodic models,” in Proceedings of the 22"¢
IEEE International Conference on Emerging Technologies And Factory
Automation (ETFA), 2017.

A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K.-E. Arzen, “How
does control timing affect performance? Analysis and simulation of
timing using jitterbug and truetime,” IEEE Control Systems Magazine,
vol. 23, no. 3, pp. 16-30, 2003.

A. Hamann, D. Dasari, S. Kramer, M. Pressler, and F. Wurst, “Commu-
nication Centric Design in Complex Automotive Embedded Systems,”
in 29" Euromicro Conference on Real-Time Systems (ECRTS 2017), ser.
Leibniz International Proceedings in Informatics (LIPIcs), M. Bertogna,
Ed., vol. 76. Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2017, pp. 10:1-10:20.

A. Biondi and M. Di Natale, “Achieving predictable multicore execution
of automotive applications using the let paradigm,” in 2018 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
Apr. 2018, pp. 240-250.

J. Martinez, 1. Safiudo, and M. Bertogna, “Analytical characterization of
end-to-end communication delays with logical execution time,” I[EEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 37, no. 11, pp. 2244-2254, Nov. 2018.

C. Pagetti, J. Forget, F. Boniol, M. Cordovilla, and D. Lesens, “Multi-
task implementation of multi-periodic synchronous programs,” Discrete
event dynamic systems, vol. 21, no. 3, pp. 307-338, 2011.

M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “Synthe-
sizing job-level dependencies for automotive multi-rate effect chains,” in
Proceedings of the 22" IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, 2016, pp. 159—-169.
T. Klaus, F. Franzmann, M. Becker, and P. Ulbrich, “Data propagation
delay constraints in multi-rate systems: Deadlines vs. job-level depen-
dencies,” in Proceedings of the 26™ International Conference on Real-
Time Networks and Systems. ACM, 2018, pp. 93—103.

A. Colin and I. Puaut, “Worst-case execution time analysis of the
RTEMS real-time operating system,” in Proceedings of the 13th Euromi-
cro Conference on Real-Time Systems (ECRTS '01), 2001, pp. 191-198.
D. Sandell, A. Ermedahl, J. Gustafsson, and B. Lisper, “Static timing
analysis of real-time operating system code,” in Proceedings of the In-
ternational Symposium On Leveraging Applications of Formal Methods,
Verification and Validation (ISoLA '04), ser. Lecture Notes in Computer
Science. Springer, 2004, pp. 146-160.

J. Schneider, “Why you can’t analyze RTOSs without considering
applications and vice versa,” in Proceedings of the 2nd Workshop on
Worst-Case Execution Time Analysis (WCET ’02), 2002, pp. 79-84.

S. Schuster, P. Wigemann, P. Ulbrich, and W. Schroder-Preikschat,
“Proving Real-Time Capability of Generic Operating Systems by
System-Aware Timing Analysis,” in Proceedings of the 25" Real-Time
and Embedded Technology and Applications Symposium (RTAS ’19),
I. C. Society, Ed., Montreal, 2019, pp. 318-330.

H. Chetto, M. Silly, and T. Bouchentouf, “Dynamic scheduling of real-
time tasks under precedence constraints,” Real-Time Systems, vol. 2,
no. 3, pp. 181-194, 1990.

A. Hamann, D. Dasari, S. Kramer, M. Pressler, F. Wurst, and D. Ziegen-
bein, “Waters industrial challenge 2017,” 2017 [Online].

R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System level performance analysis - the symta/s approach,” [EEE
Computers and Digital Techniques, vol. 152, no. 2, pp. 148-166, 2005.

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

(33]

(34]

(35]

[36]

[37]

[38]

S. Mubeen, J. Miki-Turja, and M. Sjodin, “Support for end-to-end
response-time and delay analysis in the industrial tool suite: Issues,
experiences and a case study,” Computer Science and Information
Systems, vol. 10, no. 1, 2013.

M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte", “End-
to-end timing analysis of cause-effect chains in automotive embedded
systems,” Journal of Systems Architecture, vol. 80, pp. 104-113, 2017.
T. Kloda, A. Bertout, and Y. Sorel, “Latency analysis for data chains of
real-time periodic tasks.” in 2018 IEEE 23" International Conference
on Emerging Technologies and Factory Automation (ETFA), vol. 1, Sep.
2018, pp. 360-367.

M. J. Friese, T. Ehlers, and D. Nowotka, “Estimating latencies of
task sequences in multi-core automotive ecus,” in 2018 IEEE 13t
International Symposium on Industrial Embedded Systems (SIES), Jun.
2018, pp. 1-10.

A. Girault, C. Prévot, S. Quinton, R. Henia, and N. Sordon, “Improving
and estimating the precision of bounds on the worst-case latency of task
chains,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 11, pp. 2578-2589, 2018.

T. Kloda, A. Bertout, and Y. Sorel, “Latency upper bound for data chains
of real-time periodic tasks,” Journal of Systems Architecture, 2020.

M. Diirr, G. V. D. Briiggen, K.-H. Chen, and J.-J. Chen, “End-to-end
timing analysis of sporadic cause-effect chains in distributed systems,”
ACM Trans. Embed. Comput. Syst., vol. 18, no. 5s, pp. 58:1-58:24, Oct.
2019.

J. Martinez, I. Safiudo, and M. Bertogna, “End-to-end latency charac-
terization of task communication models for automotive systems,” Real-
Time Systems, 2020.

