
Boosting Job-Level Migration by Static Analysis
Tobias Klaus, Peter Ulbrich, Phillip Raffeck, Benjamin Frank,

Lisa Wernet, Maxim Ritter von Onciul, Wolfgang Schröder-Preikschat
Department of Computer Science, Distributed Systems and Operating Systems

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

Abstract—From an operating system’s perspective, task mi-
gration is a potent instrument to exploit multi-core processors.
Like full preemption, full migration is particularly advantageous
as it allows the scheduler to relocate tasks at arbitrary times
between cores. However, in real-time systems, migration is
accompanied by a tremendous drawback: poor predictability and
thus inevitable overapproximations in the worst-case execution-
time analysis. This is due to the non-constant size of the tasks’
resident set and the costs associated with its transfer between
cores. As a result, migration is banned in many real-time
systems, regressing the developer to a static allocation of tasks
to cores with disadvantageous effects on the overall utilization
and schedulability.

In this paper, we tackle the shortcomings of full migration in
real-time systems by reducing the associated costs and increasing
its predictability. Our approach is to analyze a task’s source
code to identify beneficial migration points considering the
size of scheduling units and the associated migration costs.
Consequently, we can do both: generate schedules that benefit
from static migration as well as provide information about
advantageous migration points to dynamic scheduling, making
full migration more predictable. Our experiments show improved
schedulability and a reduction in transfer size of up to 76 percent.

I. INTRODUCTION

To date, real-time scheduling on multi-core systems while
fully utilizing the cores is a challenging task. Initially, static
allocation of tasks to cores suffers from the well-known
Dhall’s effect [1]: adverse utilization characteristics of tasks
may lead to poor overall utilization up to the point where
the system becomes unschedulable. Consider for example,
a task set comprising three tasks τa, τb, and τc, where τa
and τb have a processor utilization of 70 percent and τc of
40 percent. Allocating this task set on a system with two cores
is infeasible. This problem of static allocation can be overcome
by dynamic allocation and the possibility to migrate work
between different cores, as it enables to spread work among
cores. Such migration is conceptually possible at multiple
levels of granularity: task, job, and instruction level [2]. While
the former two are relatively easy to implement, they are
incapable of solving the general issue. They still fail to find a
feasible schedule for the previous example, as the infeasibility
stems from the adversly large utilization on task and job level.
Migration on instruction level, on the other hand, succeeds to
utilize the system fully and thus to find a feasible schedule,
as it allows split up a job and distribute its utilization across
cores. An abundance of multi-core scheduling algorithms [3]
rely on such fine-grained migration to exploit this potential.

However, migration comes at considerable costs in practice,
as the operating system not only has to preempt a task but also

transfer its resident set (i.e., active working set) between differ-
ent core-local memories. In contrast to core-local preemption,
these costs are non-constant and highly dependent on the
point of migration [4]. Thus, migration at the instruction level
carries the risk to migrate at adverse points that are associated
with high overheads. Choosing an inapt migration point may
even jeopardize deadline tardiness and feasibility [5]. Even
worse, worst-case execution time (WCET) analysis is forced
to assume a pessimistic bound on the migration cost. To
conserve predictability, migration is thus banned in many real-
time operating systems, restricting the developer to a static
allocation of tasks to cores with disadvantageous effects on
the overall utilization and schedulability.

Without resorting to migration, however, the granularity of
scheduling units is a crucial factor for the overall schedu-
lability of a given system as it is typically easier to find
a valid schedule for smaller scheduling units. For runtime
migration, only the direct cost of the migration mechanism
itself can be influenced by the operating systems. However, the
fundamental issue is in the variability of the indirect cost, that
is resident-set size. Consequently, we identified the following
two major challenges to overcome the predictability issues and
to boost migration in real-time systems.

