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Abstract Arithmetic error coding schemes are a well known and effective technique
for soft error mitigation. Although the underlying coding theory is generally a complex
area of mathematics, its practical implementation is comparatively simple in general.
However, compliance with the theory can be lost easily while moving towards an ac-
tual implementation, which finally jeopardizes the aspired fault-tolerance characteris-
tics and effectiveness. In this paper, we present our experiences and lessons learned
from implementing arithmetic error coding schemes (AN codes) in the context of our
Combined Redundancy fault-tolerance approach. We focus on the challenges and pit-
falls in the transition from maths to machine code for a binary computer from a systems
perspective. Our results show, that practical misconceptions (such as the use of prime
numbers) and architecture-dependent implementation glitches occur at every stage of
this transition. We identify typical pitfalls and describe practical measures to find and
resolve them. This allowed us to eliminate all remaining silent data corruptions in the
Combined Redundancy framework, which we validated by an extensive fault-injection
campaign covering the entire fault space of 1-bit and 2-bit errors.

Keywords Fault Injection · Arithmetic Code · Dependability

1 Introduction

Recent developments in hardware design for embedded systems offer more performance
and parallelism. This comes with shrinking structure sizes and operating voltages and
thus for the price of being less reliable. Consequently, soft-error mitigation is one of
the major challenges for safety-critical applications and systems [4]. Besides adding
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costly hardware redundancy, virtually sacrificing the technology gain, software-based
fault-tolerance offers a selective and resource-efficient alternative.

As systems engineers, we aim for a selective manipulation of dependability as a
non-functional property at the operating-system level and independent of any specific
hardware support. Here, arithmetic error coding, or AN codes1 for short, can be one
vital component to tackle transient hardware faults in software. Arithmetic error cod-
ing offers a high degree of effectiveness and is relatively easy to implement. At the
same time, its robustness in terms of residual error probability can be easily deter-
mined according to the underlying coding theory. Consequently, we used AN codes as
the foundation of our Combined Redundancy (CoRed) approach [32] (cf. Section 2.3).
However, practical experiments uncovered substantial discrepancies between theoreti-
cal and actual effectiveness.

1.1 Problem Statement

Any divergence from the assumed residual error probability complicates the safety as-
sessment and unnecessarily impedes the general applicability of our approach. There-
fore, our goal with CoRed was to provide full fault coverage for single-bit soft errors
and to reach the residual error probability predicted by the arithmetic error coding
theory in general. However, during its implementation we experienced inconsistencies
with the code’s assumed behaviour and fault-detection capabilities.

Experiments with our error-coding framework revealed unexpected silent data cor-
ruptions (SDCs) and discrepancies from the theory’s predicted error probabilities.
These deviations are in line with the observations made by other researchers [27] and
we were able to reproduce their results as well. However, we were unable to find any
profound explanation for this phenomenon in our earlier work.

Applying expertise from the low-level systems domain, we were able to trace back
the sources of discrepancy to every stage of the transition from the coding theory
to the machine-dependent implementation (Figure 1). The identified issues include
misconceptions regarding binary number representation and ranges, silent assumptions
about the runtime environment, and specific characteristics of the hardware platform.
Although the semantics of the coding algorithm are preserved in the transition over
all stages, the concrete execution can significantly diverge.

In consequence, a practitioner cannot rely blindly on coding theory, as it is ex-
tremely difficult to predict the implications on the residual error probability when the
algorithm is realized on a concrete hardware platform.

1.2 About this paper

In this paper we present a practitioner’s guide on how to deal with these challenges
by illuminating typical problem areas and presenting feasible solutions. A detailed re-
evaluation of CoRed ’s encoded majority voter, as its most vital component, allows for a
deeper insight into the transition steps from coding theory to its machine-dependent im-
plementation. We show the difficulties of a binary-aware parametrization of arithmetic
error coding by a set of constructive experiments. Moreover, we provide an Extended

1 Named by the integers A (constant key) and N (value).
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Implementing Soft-Error Mitigation

Decode_Static() {
TAssert(_B > 0);
assert(check());
return (vc=_B-D)/A;

};
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Fig. 1 From theory to application: Implementing arithmetic error coding is attended by var-
ious pitfalls and challenges.

AN code (EAN) as well as a voter implementation, which overcome the transforma-
tion issues and preserve the intended execution behavior. At large, the error coding
an thereby CoRed itself behave as predicted, eventually relieving the practitioner from
dealing with non-functional dependability aspects. In our opinion, the gained experi-
ence can be generalized to common guidelines for the parametrization, implementation,
and evaluation of arithmetic error coding in practice.

This article is an extension of our paper “A practitioner’s guide to software-based
soft-error mitigation using AN-codes” [15], presented at the 15th IEEE International
Symposium on High Assurance Systems Engineering (HASE 2014). The additional con-
tent comprises considerations of the arithmetic distance versus the Hamming distance
as a measure of code quality (Section 3.1), and more details on selection strategies for
the signature B. Sections 4 and 5 are extended by concrete examples of the encoun-
tered pitfalls and additional experimental results comparing the theoretical residual
error probability with the experimental fault-injection results. Section 6 additionally
discusses continuous fault-injection as a design concept for safety-critical systems. Fi-
nally, Section 7 revisits the restrictions and the generalizability of our approach in more
detail.

1.3 Contributions

The key contributions of this paper are a binary-aware analysis of the AN code
parametrization and its fault-detection capabilities. Based on these considerations, we
propose means for the selection of highly robust code parameters. Here, we not only
concentrate on theoretical limits, but also consider the behavior of the code on hard-
ware level.

We further disclose typical pitfalls on the transition from coding theory to machine-
level instructions. Learned from these lessons, we provide an improved Extended AN
(EAN) code and CoRed voter implementation, which fully complies with the coding
theory. An experimental verification and fault injection of the CoRed voter, covering
the entire 1 & 2-bit fault space, shows the robustness of the presented approach.
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2 Background & Related Work

Coding theory is a rich area of mathematics. However, from a practitioner’s point of
view, the only thing that matters is effectiveness – and potentially overhead. Before
immersing in the challenges and pitfalls we faced within CoRed ’s EAN code and voter
implementation, this section introduces the necessary coding basics and the assumed
fault model in a nutshell, and details the corresponding related work.

2.1 Fault Model

From a software perspective, soft errors manifest as malicious defects within machine-
level instructions, being the software’s most basic structural elements. Independent
from the underlying hardware, three fault classes can be distinguished: operand, opera-
tor, and arithmetic errors [10]. To put it simple, soft errors may lead to corrupted data,
unexpected operations or simply wrong results. Complex fault patterns and higher lev-
els of abstraction can be mapped to these elementary fault classes [12]. Accordingly,
the effectiveness of an error coding scheme is conceptually tied to the fault coverage
of this model. It therefore serves as a comprehensive classification base throughout the
rest of this paper. The basic fault hypothesis of our evaluation is the generally accepted
single-error single-bit assumption, as these amount to over 95% of the overall soft-error
rate [18,19,16]. We further extended this fault model to single-error multi-bit faults.