J. Schlatow, M. Mostl, S. Tabuschat, T. Ishigooka, and R. Ernst, “Data-
age analysis and optimisation for cause-effect chains in automotive con-
trol systems,” in 13" International Symposium on Industrial Embedded
Systems (SIES), 2018.

A. Davare, Q. Zhu, M. Di Natale, C. Pinello, S. Kanajan, and
A. Sangiovanni-Vincentelli, “Period optimization for hard real-time
distributed automotive systems,” in Proceedings of the 44" Annual
Design Automation Conference (DAC), 2007, pp. 278-283.

W. Zheng, Q. Zhu, M. D. Natale, and A. S. Vincentelli, “Definition
of task allocation and priority assignment in hard real-time distributed
systems,” in 28" IEEE International Real-Time Systems Symposium
(RTSS), Dec. 2007, pp. 161-170.

M. Verucchi, M. Theile, M. Caccamo, and M. Bertogna, “Latency-aware
generation of single-rate dags from multi-rate task sets,” in 2020 IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2020, pp. 226-238.

M. Becker, S. Mubeen, D. Dasari, M. Behnam, and T. Nolte, “Schedul-
ing multi-rate real-time applications on clustered many-core architec-
tures with memory constraints,” in 2018 23" Asia and South Pacific
Design Automation Conference (ASP-DAC), Jan. 2018, pp. 560-567.

J. Forget, F. Boniol, E. Grolleau, D. Lesens, and C. Pagetti, “Scheduling
dependent periodic tasks without synchronization mechanisms,” in 20710
16" IEEE Real-Time and Embedded Technology and Applications
Symposium. 1EEE, 2010, pp. 301-310.

F. Scheler and W. Schroder-Preikschat, “The RTSC: Leveraging the mi-
gration from event-triggered to time-triggered systems,” in Proceedings
of the 13th IEEE Int. Symp. on Object-Oriented Real-Time Distributed
Computing. Washington, DC, USA: IEEE, May 2010, pp. 34-41.

F. Franzmann, T. Klaus, P. Ulbrich, P. Deinhardt, B. Steffes, F. Scheler,
and W. Schroder-Preikschat, “From intent to effect: Tool-based gener-
ation of time-triggered real-time systems on multi-core processors,” in
Proceedings of the 19" IEEE International Symposium on OO Real-
Time Distributed Computing (ISORC), May 2016, pp. 134-141.

C. Sofronis, S. Tripakis, and P. Caspi, “A memory-optimal buffering
protocol for preservation of synchronous semantics under preemptive
scheduling.” in Proceedings of the 6™ ACM & IEEE International
Conference on Embedded Software (EMSOFT), 2006, pp. 21-33.

B. Wittenmark, J. Nilsson, and M. Torngren, “Timing problems in real-
time control systems,” in Proceedings of the American Control Conf.,
vol. 3. New York, NY, USA: IEEE Press, 1995, pp. 2000-2004.

J. Nilsson, B. Bernhardsson, and B. Wittenmark, “Stochastic analysis
and control of real-time systems with random time delays,” Automatica,
vol. 34, no. 1, pp. 57-64, 1998.

A. Bertout, J. Forget, and R. Olejnik, “Minimizing a real-time task
set through task clustering,” in Proceedings of the 22"¢ International
Conference on Real-Time Networks and Systems, 2014, pp. 23-31.

[40]

[41]

[42]

[43]

T. Klaus, P. Ulbrich, P. Raffeck, B. Frank, L. Wernet, M. Ritter von
Onciul, and W. Schroder-Preikschat, “Boosting Job-Level Migration by
Static Analysis,” in Proceedings of the 15" Workshop on Operating
Systems Platforms for Embedded Real-Time Applications (OSPERT),
Jul. 2019, pp. 17-22.

M. Chetto, Real-time Systems Scheduling 1: Fundamentals. John Wiley
& Sons, 2014, vol. 1.

H. Hoang, G. Buttazzo, M. Jonsson, and S. Karlsson, “Computing the
minimum edf feasible deadline in periodic systems,” in 12" [EEE Inter-
national Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA’06). 1EEE, 2006, pp. 125-134.

M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “MECHA-
niSer - a timing analysis and synthesis tool for multi-rate effect chains
with job-level dependencies,” in Proceedings of the 7" International
Workshop on Analysis Tools and Methodologies for Embedded and Real-

[44]

[45]

[46]

[47]

time Systems (WATERS), 2016.

“Absint angewandte informatik gmbh. ait: Worst case execution time
analyzers. http://www.absint.com/ait,” 2020.

M. Stilkerich, J. Schedel, P. Ulbrich, W. Schroder-Preikschat, and
D. Lohmann, “Escaping the bonds of the legacy: Step-wise migration
to a type-safe language in safety-critical embedded systems,” in Pro-
ceedings of the 14" IEEE International Symposium on OO Real-Time
Distributed Computing (ISORC). IEEE, Mar. 2011, pp. 163-170.

B. B. Brandenburg, “Scheduling and locking in multiprocessor
real-time operating systems,” Ph.D. dissertation, The University
of North Carolina at Chapel Hill, 2011. [Online]. Available:
http://www.cs.unc.edu/~bbb/diss/

T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A time-
triggered language for embedded programming,” in International Work-
shop on Embedded Software. Springer, 2001, pp. 166—184.

http://www.absint.com/ait
http://www.cs.unc.edu/~bbb/diss/