A. Challenge # 1: Adverse Size of Scheduling Units

Considering our previous example, finding a schedule is
infeasible only because of the adverse granularity of the
three tasks although, in theory, the overall utilization is not
exceeded. Splitting tasks into smaller scheduling units solves
the problem, for example, by splitting task τc into two parts
with a utilizaton of less than 30 percent each. However, cutting
code to match a certain scheduling granularity is a tedious
process as the execution time is a non-functional property and
thus hard to correlate with the source code. The fundamental
challenge is to identify split points that are valid for all
possible execution paths across branches and preserve the
task’s functional properties.

Our Approach: We perform static analysis on the sys-
tem at compile time to identify potential split points with
the desired granularity based on execution cost estimations.
Additionally, we ensure that program semantics are preserved
across all control-flow branches. We leverage heuristic es-
timation of execution cost to keep the analysis overhead
manageable. Subsequently, a target-specific WCET analysis
can verify the granularity of the scheduling units.

B. Challenge # 2: Minimize Migration Overhead

Choosing scheduling units only by size still suffers from the
same issues as instruction-level migration, namely potentially
high migration cost. A split point that results in optimally
sized scheduling units may coincide with an unfavorably large
resident set. In the worst case, the additional migration cost
may again jeopardize the schedulability gained by changing
the granularity in the first place. The challenge is in the
identification of split points that benefit both aspects.

Our Approach: We optimize both the scheduling-unit size
and the associated migration cost simultaneously by extending
the search for split point candidates to the vicinity of the
optimal scheduling-unit granularity. This way, we are able to
choose split points with beneficial resident-set sizes.

C. Contribution and Paper Structure

In this paper, we present an approach to facilitate the use
of migration in real-time systems by reducing the associated
costs and increasing its predictability. Our toolchain allows for
automated static analysis of existing source code to identify
beneficial migration points by simultaneously considering both
the size of scheduling units and the associated migration
costs. We transform the control-flow graph into a split-point
graph that models scheduling units and holds information
on potential split points and their costs. Consequently, our
analysis can be used to both generate static schedules with
migration as well as provide hints on beneficial migration
points to dynamic scheduling thus supporting online migration.

The remainder of this paper is structured as follows: In
Section II, we present our approach to solve the aforemen-
tioned challenges. Section III gives an overview of the imple-
mentation of our prototype, which is evaluated in Section IV.
Section V outlines related work in the context of job migration
and Section VI concludes.

II. APPROACH

In this section, we detail our approach to the identification
of beneficial migration points by static code analysis. We,
therefore, first introduce the system model and fundamental
assumptions that we demand and give an overview of the
general concept of our analysis. Finally, we detail the handling
of loops and branches, which are in particular challenging and
require specific cutting schemes.

A. System Model and Assumptions

We consider a real-time system with m cores that allows
full preemption and full migration. We define the latter to
permit migration at each instruction of the application code
but to prohibit migration during the execution of system
calls and other operating-system code. A set τ of n sporadic
tasks with occurrence rate Ti is scheduled on m processors.
Each task τi contains a set of l scheduling units J (a.k.a.
jobs) and has a processor utilisation Ui. The number of tasks
n, the period and their respective worst-case execution time
(WCET) Ci determine the theoretical schedulability. A system
is theoretically schedulable on m cores if the total utilization

of all tasks is less or equal than the number of cores m, i.e.,
if the following equation holds:

n∑
i=1

Ui =

n∑
i=1

Ci
Ti
≤ m with Ci =

l∑
k=1

CJki (1)

Here, CJki denotes the WCET of the scheduling unit k of
τi. We extend the inequality by the overhead α to express the
(data transfer) costs associated with migration for each task:

n∑
i=1

Ci + αi
Ti

≤ m (2)

As a non-functional requirement, we assume that upper
bounds on the number of iterations for all loops are given.
We further assume a RISC processor without out-of-order ex-
ecution as the target and that cache-related overhead is already
covered by the overapproximations required to incorporate
preemption effects and delays.

With the notion of a resident set, we refer to the currently
active (i.e., alive) part of a process’s working set; the latter
is often used interchangeably in the literature. That is, for
example, local and global variables or the state of the stack.
We restrict this definition to comprise only core-local data and
assume that all other data is globally accessible.