2.2 Arithmetic Error Coding

Common error codes, such as parity or cyclic redundancy checks, are widely used in
communication and memory applications [24]. They are, however, restricted to data
flows and not designed to cover computational flaws such as operator or arithmetic
errors. In contrast, arithmetic error coding can cope with all error classes and there-
fore provides protection for the actual program execution as well. The major difference
between data and arithmetic error coding is a set of code-preserving arithmetic oper-
ations, which allow for computation with the encoded values.

There exist different flavors of arithmetic error coding schemes which differ mostly
in their fault-model coverage: Residue codes [2] and AN codes are the simplest form and
use only the plain value (v) and the constant (A) for encoding. AN codes are commonly
used for software-based soft-error mitigation [23,6], although they lack coverage for
certain operator and address errors. To improve on this, ANB codes introduce an
additional per-variable signature (B), which allows for detecting interchanged operands
and operators [34]. Finally, Forin [10] proposed timestamps (D) to cover outdated
operands as the last gap in the code’s fault coverage, forming the ANBD coding scheme.
The encoding is defined by the standard AN and the BD fraction, as:

AN BD
vc = A · v + Bv + D

Encoded value Key Value Signature Timestamp
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Fig. 2 As its name implies, CoRed combines TMR with arithmetic error coding. Thereby,
input replication and voting are excluded from the reliable computing base and explicitly
hardened against soft error effects. By their perfect interplay, both techniques form a consistent
sphere of redundancy and provide effective fault-detection throughout the processing chain.

Initially designed for hardware-level protection [10], ANBD codes are also employed
in software-based approaches. Here, they commonly safeguard entire applications and
systems. Software Encoded Processing (SEP) [34] is an interpreter-based solution, trans-
forming safety-critical applications at runtime. The resulting coverage is limited by the
necessity of a dependable checker unit and due to inherent complexity of the runtime
environment. Moreover, the runtime overhead is increased by several orders of mag-
nitude (up to a factor of 105). Schiffel et al. evolved their concept to CEP [28], a
compiler-based solution, which effectively reduces the induced overhead to a factor of
103 in the worst case. Nevertheless, the approach still requires a checker instance and
cannot cover the entire execution path leading to inevitable SDCs [27]. In both cases,
the remaining SDCs can be accounted to the approaches’ complexity and implementa-
tion, which aims for generic application protection, rather to a conceptual flaw of the
employed ANBD codes.

2.3 The Combined Redundancy (CoRed) Approach

In contrast to the aforementioned encoding approaches, we were able to fully utilise the
coverage and effectiveness provided by arithmetic error coding by reducing complexity
and pursuing a tailored, application-specific concept. With CoRed [32] we presented
a highly effective, software-based fault-tolerance approach for mixed-criticality control
applications. CoRed engages in between application and operating system and combines
proven triple modular redundancy (TMR) with arithmetic error coding.

The idea behind this combination is to utilise the effectiveness and efficiency of
TMR for protecting the application. This, however exposes dangerous single points of
failure (SPOFs), caused by gaps between the processing replicas and by the necessary
replication infrastructure itself. These parts are usually attributed to the reliable com-
puting base (RCB) [9], which is considered to be error-free. However, this does not
pass the reality check for software-based approaches, as the residual error rates of re-
spective techniques [1,26,6,30] shows. To overcome this weakness and to eliminate the
remaining SPOFs, CoRed incorporates arithmetic error coding to safeguard the repli-
cation infrastructure in the sense of the aspired RCB as shown in Figure 2. For that,
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we especially introduced the CoRed dependable voter (CoRed voter): a high-reliability
voting schema based on our EAN error coding implementation (see Section 2.3.1).

By limiting the encoding to the generic replication infrastructure, we were able to
put the implementation to the acid. We successfully employed CoRed in the mission-
critical flight control of the I4Copter quad rotor UAV [33], which has been specifically
designed to resemble real-world control applications. Here, CoRed maintains a contin-
uous protection domain from the sensors’ inputs up to the actuator output elements.
In this type of application, the CoRed voter is of particular value due to the com-
plex component interconnection. Therefore, we see it as the key element to ensure the
overall reliability of safety-critical control applications.

2.3.1 The CoRed EAN Code Implementation

To avoid confusion with other implementations, we labeled our ANBD coding frame-
work Extended AN (EAN). While it fully adopts the ANBD coding theory and con-
cepts, its implementation is specifically tailored to our needs and incorporates the
improvements we will discuss later in this paper.

Within the scope of this paper, the most significant difference is the additional
equality operator provided by EAN. For the specific purpose of finding a majority,
we simplified the standard comparison according to Equation 1. The equality of two
encoded values can be easily determined by observing their difference:

xc︷ ︸︸ ︷
(A · x+Bx +D)−

yc︷ ︸︸ ︷
(A · y +By +D) = A · x−A · y +Bx −By

= Bx −By ⇔ x = y

(1)

If equal, the difference of the encoded values (xc, yc) must match with the constant
difference of their signatures (Bx,By). The timestamp D is identical in all encoded
values at any point in time, but may change globally, for example between different
voting steps.

2.3.2 The CoRed Voter

Generally speaking, the CoRed voter can be seen as an encoded application itself. Its
implementation is comprehensible and self-contained, and therefore, in our opinion,
especially suitable as a showcase. For simplicity’s sake, we omit the timestamp D
throughout the rest of this paper, and pretend it to be part of the variable-specific
signature Bv.

Figure 3 illustrates the voter’s fundamental algorithm. The basic idea is to find a
quorum on encoded values without losing the code’s protection at any point in the pro-
cess. Therefore, the voter accepts the three encoded variants (xc, yc, zc) and provides
a winner (win) along with the voting result (equality set E) in terms of a constant
signature BE (lines 14, 17, 21, and 24), defined by:
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xc +Bx+ (Bx −By) + (Bx −Bz) if {xc, yc, zc}
xc +Bx+ (Bx −By) if {xc, yc}
xc +Bx+ (Bx −Bz) if {xc, zc}
yc +By+ (By −Bz) if {yc, zc}

signal_due() if {}

CoRed_vote(xc, yc, zc) =

Dynamically Calculated Signatures

Return Value: winc

Equality Set

With the data integrity ensured, the voting algorithm itself can still suffer from
soft errors, for example causing false branch decisions. We solved this problem by
introducing program flow checks in terms of EAN scope signatures. The voter computes
a dynamic signature, based on the branch decisions that lead to a certain verdict in
the correct case, and applies this signature to the selected variant (lines 13, 16, 20, and
23) before returning it as the winner. The voting procedure was error-free, if static and
dynamic signature match. To put it simple, the control-flow is recomputed at run-time
and stamped to the winner. Outside the voter’s protection domain, any succeeding
software component can subsequently validate the correctness of the voting decision
and the value itself, by inversely applying the constant program flow signature (BE).