B. General Concept

We leverage static code analysis to identify interactions
with the operating system’s scheduler, that is system calls,
from the tasks’ source code. By incorporating knowledge
about the semantics of the targeted operating system and its
scheduling, we can thereof derive all truly existing scheduling
units and their respective control-flow graphs; irrespective of
the development model (e.g., process or run-to-completion)
and style the developer pursued.

We further infer all additional information that is required
to identify potential split points. First and foremost, this is
the active resident set at all times. We, therefore, perform
a liveness analysis of all local variables and compute the
resident-set size for every instruction. Furthermore, we per-
form a heuristic timing analysis of all nodes to estimate their
size in terms of execution time. Finally, the control-flow graphs
are transformed into split-point graphs that hold all additional
information. In this graph, edges correspond to the possible
split points, and nodes represent all instructions between them.

The identification of split points consecutively transforms
the split-point graph such that all nodes are at or below a
predefined target size at minimal migration costs. To achieve
this, we assess each possible split point according to two cri-
teria: distance (δ) to the intrinsic split point and the associated
resident-set size (ω), that is migration costs. Figure 1 illustrates
the interplay of these two parameters. Recall that we assume
global variables to be globally accessible from all cores.

We define the intrinsic split-point as the point, where
the estimated worst-case execution time since the beginning
of the scheduling unit, or, equivalently, the last split point,
approximately equals the target scheduling-unit size. In our

 = 0;int32_t x
uint16_t y = foo();

 (= 0; < 5; ++) {for uint8_t i i i
 += * bar[];x y i
}

 = * 4711; int64_t z x
 (= 0; < 5; ++) {for uint8_t j j j

 += baz[];z j
}

;return z

1

2

3

4

5

6

7

8

9

10

x yi z j

min. cost
2 Bytes

optimal
split size

shift

Lifespan:

Figure 1: Working set and lifespan of automatic vari-
ables, showcasing the need to simultaneously consider both
scheduling-unit size and resident-set size to obtain optimal
split points with minimal overhead.

example, splitting between lines seven and eight would lead to
optimal size. However, in this case, we suffer from significant
migration costs, as j and z have to be transferred.

We, therefore, employ the size of the resident set at a
given program point to further consider the migration cost.
We acquire ω by a liveness analysis to identify all local
variables that are referencable from a given program point.
In the example in Figure 1, the state is minimal between lines
five and six, where just the intermediate result stored in x has
to be transferred.

By simultaneously optimizing both criteria, we are, in gen-
eral, able to obtain best-suited points for cutting the scheduling
unit locally. However, we have to assess possible split points
also from a global point of view. Only by that, we can
guarantee that the resulting cut is both correct and suitable
in cases where different possibilities of program flow exist,
for example in branches and loops. Therefore, we search for
a minimal cut on the split-point graph to find split points in
all branches that result in global split points associated with
minimal migration costs.

In the following sections, we give further insights on how
our approach handles specific program constructs.

C. Splitting Branches

Assessing a sequential control flow according to our criteria
only requires a straightforward assessment of all split-point
candidates and selection of the optimal one. In contrast,
branches are harder to split as we need to maintain global
relations between split points in all branches belonging to
the same conditional construct to preserve program semantics.
A further challenge is to avoid an increase in the overall
WCET by an unbalanced subdivision of branches. Figure 2
illustrates the underlying problem: For the original, uncut
branch (left), we have a WCET of Cuncut = 205. In this
example, the liveness analysis reveals minimal migration costs
at the beginning of the true and the end of the false
branch. Consequently, the cut scheduling units SUA and SUB
contain the greater part of the true and false branches
respectively. Ultimately, the WCET analysis suffers from a
pessimistic overapproximation in both branches yielding an
overall WCET of Ccut = 350.

Scheduling Unit (SU)

true false

exit

C
 =

 2
05

U
N
C
U
T C = 160TRUE

cond

C = 205FALSE

cond

exit

true false

true false

SUA C
 = 200

SU
 A

C
 = 150

SU
 B

SUB

C
 =

C
U
T

350

C = 200FALSE

weighted
split point
(local opt.)