It is of special interest how the signatures are accessed by the CoRed voter. A
general implementation would operate on encoded variables, where the static signature
is carried along in memory. But the strength of our implementation arises from static
knowledge about the signatures at compile time. We use the compiler to instantiate
the algorithm with the three constant static signatures. This allows the compiler to
do constant folding and to put operands into ROM, which is considered more robust
against faults. Especially, all possible values of BE are compile-time constants. The
compiler is also instructed to avoid actual calls to functions by forced inlining. In doing
so, we avoid indirect jumps on memory addresses when the control-flow returns from
a function.

2.4 Residual Error Probability

After setting the coding schema, its parametrization is the second step. From a bird’s
eye view, any kind of code is simply based on the transformation of data (n bits) into
code words (n+k bits) by adding k bits of redundant information. The fault detection
is subsequently based on the distance between valid code words. The chance for a SDC
to mutate a valid code word into another valid word is thereby defined as the residual
error probability [11]:

psdc =
valid code words− 1

possible code words− 1
=

2 n − 1

2 n+k − 1
≈

1

2 k
(2)

This estimation assumes that every kind of error and data corruption is equally
probable, regardless of the number of bits flipped. In short, the more bits we spend
for information redundancy, the lower psdc. In the case of arithmetic error coding, the
number of possible code words is A · 2n, resulting in psdc ≈ 1/A. Therefore, the larger
A, the lower the residual error probability. Figure 6 depicts the correlation between A

and psdc (ppred in the figure) for 16-bit numbers.
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Require: Static Signatures: Bx, By , Bz

1: function decode(vc, A, B)
2: if vc mod A ̸= B then signal_due()
3: return (vc −B) div A
4: end function
5:
6: function apply(vc, sigdyn)
7: return vc + sigdyn
8: end function
9:

10: function vote(xc, yc, zc)
11: if (xc − yc) = (Bx −By) then
12: if (xc − zc) = (Bx −Bz) then
13: win← apply(xc, (xc − yc) + (xc − zc))
14: return BE ← (Bx −By) + (Bx −Bz)
15: else
16: win← apply(xc, (xc − yc))
17: return BE ← (Bx −By)
18: end if
19: else if (yc − zc) = (By −Bz) then
20: win← apply(yc, (yc − zc))
21: return BE ← (By −Bz)
22: else if (xc − zc) = (Bx −Bz) then
23: win← apply(xc, (xc − zc))
24: return BE ← (Bx −Bz)
25: else
26: win← noDecision
27: signal_due()
28: end if
29: end function

1

2

3

Fig. 3 The CoRed voter algorithm. It takes the encoded variants (vx, vy , vz). The majority
is found by encoded operations, leading to a unique static signature BE . This signature is
dynamically recomputed and stamped (apply) to the winner (win) before returning both as
a verdict.

3 Think Binary

Due to our specific implementation with dynamic signatures, the CoRed voter behaves
like any other ANBD operation when seen from outside. Accordingly, we expected the
residual error probability to be consistent with the coding theory. With the imple-
mentation of CoRed we ultimately aimed for a full single-bit soft-error fault coverage
according to the software-level fault model from Section 2.1. In this section we detail
the challenges and pitfalls that arise from the transitions from plain math to a binary
computing system.

3.1 Arithmetic and Hamming Distance

The robustness of any coding scheme against errors can be quantified by the minimal
number of errors that have to occur to alter one valid code word into another valid
word. In classic coding theory the Hamming distance [13] is commonly used to quantify
this robustness. For two code words the Hamming distance is number of bits that differ
in the binary representation. The minimal Hamming distance for a whole code is the
minimum distance between all pairs of distinct code words. For this robustness metric,
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a single bit-flip in the binary representation of the code word is considered an error,
and if the number of bit-flips stays below the minimal Hamming distance, detection
always succeeds.

In the literature [25,22,31,5] the arithmetic distance [24] is often used to reason
about the robustness of AN-codes. This metric was designed to reflect the errors that
occur in an arithmetic unit, more precisely a binary adder. The binary addition is
modeled as a sequence of 1-bit adders that transform two argument bits and one input-
carry bit into an output bit and an output-carry, which is propagated into the next
1-bit adder. For the arithmetic distance metric, an error is a wrongly propagated carry
bit, resulting in deviations of ±2j . The arithmetic distance of two code words is the
minimal number of additions or subtractions of powers-of-two that is needed.

The following equations exemplify the Hamming distance (hd) and the arithmetic
distance (ad) for two code words. While three bit-flips are needed to transform 8 into
6, only one wrongly propagated carry is required.

hd(810, 610) = hd(10002, 01102) = 3 (3)

ad(810, 610) = ad(610 + 21, 610) = 1 (4)

It can easily be shown that the number of required carry-errors is always less or
equal to the number of required bit-flips [20,21]. Hence, the arithmetic distance is a
pessimistic estimation for the quality of a code, since it includes an error model for an
arithmetic unit.

From a practitioner’s point of view there are two problems that make the arithmetic
distance less desirable for quantifying the robustness of an AN-coded system. The
arithmetic distance models the inner working of an simple ripple-carry adder. But in
modern processors many different adding circuits and optimizations are used (e.g.,
carry-select, carry-lookahead, etc.) to cut down pipeline delays.

The second problem with the arithmetic distance is the implicit error propagation
chain that is assumed by modeling an arithmetic unit (see Figure 4). The metric gives
the number of carry-propagation errors that have to occur in the binary adder (1) to
get a SDC when the value is used. Contrary, the Hamming distance gives the number of
bits that can be corrupted at the point the value is used (2) without getting a SDC. In
a real system, where arithmetic operations are mixed with other operations (control-
flow, logical operations, rotations) and long delays, this error propagation chain is
unknown and can, in the common case, not be reduced to a single arithmetic operation.

Adder Adder

a b

s

Bit 4

b

s

Bit 3

Adder

a b

s

Bit 2

Adder

a b

s

Bit 1

c c c c

Input OutputAddition
single bit-flip error double bit-flip error

Hardware

Software

a1 2

Fig. 4 Error propagation chain: The arithmetic distance states the robustness at (1), while
the Hamming distance states the code robustness at (2).
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Therefore, when choosing a good AN-code, we try to maximize the Hamming distance
in order to tolerate as many bit-flips as possible, no matter where they origin from.

3.2 Choosing Keys and Signatures

In the process of implementing the CoRed voter, our first step was to find suitable
parameters for the EAN’s keys (A) and signatures (B). As mentioned before, it seems
to be wise to choose a large number for A. Moreover, Forin [10] recommends prime
numbers, mainly to reduce the number of possible factors between different coding
streams and operations. Although the use of prime numbers seems intuitively plausible
from a mathematical point of view, their particular advantage is left unsubstantiated. In
fact, Schiffel [27] found some non-prime numbers to be equally suitable or even superior
for parametrization – without giving good reasons. Thus, all of these considerations
are of little help to find an A that reliably detects a certain number of bit flips.