SPLIT

C = 10TRUE

C = 150TRUE C = 5FALSE

Figure 2: Bloated WCET estimate due to an unbalanced cut,
caused by a branch-local optimization of split points.

This unfavorable behavior is rooted in the branch-local
optimization of the migration cost. We address this issue by
considering both criteria (i.e., size and migration cost) simul-
taneously across all branches to find globally suitable split
points that lead to a balanced cut even for nested branches.
Throughout this paper, we call this a horizontal cut.

D. Splitting Loops
Further measures are required for the splitting of loops as

splitting inside the loop body is entirely ineffective as the
related costs outweigh the benefits. Additionally, an individual
loop iteration typically contributes only a small fraction to
the loop’s overall WCET. Therefore, we subdivide loops at
a granularity of whole iterations using index set splitting [6]
to separate the index range of a loop into smaller subranges
until the individual execution time fits the targeted size. As
the resident-set size is usually the same for all loop iterations,
we consider all possible split points as equally suited1.

In general, we require an upper bound on the number of loop
iterations itermax to estimate a loop’s overall execution time,
which is commonly available knowledge in (safety-critical)
real-time systems. Considering the WCET Cloop of a single
loop iteration, we can derive the number of iterations iterfit
required to fit the target size (Ctarget) of the scheduling units:

iterfit = dCtarget/Cloope (3)

The number of required cuts ncut results from the total
number of iterations itermax and the fitting size iterfit:

ncut = bitermax/iterfitc (4)

By splitting loops by their index range, we obtain suitable
scheduling-unit size while avoiding the potentially disadvan-
tageous effects of splitting the loop body.

In summary, by employing our concept of split-point graphs,
we can successfully subdivide tasks into scheduling units of
smaller size. We can efficiently cut both composite branches
and loops. Liveness analysis allows us to identify split points
with minimal migration costs. Thereby, we improve schedula-
bility in multi-core settings and reduce the otherwise inevitable
overapproximation of indirect migration overheads.

1Theoretically, loop constructs exist that violate this assumption. In that
case, we overapproximate the resident-set size by the overall maximum.

SUA

BB1 SPLIT

Original if-then-else Subdivided if-then-else

BB2 BB3

BB4

SUA

BB1

BB2a BB3a

BB5

SUB

BB6

BB2b BB3b

BB4

Figure 3: Schematic depiction of the split procedure for
if-then-else branches.

III. IMPLEMENTATION

We based the implementation of our approach on the
Real-Time Systems Compiler (RTSC) [7]. The RTSC is an
LLVM-based [8] toolchain that’s characteristic feature is the
automated manipulation of non-functional properties of real-
time systems. For this purpose, the RTSC employs static code
analysis to transform a given source system into an OS-
agnostic intermediate representation, which in turn is based
on the LLVM intermediate representation (LLVM-IR). As a
result of this, the application’s program-flow is represented as
single-entry single-exit regions2 between system calls, that is
scheduling units that do not affect the internal state of the OS.
Based on this intermediate representation, the RTSC facilitates
the systematic manipulation of non-functional properties. For
example, a conversion from event to time-triggered execution.
Currently, the RTSC supports various real-time operating
systems with its front and backends respectively [10], [11].

A. Split-Point Graph Generation

Currently, only the application code is part of the inter-
mediate system representation. Thus, with our prototype, we
focused on the identification of suitable split point within the
application, which is the main subject of migration. Conceptu-
ally, however, our approach can be extended to the operating-
system code, which we, however, consider as future work. To
identify optimal split points, we need to derive the split-point
graph from the intermediate representation and enrich it with
execution time estimates and resident-set sizes.

In a first step, we perform a liveness analysis of all variables
on the intermediate representation of LLVM. The results of
this analysis provide information about the size of the resident-
set size ω, which we then utilize as one optimization criterion.

In a second step, we estimate the execution time per
instruction in the LLVM representation3 to determine the
distance δ from the intrinsic split points for each instruction.
For this estimation, we rely on a simple model of the execution
platform and assign execution costs to each instruction, giving
more weight to classes of instruction, which are likely to be
more expensive, for example, load and store instructions. This
heuristic oversimplifies the process of modeling the WCET
but is a reasonable approximation at the abstraction level of
the intermediate representation. Deriving better estimates for
the execution time is beyond the scope of this paper.