Hamming Distance as Selection Criterion

As argued in Section 3.1 the only purpose of A, from a binary point of view, is to
generate robust bit patterns. Consequently, we choose the minimum Hamming distance
(dH) between all possible code words as the measure of choice. To find suitable As,
we computed the distances for all 32-bit codes, i.e. for all possible 16-bit values v and
keys A. We found dH to range from one to six depending on A, which means that zero
to five-bit errors should be detectable by the respective codes. Interestingly, although
we could observe the expected gain in distance with A growing, the values of dH
varied significantly between adjacent values. For example, the distance for non-prime
A = 58368 is two, that of prime 58 831 is three, and finally the minimum Hamming
distance of 58 659 is six, even being a non-prime value. The main reason is that ANBD
codes are non-systematic codes [25], meaning that the assumed n data and k check bits
are stored inseparable and processed together. Hence, the code’s minimum distance is
not necessarily related to the k bits used for representing A, but may vary according
to the binary representation of A · v. As a result, the bigger the better is misleading in
this case.

Unexpected Deviations

To our surprise we found the results to be deviating from the literature. Schiffel [27],
for example, performed fault injection experiments for a small number of As, which
indicate a residual error probability even for faults with a number of bits flips that is
below dH . These deviations would render the Hamming distance useless for selecting
an appropriate A to reliably detect a certain number of bit flips. We decided to perform
fault-simulation experiments to double check whether the fault-detection capabilities of
the codes correspond to the computed minimal Hamming distances. These experiments
covered each and every combination of possible vs, As and bit error patterns. Again
we were surprised to actually observe the exact same deviations in psdc and silent data
corruptions, which should have been detected according to the code’s dH .

We found the problem in the mapping of encoded values to their binary represen-
tation, for example 32-bit machine words. Of these, a practitioner usually assigns n

bits to data and k additional bits to accommodate A, with A ≤ 2k and n + k ≤ 32.
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Bit Flip

Hamming
distance

x (int16_t) xc (int32_t)
A · x

y (int16_t) xfaulty (int32_t)
xc/A

16-bit Machine Word Space

32-bit Machine Word Space

Encode

Decode

Reachable
Code Space

Fig. 5 The AN encoding of a plain 16-bit value leads to a 32-bit code word. Account must be
taken on the fact that the resulting possible code cannot utilize the entire 32-bit space. The
figure also shows a bit flip that shifts an encoded value out of the reachable code space. As
further described in Pitfall 1 this may still lead to a decodable but wrong plain value.

Choosing A = 2k is obviously unreasonable as this would lead to a simple bit shift.
Selecting A < 2k, however, results in an incomplete utilization of the machine word,
which leaves a residue in terms of unused values, as exemplified in Figure 5. To put
it simple, AN codes tend to result in odd value ranges that cannot be represented by
exactly a power of two bits. The residue is again non-systematic and can neither be
attributed to certain bit positions nor a specific number of bits. However, the coding
theory is unaware of this mapping issue and assumes a self-contained code space and
value range. Consequently, soft errors striking these unused bits can still lead to SDCs,
as the mutation may result in a valid but unused code word with v > 2n. Our first
pitfall is therefore the mapping of code to binary space:

Pitfall 1: Mapping Code to Binary

Due to the different and sometimes odd word sizes of plain and encoded data, dangerous
over- and underflow conditions, coming to light only in the presence of soft errors, are not
always obvious to the developer. This particular problem led to the observed discrepancies
between dH , predicted psdc, and fault-simulation experiments. By adding a simple range
check we were able to fix this issue, resulting in the following patch for the CoRed voter:

1: function decode(vc, A, B)
2: if vc > vc,max or vc mod A ̸= B then
3: signal_due()
4: end if
5: return (vc −B) div A
6: end function

1

With this improved implementation of decode, the fault-simulation results of EAN
match with the fault-detection capabilities as expected by the minimal Hamming dis-
tance. On top of that, this simple check can prevent a huge loss of reliability to the code
in general. For example, the predicted overall psdc is approximately 0.003 for A = 251.
For 64-bit code words, Schiffel measured the double-bit error’s psdc ≈ 0.013, as we did
in our first attempt. However, with the patch applied the actual psdc amounts to less
than 0.000015 – a factor of almost 1000.
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on A).

Determining Highly Robust As

Consequently, dH is a valid decision criterion for selecting A. The good news is that
any A exhibits a sufficient distance for single-bit errors, except the aforementioned
powers of two. As expected, the top performers reside in the upper end of the value
range, irrespective of the ubiquitous variations. We termed the best of them (with a
distance of six) Super As1, none of them being prime. As expected, bit errors < dH
are reliably detected by the EAN code. However, with bit errors ≥ dH SDCs are still
possible, and again we found A to have a significant influence on the actual psdc. We
therefore evaluated the multi-bit error performance (up to 8 bits) for all 16-bit As as
well. Although the resulting codes generally behaved as predicted, we identified the
borderline bit errors to be dangerous. These overstress the code by one bit (exactly dH
errors) and induce huge variations in the resulting psdc. Figure 6 shows the predicted
(ppred) and the measured residual error probabilities versus the size of A. To keep the
diagram readable, we simplified the plot by combining borderline bit errors in pbrd
and hand-picking pavg as a representative for the benign average case performance. As
the actual borderline depends on the respective A’s distance, pbrd fuses two to four-
bit errors and graphs their range. In contrast, the average case, non-borderline error
probability (pavg) is near below the prediction and virtually free of scatter.

Alarmed by the partial exceeding of ppred by borderline bit errors, we extended
our experiments to cover all possible bit errors. Due to the exponential growth in com-
putation time, we limited these experiments to 16-bit code words. Figure 7 illustrates
the residual error probability distribution relative to the number of bits flipped. The
three As shown here exemplify typical distribution patterns. For A = 73 the leading
borderline (double-bit errors) psdc is orders of magnitude off the other values, whereas
this is the case at the trailing edge (15-bit errors) for A = 199. Likewise both sides

1 Super As: 58 659, 59 665, 63 157, 63 859, and 63 877.
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can be affected, as for A = 239. In all these malicious examples, ppred is violated
by the borderline outliers. Fortunately, we found 33 percent of all 8-bit As to behave
benignly, staying below ppred under all circumstances. Interestingly, this share varies
significantly between non-prime (24.5%) and prime (65.5 %) numbers. For the super
As, we conducted the same experiments for up to 32-bit errors, as shown in Figure 6.
They proved to be still very suitable as three of them behaved benignly and the other
two being of trailing edge pattern (27 and 28-bit errors). The bottom line is: One should
consider the psdc distribution in addition to the Hamming distance for choosing A.

Selection Strategies for the Signature B

As the signatures B are appended additively, they do not directly interfere with the
choice of A. A bit-flip results in a residue R, when the the value is decoded. The residue
can be interpreted as a wrong signature B′

v = Bv + R for a correctly encoded value.
Since signatures were introduced to detect operator and address errors, it is crucial to
choose signature values carefully, such that two signatures cannot be easily confused.
Therefore, to keep the distinguishing property of signatures intact, we choose the set of
used signatures according to the Hamming distance. All used signatures in the system
should have the maximal distance, while not violating the mandatory prerequisites,
such as 0 < B < A.