2A concept introduced as Atomic Basic Blocks (ABB) in [9].
3We inline all function calls to ease execution time estimation.

B. Split Point Optimization

With the foundations laid, we can assess the local aptness
of potential split points by a cost function that combines our
two criteria with appropriate weights as shown in Equation 5.
δ thereby denotes the distance to the intrinsic scheduling
granularity, ω the migration costs in bits, and wδ and wω
the respective weights. Using complex weight functions, the
interaction of weights and their effect on the assessment of
split points can be influenced, for example, to exponentially
punish an increasing distance δ. For simplicity, we resort to a
constant factor of one for both weights in our prototype:

wδ · δ + wω · ω (5)

In the case of sequential code, we can directly choose the
point that is most suitable according to our cost function.
However, as outlined in Section II, in the presence of loops
and branches, we have to perform the global assessment of
all branches to ensure a horizontal cut. For the search for the
minimal horizontal cut among the split-point candidates in dif-
ferent branches, we apply the Ford-Fulkersson algorithm [12]
on the split-point graph. After having identified a globally
suitable split point across all branches, we then perform the
actual splitting in if-then-else branches as depicted in
Figure 3. At the split point in each branch, we cut the existing
basic block (e.g., BB2) in two parts by inserting instructions
around the split point. In the first part (e.g. BB2a), we set a
flag indicating we executed that branch and jump to a newly
created basic block terminating the first scheduling unit (BB5).
In the second part (e.g., BB2b), we introduce a label which we
can use as a jump target from the newly created entry basic
block (BB6) of the second scheduling unit.

For loops, we use the procedure shown at the example in
Listings 1 and 2. Using the method outlined in Section II-D,
we identify the number of loop iterations iterfit that should
constitute one scheduling unit (5 in the example). We then
split the loop by duplicating the body and adjusting the loop
condition to preserve the program semantics. For this, we
introduce a counter for the split loops (sCo) that has to be less
than iterfit for the loop condition to be evaluated to true.

IV. EVALUATION

To assess our approach’s ability to cope with the initial two
challenges, its real-world usability ,and runtime, we conducted
two experiments and one theoretical consideration.

1 LOOP_Bound(x:10);
2 for(int i = 0;
3 i < x; ++i)
4 {
5
6 }

Listing 1: Loop in the
original state.

1 int i = 0, C = 5;
2 for(; i < x && C; ++i) {
3 --C;
4
5 }
6
7 C = 5;
8 for(; i < x && C; ++i) {
9 --C;

10
11 }

Listing 2: Loop after the
splitting procedure.

A. Runtime Overheads of Splitting

Since splitting of scheduling units is realised by the insertion
of specific instructions, e.g., jump statements, at the designated
cut point, it comes with an additional overhead. This overhead
differs depending on the type of control flow. In the case
of sequential control flow, we insert only one instruction per
cut. The number of additional instructions for the splitting
of branches i+if depends on the number of cuts ncut and
the number of branches nbranch. The first term of the sum
shown in Equation 6 refers to instructions for setting a flag
marking the active branch. The second term represents the
jump instruction that terminates the first scheduling unit and
the third term contains instructions for checking the stored flag
and proceeding with the correct branch.

i+if = ncut ∗ nbranch ∗ 2 + ncut ∗ 1 + ncut ∗ 3 (6)

Splitting loops adds i+loop instructions to the instructions
of the original loops. The first term of Equation 7 refers to
instructions necessary to maintain an additional counter for
the iterations planned in each scheduling unit of the loop.
The second term corresponds to the end of each scheduling
unit at a split point and comprises instructions for exiting the
scheduling unit and resetting the additional iteration counter.
The third term contains instructions to decide whether to
execute the following part of the loop after each split point.

i+loop = (ncut + 1) ∗ 5 + ncut ∗ 2 + ncut ∗ 3 (7)

The runtime overhead introduced by splitting is therefore
minor compared to the execution time of most scheduling
units. Exceptions are the extreme cases of conditional con-
structs with a large number of branches and loops with small
bodies. However, we can detect and avoid these cases in the
search for suitable split points, which we consider future work.