From a practitioner’s point of view it is not always possible to keep the number of
used signatures in the whole system low enough to get an acceptable minimal Hamming
distance among the Bs. In such cases different components may use the same signatures
for different variables, under the assumption that no encoded value may flow from one
component to the other one. This can be ensured with the help of proper temporal and
spatial isolation by the OS, employing memory protection mechanisms and execution
time monitoring.

Regarding the signature choice of the CoRed voter component, we performed the
following steps: First, we have to identify all terms that are used as signatures: three
input signatures (Bx, By, Bz) and four dependent signatures used for the equality sets.
Then, we choose the input signatures such that all signatures, including the depended
ones, have a pairwise maximal distance and are within the range 0 < B < A. For the
Super As, the choice Bx = 29 868, By = 23 835, Bz = 12 658 results in a minimal
Hamming distance of six for all signatures2.

4 Know Your Compiler & Architecture

In the previous section we have shown that our improved EAN implementation can
comply with coding theory by choosing appropriate parameters. In the following, we
uncover further pitfalls that arise from the platform specifics and the transition from
programming language to machine code.

4.1 Fault-Injection Experimental Setup with Fail*

For a detailed reliability analysis of the assembly emitted by the compiler, we chose
a practical approach: extensive fault injection (FI) campaigns. A FI campaign is a

2 Based on a brute-force search. Code available at http://www4.cs.fau.de/Research/CoRed

http://www4.cs.fau.de/Research/CoRed
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Fig. 7 A detailed view on the psdc distribution for multi-bit errors (16-bit code words). The
selected As (all malicious in this example) illustrate typical borderline patterns: outliers located
on the leading, trailing or on both sides.

systematic series of experiments, which is defined by a fault pattern, a location (memory
address or register) and a point in time. As mentioned earlier, we focus on the generally
accepted single-error single-bit assumption. Nevertheless, injecting all possible single-
bit flips in all registers for every instruction (point in time) within the CoRed voter
would still result in a huge amount of experiments. Therefore, we relied on the generic
Fail* [29] FI framework. It offers sophisticated fault space pruning to economize the
experiments to effective faults, without losing full fault-space coverage.

We used Fail*’s IA32 backend, which is based on the Bochs emulator [17] and is the
most mature one. The common workflow is to perform a correct and complete golden
run of the program under test and to record each and every instruction and memory
access. The instructions are disassembled to extract the register usage. Subsequently,
the experiments are derived stepwise from the golden run: each instruction determines
an injection time, whereas the registers define the locations. Each individual experiment
is stored in a database. Fail* is then used to parallelize and execute the resulting
campaigns, and to consolidate the results within the database.

4.2 Voter Implementation, Environment, and Test Input

We compiled the CoRed voter as well as an unprotected (simple) voter to the IA32 ar-
chitecture, using Debian Linux with GCC 4.7.2-5, optimization level –O2. Both voters
are implemented in C++, with the EAN primitives being available as a C++ library.
After compilation, the simple and the CoRed voter consist of 38 and 92 machine in-
structions respectively and occupy 112 (301) bytes of memory. Both voters call no other
functions and operate only on their arguments.

We ensured that all memory loads and stores are done via registers3, as we inject
faults only in registers, instructions, and the program counter. Therefore, we manually
restricted the IA32 instruction set to a subset that only works directly on registers.
Hence, all values used for computation are visible in registers and the assumptions we

3 This is by definition the case for RISC systems. For a CISC architecture, like IA32, this
has to be ensured explicitly.
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Registers, Flags Instructions Program Counter

Simple CORED Simple CORED Simple CORED

Benign defects 1040 3204 784 2772 127 267

D
et

ec
te

d

CORED (Code) – 1435 – 995 – 420
HW-Trap 8 41 93 246 21 241
Outside .text 173 559 149 208 2614 5614
Invalid Memory 1652 3177 676 1626 190 626
Timeout 0 0 0 1 0 0

Undetected (SDC) 807 0 450 0 152 0∑
3680 8416 2152 5848 3104 7168

� � �

Table 1 Results of the voter fault-injection campaigns. The entire 1-bit fault space is covered
by injecting instructions, registers, and program counter.

used for pruning the FI experiments are valid. Additionally, we employed fine-grained
spatial and temporal isolation provided by the operating system: jumps out of scope
and illegal memory accesses are detected by a memory protection unit (MPU). Likewise,
deadlines are enforced by a watchdog. Isolation violations as well as further hardware
traps, such as invalid instruction, are considered as detected errors, since they can be
handled actively.

In order to achieve full branch coverage, we executed both voters with all possible
equality sets (E) reflecting all combinations of agreeing and differing input values: x=
y=z, x ̸=y=z, x=y ̸=z, x̸=z=y, and x ̸=y ̸=z. As we already verified the fault-detection
capabilities of EAN codes for all possible input data (v) in Section 3.2, we used a fixed
set of inputs as part of the following instruction-level FI.

4.3 Acid Test: FI in Instructions and General Purpose Registers

As a first acid test, we injected errors in terms of single-bit flips into the voters’ static
instructions. Likewise, we ran experiments for all general purpose registers (GPRs).
Table 1 shows the experimental results. Note that the total number of experiments
differs due to the different sizes in code and data. The bottom line is that the unpro-
tected voter suffered significantly from dangerous SDCs, amounting to over 21 percent
of all effective errors. In contrast, the CoRed voter performed as expected with more
than 17 percent of the errors caught by the EAN code.

Injected faults in the CoRed variant are either contained by the hardware protection
(trap, MPU), or by a result value that contains a detectable error. This also includes
detected erroneous jumps outside the program code, arising from corrupted base or
stack pointer registers (EBP, ESP) that deviate the control flow when the function re-
turns. We conclude that the IA32 machine-code version of the CoRed voter conforms to
the implementation regarding to GPR faults. However, beyond operand and operator
errors, there are more possible fault locations, necessitating further fault experiments.
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4.4 CPU status: The flags register

The flags register, holding the CPU status and the arithmetic flags, yielded more sur-
prising results: The CoRed voter accesses the flags only for comparisons and condi-
tional jumps, and in 12 experiments it failed silently. The reason is that IA32 lacks
a compound test-and-branch instruction, as most pipelined instruction set architec-
tures (ISAs). Instead, this conditional control-flow decision is separated into a test
instruction that sets arithmetic flags, followed by an conditional jump using these flags
(e.g., cmp eax, edx and je Lequal). In this short example two registers (eax, ebx) are
compared, and the zero flag is set on equality. The jump-equal instruction redirects
the control flow to the label Lequal if the zero flag is set. However, between those two
instructions the information about the control-flow change is stored only in a single
bit in the flags register. This is a striking example for the impact of the last transition
step, leading to an unexpected single point of failure and SDCs. The following listing
exemplifies the effects on the voting algorithm:

19: else if (yc − zc) = (By −Bz)
20: win← apply(yc, (yc − zc))
21: return BE ← (By −Bz)
22: else if (xc − zc) = (Bx −Bz)
23: win← apply(xc, (xc − zc))
24: return BE ← (Bx −Bz)

Control-Flow Er-
ror

C
or

re
ct

Fig. 8 Example of a control-flow error affecting the CoRed voter execution.

In this case, two unequal but correctly encoded values are compared. Hence, the
voter should take the else if-branch. However, when the zero flag is altered right in
between comparison and branch, an incorrect winner is selected. This results in the
application of the dynamic signature (yc − zc), but since the values are unequal the
valid range for signatures (0 < B < A) is left. And as both values are correctly encoded,
the range is left by a multiple of A.

Pitfall 2: Inter-Instruction State

When x ̸= z but a dynamic signature (xc − zc) is calculated because of corrupted inter-
instruction state, the dynamic signature is off by a multiple of A and subsequently > A.
In consequence, a somewhat valid but too large signature is generated. After identifying
the cause of the problem, the remedy is straightforward: Since the comparison flag cannot
be encoded, we cannot prevent the erroneous control flow. But the apply function can be
replaced by a version with an additional range check that verifies if the dynamic signature
is still in the range of valid signatures:

1: function apply(vc, sigdyn)
2: if ∥sigdyn∥ > Bmax then
3: signal_due()
4: end if
5: return vc + sigdyn
6: end function

2
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To illustrate this pitfall, consider the following, concrete example. Assuming the
system was built with4 A = 199, Bx = 81, By = 35, and Bz = 13, we invoke the
CoRed voter with (xc, yc, zc) = (479, 632, 411), the encoded values corresponding to
(x, y, z) = (2, 3, 2). Since y ̸= z [(yc−zc) ̸= (By−Bz)], the branch in line 19 (Figure 8)
should not be taken. But, due to the faulty flags register, it is taken, resulting in
a control-flow error: In line 20 a winner is calculated by applying (yc − zc) = 221
[= 199 + (By − Bz)] as a signature to yc. Without the signature overflow check in
apply, the winner is yc + 221 = 853, which is a correctly encoded result, but decodes
to 4 [4 · A + (By + (By − Bz)) = 853] – a SDC. With the signature range check in
place, apply detects that 221 is larger than Bmax = 81 and signals an error.

4.5 Corrupting the Program Counter

Extending the FI to the program counter (PC), we observed another unexpected and
extremely rare phenomenon, observable in only three corner-case experiments. Injecting
single-bit flips in the PC results in random jumps by an offset of powers of two, leading
to an incorrect control flow. Most of those jumps are detected by the MPU-based
isolation. However, intra-function jumps still remain undetected and may lead to SDCs.

We subsequently injected only effective faults in the PC that do not trigger MPU
exceptions. By investigating the resulting SDCs, we found zombie values in registers as
the surprising cause for the errors. The parameters, three correctly encoded values, are
computed and stored on the program stack by the caller. However, these values also
remain in registers by coincidence. The corner-cases manifested themselves as control-
flow deviations leading from the very beginning of vote to one of the exit sequences. As
the registers still hold the valid but incorrect zombie values at this point, a decodable
but malicious result is calculated.

Pitfall 3: Undefined Execution Environment

The problem arises from our assumption of a clean execution environment for our voter,
where components are properly isolated from each other. The lack of CPU state isolation
between voter caller and the voter function (the compiler lazily leaves non-live values in
GPRs) leaks correctly encoded values to the voter’s exit sequence. We eradicated all SDCs
by clearing the local storage, in our case only the registers, before starting the voting
sequence:

1: function vote(xc, yc, zc)
2: zero_local_storage()
3: win = 0
4: if (xc − yc) = (Bx −By) then
5: . . .

3

The Program Counter column in Table 1 contains the results for the FI experiments.
As already mentioned, most errors are detected by the MPU. However, the simple voter
again suffered from almost five percent of SDCs, whereas the CoRed voter remains SDC
free and detects 420 faults in the decoding phase.

4 The signatures were chosen by the methods discussed in Section 3.2 and have a pairwise
minimal Hamming distance of six.
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Double-bit Errors in General Purpose Registers

Super A = 58 659 Bad A = 58 368

Benign Defects 38 639 38 639

D
et

ec
te

d

CORED (Code) 21 596 21 519
HW-Trap 47 47
Outside .text 471 471
Invalid Memory 59 967 59 967
Timeout 0 0

Undetected (SDC) 0 77∑
120 720 120 720

�

Table 2 Double-bit errors show the effect of an adversely chosen A. Two bits were flipped in
one GPR at one point in time. The bad A has a dH of 2, while the super A has a dH of 6.

5 Tighten the Rules – Multi-bit Faults

So far, we focused on single-bit FI experiments (cf. Section 2.1, fault model). However,
multi-bit flips may become an issue in future hardware designs [8] and should be de-
tectable by EAN codes that exhibit an appropriate dH anyway. With Fail* at hand,
we were able to gain an insight into the domain of multi-bit faults. In the following, we
briefly present and discuss results from campaigns injecting 2 to 5-bit faults. While the
semantics of a single-bit flip is relatively easy to describe (there is only one injection
time, one injection location, and a single injection pattern), this is not as straightfor-
ward for multi-bit faults. As single-event multiple-bit upsets (MBUs) – i.e., multiple
bits flipping at a single point in time – are expected to be much more probable than
multiple single-bit flips spread over time [8], we restricted our experiments by only
varying the injection pattern and flipping a number of bits.

With double-bit faults we were able to examine the influence of a poorly chosen
A, backing the expected behavior on the machine-code level. We evaluated all 120 720
combinations of double-bit flips for the CoRed voter (14 16-bit register operations, 240
32-bit operations). As predicted (cf. Section 3.2), using an appropriate A, the voter
was able to detect all double-bit faults (Super A – Table 2). In contrast, using a poorly
chosen A with a Hamming distance of two resulted in 77 SDCs (Bad A – Table 2).
Hence, the choice of A had the expected impact on the residual error probability.