B. Schedulability of Synthetic Benchmarks

We assessed the validity of our approach concerning schedu-
lability by generating 12000 synthetic benchmark systems with
a utilization between 3.5 and 4.0 comprising few OSEK-
compliant tasks. We tried to find a feasible allocation and
schedule for each task set on a system with four processor
cores by employing specialized versions [13] of the branch-
and-bound allocation algorithm and the minimax scheduling
algorithm, both by Peng et al. [14]. Figure 4 shows the
achieved relative schedulability of the generated task sets both
with (left bars) and without (right bars) automated splitting of
scheduling units. The results show that the relative schedula-
bility increases through splitting, leading to 70 percent more
schedulable task sets for the highest utilization. This confirms
the general capability of our approach to employ migration
automatically to achieve better utilization.

C. Minimize Migration Costs

To evaluate our approach regarding Challenge # 2, we
analyzed possible splitting points in real-world benchmarks
taken from the TACLeBench suite [15]. For this, we converted
the benchmarks to OSEK tasks and created OSEK systems

3.
5

3.
6

3.
7

3.
8

3.
9

4.
0

utilization

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

fra
ct

io
n

of
 sc

he
du

la
bl

e
sy

st
em

s

original systems
split

Figure 4: Relative schedulability of generated task sets
achieved with (left bars) and without (right bars) splitting of
scheduling units, showing an increased schedulability reached
through automated splitting.

comprising one benchmark task and two load tasks. We
adjusted the amount of load to achieve a system which is
unschedulable on two cores without migration to force our
RTSC extension to split the benchmark task. We recorded the
worst-case dynamic migration costs for every instruction as
well as the statically composed migration costs of split points
that comprise all branches of the horizontal cut. Table I shows
an overview of both the worst-case migration cost observed
in all possible split-point candidates as well as the migration
cost of the split point chosen by our approach for several
TACLeBench benchmarks we analyzed. The costs represent
the size of the resident set in bits based on LLVM IR types,
which allow for a variable type width from 1 to 223 − 1 bits.
The results indicate that our approach is capable of providing
worst-case migration costs for a whole horizontal split that
are beneath the dynamic worst-case of single branches, with
a reduction of up to 76 percent. These improvements in
worst-case migration overhead ultimately allow reducing the
pessimism in the response-time analysis.

V. RELATED WORK

Studies on migration in real-time systems agree that migra-
tion costs vary significantly with the resident-set size [4], [16],

Benchmark Worst-case
Resident-set Size [bits]

Split-point
Resident-set Size [bits]

binarysearch 225 224
bitonic 65 64
complex_update 480 288
countnegative 2176 1568
filterbank 60 736 60 704
iir 432 400
insertsort 544 128
minver 17 568 16 800
petrinet 5057 5056

Table I: Comparison of the worst-case dynamic resident-set
size and the resident-set size at the split point chosen by our
approach in bits on the basis of LLVM IR types.

[17]. There exists a large body of related work on scheduling
algorithms [2], [18] that assume a constant upper bound on mi-
gration overheads. To increase predictability and reduce costs,
various approaches focused on restricting preemption and find-
ing thresholds or placements for preemption points [17], [19]–
[23]. Anderson et. al [24] extended this concept to restricted
migration, but lack a practical implementation. Automatic
analysis and generation of multi-core systems [13], [25], [26]
for non-preemptive scheduling has been studied. All these
approaches either ignore migration or are accompanied by
substantial pessimism, yet they provide a good starting point
for the practical application of our migration hits at runtime.