We further investigated the connection between the residual error probability of an
EAN code, as discussed in Section 3.2, and the concrete CoRed voter implementation
(Table 3). We therefore carried out additional complete fault injections of the 2-bit
faults with varying As. By choosing As with a minimal Hamming distance of two,

A = 22 44 1202 2404 12288 34346 58368

dH 2 2 2 2 2 2 2
psdc(2-bit) 0.02749 0.02749 0.00029 0.00029 0.14247 0.00009 0.01633
FI(SDC, 2-bit) 138 143 4 4 591 4 77

Table 3 Detailed comparison of SDCs with varying A and N = 65535 for 2-bit faults. The
examined EAN codes have a minimal Hamming distance (dH) of 2. The simulated residual
error probability (psdc) correlates to the measured SDC increase in the fault injection experi-
ments (σ = 0.9986).
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Multi-bit Register Faults (A = 58 659) 3 Bit 4 Bit 5 Bit

Benign Defects 33.742 % 33.605 % 33.544 %
D

et
ec

te
d

CoRed (Code) 18.209 % 18.356 % 18.431 %
HW-Trap 0.001 % <0.001 % <0.001 %
Outside .text 0.054 % 0.009 % 0.001 %
Invalid Memory 47.993 % 48.030 % 48.023 %
Timeout <0.001 % <0.001 % <0.001 %

Undetected (SDC) 0 0 0∑
579 838 627 886 1.3 × 106

Size of Fault Space 3.59 × 106 1.03 × 108 2.90 × 109

Fault Space Coverage 16.13 % 0.59 % 0.04 %

Table 4 Multi-bit error fault-injection results. Multiple faults were injected into a GPR at
one point in time. The immensely large fault space was probed by Monte-Carlo. We still cannot
observe SDCs.

double-bit flips actually result in SDCs, as expected. The residual error probability
(psdc) is the robustness of a single code word, while the fault injection results – FI(SDC,
2-bit) in Table 3 – incorporate the influence of the whole CoRed voter algorithm and
its concrete instantiation on the hardware platform. Also the fault injections were
carried out with a small set of input values, while the residual error probability was
calculated for all possible code words. Nevertheless, as shown in Table 3, we measure
a close correlation of σ = 0.9986. We conclude that the increase of SDCs stems only
from the badly chosen A and the more vulnerable intermediate values used in the voter
operation.

For 3–5 bit faults (Table 4), we only performed random (Monte-Carlo) experiments
to cope with the exploding fault space. We managed to cover 16 percent of the 3-bit
fault space, with significantly lower percentages for 4 and 5-bit faults. As expected, we
could not see any SDCs, although these statistical results do not prove their absence.
In future work, we plan to extend and improve the fault model to even cover multi-bit
multi-errors, that is, multiple patterns, locations and points in time.

6 Discussion

Even with proper coding theory at hand, bullet-proof software-based fault tolerance
is hard to implement – as our detailed investigation of CoRed ’s EAN and voter im-
plementation revealed. Although arithmetic coding schemes are mathematically sound
and well understood, the transition to real hardware is highly technical. It may weaken
the abstract model to a point where the fault-mitigation capability suffers and does
not meet the predicted residual error probability. So, from a practitioner’s perspective,
it is vital to grasp the transition and take the implementation platform into account.

6.1 Lessons Learned

Section 3 detailed the impact of binary code representation and encoding parameters
on the residual error probability. The first pitfall and its solution – adding a range



20 Martin Hoffmann et al.

check – might appear trivial and to be caused by sloppy software development in the
first place. However, the consideration of soft errors in a traditional development and
quality assurance process is not necessarily given. Developers cannot find much support
by utilizing programming languages, compilers or other static analysis tools, as these
are usually not aware of or even consider unreliable execution. Furthermore, at least for
non-systematic codes, the mapping between theory and binary representation is non-
trivial. We were especially surprised by the variations in dH as well as the specific multi-
bit psdc distribution. Consequently, rules of thumb, as the generally recommended
prime numbers, are not necessarily applicable on the binary level. Overall, in-depth
system knowledge and thorough evaluation of the encoding parameters are essential
but worth the effort – as we showed with the decrease in psdc for A = 251 by a factor
of 1000.

The second pitfall takes the same line as its predecessor but illustrates another
problem: control-flow errors. Here, the processor architecture and its inter-instruction
states are a dangerous and little obvious source of vulnerabilities. The third pitfall falls
into the same category but is caused by either the compiler’s unawareness of soft errors,
or the incompleteness of the aspired spatial isolation. That SDCs may arise from the
way the compiler assigns registers is probably one of the most obscure error patterns.
The solution is to provide a clean execution environment and perfect isolation. We
therefore advocate for the system software as the right layer for implementing fault-
tolerance techniques.

Furthermore, Section 4 showed the general importance of sophisticated fault-
injection tools. Both the second and the third pitfall were discovered only by systematic
fault-injection experiments conducted with the Fail* framework. The second pitfall
manifested itself in less than 20 out of over 8000 experiments. Therefore, Monte-Carlo
experiments lack a trustworthy statement on the absence of SDCs. Fail* enabled us to
systematically cover the entire fault space. Furthermore, as it is based on emulation,
we were able to incorporate flag register and program-counter injections that were im-
possible with the hardware–debugger-based framework we used in the original CoRed
evaluation. Here, tooling speed is crucial for short measure-improve cycles and for the
iterative evaluation of software-based fault-tolerance. For example, the GPR experi-
ments improved from two weeks with the debugger to 15 minutes using Fail* on an
off-the-shelf desktop computer.

6.2 Continuous Fault Injection for Dependable Software Development

Failures of software components in the presence of transient faults are often unforesee-
able and not intuitive by just looking at the code. Here, we identified a tight feedback
loop with fault-injection experiments as a suitable tool for accompanying the process
of dependable software development. Fault injections should be done on a regular basis
like unit tests. In fact, unit tests can be used as benchmarks for the fault injection,
since they are supposed to cover the entire code and important corner cases.

Clearly, such repetitive fault injection campaigns consume time and computing
power, especially when the fault model is extended to multi-bit faults. Therefore it is
desirable to keep the components that are part of the RCB small and testable, as it is
already good practice in software engineering. In our case, the decoupling of a small
system part – the CoRed voter – by spatial and temporal isolation allowed us to put
the implementation to the acid.
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Furthermore, the fault-injection loop should also be carried out on the same hard-
ware architecture that is used afterwards for the component. We have seen in the
presented pitfalls that the occurrence of SDCs is tightly coupled with the concrete ar-
chitecture. Architectural specifics and how the compiler exploits the processor features
is highly relevant for the reliability of a component.

It is worth to be noted that all architecture-independent concepts and experimen-
tal findings presented in Section 3 can be entirely reused without further effort. The
remaining architecture-dependent tests rather concentrate on fault propagation and
unexpected (or even unforeseeable) side effects. These evaluations highly benefit from
our automated toolchain around the Fail* framework.

7 Threats to Validity

We are aware of the fact that threats to validity arise from various sources. In this
section, we face our experimental results with the most common issues from appropri-
ateness to generalisability.

7.1 Construction Validity

We based the appropriateness of our experimental evaluation on a multi-stage ap-
proach: first, to simulate mutations of codewords for each and every set of coding
parameters. Second, to inject fault patterns into the actual implementation on the
ISA-level of the hardware platform.

Subsequently, we directly computed the general residual error probability from
the fault-simulation, as all possible bit patterns are covered by these experiments. In
contrast, neither probabilistic results can be easily derived from fault-injection exper-
iments, nor can these results be generalised. Hence, we used them to demonstrate the
absence of SDCs in a concrete system under test (SUT) – an inference that cannot be
backed by the simulation.

7.2 Overall Consistency and Reliability

Both, the fault-simulation as well as the fault-injection experiments proved to be fully
deterministic and reproducible. Considering the aforementioned pitfalls, the resulting
measurements are consistent in terms of residual error probability and SDCs. Moreover,
mathematical prediction as well as fault-simulation and fault-injection experiments
seem to be in line and support each other, as the multi-bit fault-injection in Section 5
indicates.

7.3 Conclusion Validity

Soft-error mitigation and looking for the needle in the haystack share the same prob-
lems: a tiny needle (defect) and too much hay (fault-space). Drawing the right con-
clusions therefore requires a very large number of experiments as well as reasonable
assumptions to limit the search space.
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7.3.1 Restricted Fault Model

The single-fault assumption is certainly the most important one we made for the fault
model. This means, for a certain period (e.g., voter execution), faults occur only once
and are limited to a single data word. Generally, the single-fault assumption is largely
covered by the rare occurrence of soft errors and the available data [16,18,19]. However,
this is only valid for RISC architectures where instructions and operands are separated
(fixed length instructions). Otherwise, an operator error could lead to a totally different
alignment of the operands. This would in turn manifest in an unknown number of
bit flips and potentially cause multi-word faults. From this point of view, the IA32
architecture seems to be a very bad choice as it neither features fixed length instructions
nor separated instruction and data memory. As the current version of Fail* only
provides a full feature set for the IA32 architecture, we had to circumvent this issue by
restricting the compiler to a RISC-equivalent instruction subset. We therefore consider
the general fault model still valid.

7.3.2 Fault-Space Coverage

A restricted fault-space coverage poses a significant threat to conclusion validity. Often,
it is not possible to cover the entire fault space due to its dramatic growth. Researchers
tend to circumvent this issue by means of statistical approximations, as for example
using Monte-Carlo experiments. With the help of sheer computing power and Fail*’s
sophisticated fault-space pruning techniques, we were able to cover the entire fault
space for 1 and 2-bit faults. Regarding the fault simulation we were even able to explore
up to 16-bit faults. In both cases, we actually discovered rare corner cases, some of
which completely distorted our previously made assumptions. The code-space violation
in Figure 5 as well as the silent assumptions made by the run-time environment (as
described in Pitfall 3) are striking examples.

7.3.3 Limited Input Parameter Space

Another simplification was to omit most of the input parameter space (v) in the fault-
injection campaigns. In our opinion, it is sufficient to cover the entire input parameter
space for v by means of simulation experiments (see Section 3) as validation for data
errors. As the data and control flow errors can be seen independently, according to the
aforementioned single-fault assumption, we can focus on control-flow errors within the
fault-injection experiments.

The comparison of multi-bit fault injections with the simulated residual error prob-
ability for 2-bit faults (see Table 3) is an additional indicator that this simplification is
sufficient. While psdc was calculated with all possible encoded values, the fault injec-
tion was done only with fixed input parameters5. Nevertheless, both values are highly
correlated.

7.4 Internal Validity

Clearly, the accuracy of such simulator-based fault injections highly depend on the un-
derlying system models and are often limited to the ISA level. Cho et al. [7] criticise

5 Five input parameter sets for the four equality sets, and one for signal_due().
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this inaccuracy in favour of injections into sub-ISA–level hardware models leading to
more subtle fault effects. Unfortunately, it is not a viable option to resort to such gate-
level injections for dependability evaluations of larger software components. So, for a
more realistic fault model, it might be interesting to investigate the general effects of
low-level faults (e.g., affecting the memory hierarchy, timing details, pipelining, or out-
of-order execution), and especially how they appear at the ISA level. Subsequently,
sufficiently simple – yet detailed enough – high-level fault models should be synthe-
sizable. Nevertheless, Cho et al. [7] also state that "[. . . ] accuracy is not necessarily
a requirement. For example, an inaccurate error injection technique can be very useful
as long as it is effective in driving the correct design decisions for building robust sys-
tems." Even if a single-bit flip at the gate-level results in an unknown number of bit
flips at ISA level, we think selecting the most effective and benign keys is a reason-
able way to resolve this issue. Although we cannot exclude further pitfalls caused by
architectural specifics, the guidelines presented in this paper can significantly help to
simplify this task.

7.5 External Validity

We are aware of the fact that our experimental approach represents a platform-specific
evaluation rather than a general validation. However, we believe it to be absolutely
accurate with respect to the assumed fault model. Certainly, our results depend on the
specific architecture and compiler employed and have to be reasserted when switching
the platform. For RISC-based SPARC or ARM architectures, this can be achieved with
the help of recent Fail* extensions interfacing the gem5 simulator [3].

Our findings from Section 3 are independent from the underlying architectural
specifics and can be applied for future applications without any restrictions. The se-
lection strategies for the signatures B and the proposed 16-bit Super As, providing a
high minimal Hamming distance, are not bound to any special hardware architecture.
Nevertheless, finding similar Super As for 32-bit or even 64-bit words might not be
viable with the applied brute-force approach, which already took advantage of a high
performance computing cluster.

The generalization of our approach with respect to the systematic fault-injection
(Section 4) is clearly limited by the complexity of the application to be hardened. The
recommended full fault-coverage hardly scales with oversized self-contained software
components. On the other hand, especially in the safety-critical application domain, a
maintainable, well-structured and therefore (unit-) testable design is mandatory, and
also mitigating the scalability problem.

8 Conclusion

Arithmetic error coding schemes (AN codes) are a mathematically sound and well
understood technique to effectively mitigate soft errors. However, even with proper
coding theory at hand, software-based fault tolerance is hard to implement – and
even more difficult to verify. In reality, the resulting residual error probability can
deviate from theory by orders of magnitude. On the example of the CoRed voter, we
investigated the roots of these deviations from a systems perspective – and found them
in implementation glitches introduced in every stage of the transition from coding
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theory to the machine code for a specific architecture. By exhaustive simulation and
fault-injection experiments (100% fault space coverage for single and double-bit faults),
we identified typical pitfalls that, if addressed, result in the reliable detection of all
errors and an implementation that matches the predictions from theory. Accordingly,
developers can systematically improve reliability up to the elimination of all software-
visible errors. With CoRed pushed to the coding theory’s prediction, we finally achieved
our initial goal to provide reliable, hardware-independent and selective protection of
safety-critical applications, which can be even applied to existing systems.

From the experiences made, we see both supportive fault-aware tooling as well as
fault-tolerant system software as essential weapons in the battle against soft errors.
We envision CoRed [32] and Fail* [29] to be part of an integrated approach for the
development and the verification of safety-critical systems. One step in this direction is
the advancement of CoRed ’s concepts to the dOSEK [14] dependable operating system.
Extending Fail*’s functionality (e.g., multi-bit fault injection) and devising methods
to deal with the resulting fault-space explosion is another one.

The bottom line is: When implementing error-coding schemes, it is vital to also
take a systems perspective. Know your system and validate each step in the transition
from abstract concepts to binary code.

Bullet-proof software-based fault tolerance is possible.
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