Orthogonal to our approach of (horizontal) splitting is
(vertical) slicing of real-time applications. Here, the time-
sensitive code is separated from time-insensitive code to
enhance schedulability [27]. In contrast to our approach, it
is difficult to control and optimize the output of code slicing
timing-wise. In a safety-critical systems, checkpointing [28],
[29] is considered to partition tasks, wherein the state to be
saved is minimized. However, checkpointing is specific to the
application and not universally applicable. Sarkar et al. [5] pro-
posed hardware-assisted migration, from which our approach
would also benefit but on which it does not depend.

VI. CONCLUSION & OUTLOOK

In this paper, we presented an approach to boost migration
in real-time systems by an automated analysis of tasks at
the source-code level. Our analysis reveals beneficial split
points with minimal migration costs. On the one hand, this
knowledge can be exploited by the RTOS at runtime and
thus is an enabler for migration thresholds; analogous to
preemptive thresholds or limited preemptive scheduling [20].
Consequently, static WCET analysis can infer tighter bounds
on migration overheads. On the other hand, our toolchain
supports the subdivision of tasks into smaller scheduling units
already at compile time, thereby improving overall schedula-
bility of static allocation schemes.

We continue to make migration in real-time systems more
accessible and predictable and are currently working on the
following topics: (1) Improving the WCET heuristics used for
splitting, for example, by adding more precise hardware mod-
els that allow for calculating migration costs based on cache
lines instead of data bits. (2) Adapting an existing RTOS to
support migration thresholds. (3) Extending the analysis to the
OS implementation and the system calls respectively.

Source code is available:
www4.cs.fau.de/Research/RTSC/experiments/abbslicing/

ACKNOWLEDGMENT
This work is supported by the German Research Foundation (DFG) under grants
no. SCHR 603/14-2, SCHR 603/13-1, SCHR 603/9-2, the CRC/TRR 89 Project C1,
and the Bavarian Ministry of State for Economics under grant no. 0704/883 25.

REFERENCES

[1] S. K. Dhall and C. L. Liu, “On a real-time scheduling problem,”
Operations Research, vol. 26, no. 1, pp. 127–140, 1978.

[2] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. H. Anderson, and
S. K. Baruah, “A categorization of real-time multiprocessor scheduling
problems and algorithms,” in Handbook of Scheduling, 2004.

[3] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Comp. Sur., vol. 43, no. 4, p. 35, 2011.

[4] A. Bastoni, B. Brandenburg, and J. Anderson, “Cache-related preemp-
tion and migration delays: Empirical approximation and impact on
schedulability,” Proceedings of OSPERT ’10, pp. 33–44, 2010.

[5] A. Sarkar, F. Mueller, H. Ramaprasad, and S. Mohan, “Push-assisted
migration of real-time tasks in multi-core processors,” Sigplan Notes,
vol. 44, no. 7, pp. 80–89, 2009.

[6] M. Griebl, P. Feautrier, and C. Lengauer, “Index set splitting,” Int’l
Journal of Parallel Prog’ing, vol. 28, no. 6, pp. 607–631, Dec. 2000.

[7] F. Scheler and W. Schröder-Preikschat, “The real-time systems compiler:
Migrating event-triggered systems to time-triggered systems,” Software:
Practice and Experience, vol. 41, no. 12, pp. 1491–1515, 2011.

[8] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the Int’l Symp.
on Code Generation and Optimization, Washington, DC, USA, 2004.

[9] F. Scheler and W. Schröder-Preikschat, “Synthesising real-time systems
from atomic basic blocks,” in Proc. of RTAS ’06 WIP, 2006.

[10] M. Stilkerich, J. Schedel, P. Ulbrich, W. Schroder-Preikschat, and
D. Lohmann, “Escaping the bonds of the legacy: Step-wise migration
to a type-safe language in safety-critical embedded systems,” in Proc.
of ISORC ’11, March 2011, pp. 163–170.

[11] S. Vaas, P. Ulbrich, M. Reichenbach, and D. Fey, “Application-Specific
Tailoring of Multi-Core SoCs for Real-Time Systems with Diverse
Predictability Demands,” Signal Processing Systems, Jul. 2018.

[12] L. R. Ford and D. R. Fulkerson, “A simple algorithm for finding maximal
network flows and an application to the hitchcock problem,” Canadian
Journal of Mathematics, vol. 9, pp. 210–218, 1957.

[13] T. Klaus, F. Franzmann, M. Becker, and P. Ulbrich, “Data propagation
delay constraints in multi-rate systems: Deadlines vs. job-level depen-
dencies,” in Proc. of RTNS ’18, 2018, pp. 93–103.

[14] D.-T. Peng, K. G. Shin, and T. F. Abdelzaher, “Assignment and schedul-
ing communicating periodic tasks in distributed real-time systems,”
IEEE Trans. on Software Eng’ing, vol. 23, no. 12, pp. 745–758, 1997.

[15] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange,
M. Schoeberl, R. B. Sørensen, P. Wägemann, and S. Wegener,
“TACLeBench: A Benchmark Collection to Support Worst-Case Execu-
tion Time Research,” in Proc. of WCET ’16, vol. 55, 2016, pp. 2:1–2:10.

[16] C. Burguière, J. Reineke, and S. Altmeyer, “Cache-related preemption
delay computation for set-associative caches–pitfalls and solutions,” in
OASIcs-OpenAccess Series in Informatics, vol. 10, 2009.

[17] E. W. Briao, D. Barcelos, F. Wronski, and F. R. Wagner, “Impact of
task migration in noc-based mpsocs for soft real-time applications,” in
Int’l Conf. on Very Large Scale Integration, Oct. 2007, pp. 296–299.

[18] A. Burns and R. Davis, “Mixed criticality systems – a review,” Tech.
Rep. 9. Edition, 2016.

[19] B. Peng, N. Fisher, and M. Bertogna, “Explicit preemption placement
for real-time conditional code,” in Proc. of ECRTS, 2014, pp. 177–188.

[20] G. C. Buttazzo, M. Bertogna, and G. Yao, “Limited preemptive schedul-
ing for real-time systems. a survey,” IEEE Trans. on Industrial Infor-
matics, vol. 9, no. 1, pp. 3–15, 2013.

[21] M. Bertogna, G. Buttazzo, and G. Yao, “Improving feasibility of fixed
priority tasks using non-preemptive regions,” in Proc. of RTSS ’11.
IEEE, 2011, pp. 251–260.

[22] M. Bertogna, O. Xhani, M. Marinoni, F. Esposito, and G. Buttazzo, “Op-
timal selection of preemption points to minimize preemption overhead,”
in Proc. of ECRTS ’11, Jul. 2011, pp. 217–227.

[23] Y. Wang and M. Saksena, “Scheduling fixed-priority tasks with preemp-
tion threshold,” in Proc. of RTCSA ’99. IEEE, 1999, pp. 328–335.

[24] J. H. Anderson, V. Bud, and U. C. Devi, “An edf-based restricted-
migration scheduling algorithm for multiprocessor soft real-time sys-
tems,” Real-time Systems, vol. 38, no. 2, pp. 85–131, Feb. 2008.

[25] F. P. Franzmann, T. Klaus, P. Ulbrich, P. Deinhardt, B. Steffes, F. Scheler,
and W. Schröder-Preikschat, “From Intent to Effect: Tool-based Gener-
ation of Time-Triggered Real-Time Systems on Multi-Core Processors,”
in Proc. of ISORC ’16, 2016.

[26] F. Nemati, J. Kraft, and T. Nolte, “A framework for real-time systems
migration to multi-cores,” Tech. Rep., 2009.

[27] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen, “A brief survey of
program slicing,” Softw. Eng. Notes, vol. 30, no. 2, pp. 1–36, 2005.

[28] K. G. Shin, T.-H. Lin, and Y.-H. Lee, “Optimal checkpointing of real-
time tasks,” IEEE T. on Comp., vol. 100, no. 11, pp. 1328–1341, 1987.

[29] S. W. Kwak, B. J. Choi, and B. K. Kim, “An optimal checkpointing-
strategy for real-time control systems under transient faults,” IEEE
Trans. on Reliability, vol. 50, no. 3, pp. 293–301, 2001.

www4.cs.fau.de/Research/RTSC/experiments/abbslicing/

