
A Practitioner’s Guide to Software-based
Soft-Error Mitigation Using AN-Codes

Martin Hoffmann∗, Peter Ulbrich∗, Christian Dietrich∗, Horst Schirmeier†

Daniel Lohmann∗, Wolfgang Schröder–Preikschat∗
∗Chair of Distributed Systems and Operating Systems, Friedrich–Alexander University Erlangen–Nuremberg, Germany

{hoffmann,ulbrich,dietrich,lohmann,wosch}@cs.fau.de
†Department of Computer Science 12, Technische Universität Dortmund, Germany

horst.schirmeier@tu-dortmund.de

Abstract—Arithmetic error coding schemes (AN codes1) are
a well known and effective technique for soft error mitigation.
Although coding theory being a rich area of mathematics, their
implementation seems to be fairly easy. However, compliance with
the theory can be lost easily while moving towards an actual
implementation – finally jeopardizing the aspired fault-tolerance
characteristics. In this paper, we present our experiences and
lessons learned from implementing AN codes in the CoRed
dependable voter. We focus on the challenges and pitfalls in the
transition from maths to machine code for a binary computer
from a systems perspective. Our results show, that practical mis-
conceptions (such as the use of prime numbers) and architecture-
dependent implementation glitches occur at every stage of this
transition. We identify typical pitfalls and describe practical
measures to find and resolve them. Our measures eliminate all
remaining SDCs in the CoRed voter, which is validated by an
extensive fault-injection campaign that covers 100 percent of the
fault space for 1-bit and 2-bit errors.

I . I N T R O D U C T I O N

As technology scales, hardware designs for embedded
systems offer more performance and parallelism for the price
of being less reliable. Therefore, soft-error mitigation is one
of the major challenges for safety-critical applications and
systems. Besides adding costly hardware redundancy, virtually
sacrificing the technology gain, software-based fault-tolerance
offers a selective and resource-efficient alternative.

As systems engineers, we aim for a selective manipulation
of dependability as a non-functional property at the operating-
system level and independent of any specific hardware support.
Here, arithmetic error coding, or AN codes1 for short, can be one
vital component to tackle transient hardware faults in software.

A. The CoRed Approach

In our previous work, we presented Combined Redundancy
(CoRed) [1], a highly effective, software-based fault-tolerance
approach for mixed-criticality control applications. CoRed
engages right in-between application and operating system
and combines proven triple modular redundancy (TMR) with
AN codes to minimize soft error effects and improve the
actual reliability. CoRed’s modular architecture facilitates the
composition of various fault-tolerant components (see Figure 1).
At the same time, it eliminates dangerous single points of failure

This work was partly supported by the Bavarian Ministry of State for
Economics, Traffic and Technology under the (EU EFRE funds) grant no.
0704/883 25 and the German Research Foundation (DFG) priority program
SPP 1500 under grant no. LO 1719/1-1 and SP 968/5-1.

Protection
Domain

TMR App

Encoded Application

CoRed
Voter

TMR App CoRed
Voter

Uncritical Application

O
ut

pu
ts

In
pu

ts

Fig. 1. CoRed facilitates mixed-criticality systems by providing a safe
interconnect between different fault-tolerance schemes. Its key component is
the CoRed voter, which is hardened against soft errors.

(SPOFs) caused by gaps between fault-tolerant components. For
that, we introduced the CoRed dependable voter (CoRed voter):
a high-reliability voting schema, based on our Extended AN
(EAN) error coding implementation (see Section II).

We successfully employed CoRed in the mission-critical
flight control of the I4Copter quad rotor UAV [2], which
has been specifically designed to resemble real-world control
applications. Here, CoRed maintains a continuous protection
domain from the sensors’ inputs up to the actuator output
elements. In this type of application, the CoRed voter is of
particular value due to the complex component interconnection.
Therefore, we see it as the key element to ensure the overall
reliability of the safety-critical control applications.

B. Problem Statement

Any divergence from an assumed residual error probability
complicates the safety-assessment and impedes the general
applicability of our approach. Therefore, our goal with the
CoRed voter was to provide full fault coverage for single-
bit soft errors and to reach the residual error probability
predicted by the arithmetic error coding theory in general.
However, during its implementation we experienced certain
inconsistencies with the assumed fault-detection capabilities.

Experiments with our error-coding framework revealed
unexpected silent data corruptions (SDCs) and discrepancies
from the theory’s predicted error probabilities. These deviations
are in line with the observations made by other researchers [3]
and we were able to reproduce their results as well. However,
we were unable to find any profound explanation for this
phenomenon in our earlier work.

Applying expertise from the low-level systems domain, we
were able to trace back the sources of discrepancy to every

1Named by the integers A (constant key) and N (value).

∑! Decoded_Static() {

 TAssert(_B > 0);

 assert(check());

 return (vc-_B-D)/_A;

 };

101010101001010

001010100001011

111010101011010

000010101001110

001011111001011

 Implementing Soft-Error Mitigation!

Mathematics

C / C++

Assembler

Safety-Critical Application!
(e.g., Flight Control)

(Section IV)

Know your compiler "

& architecture

(Section III)

Think binary

Fig. 2. From theory to application: Implementing arithmetic error coding is
attended by various pitfalls and challenges.

stage of the transition from the coding theory to the machine-
dependent implementation (Figure 2). The identified issues
include misconceptions regarding binary number representa-
tion and ranges, silent assumptions about the compiler, and
specific characteristics of the hardware platform. Although the
semantics of the algorithm are preserved in the transition over
all stages, the concrete execution can significantly diverge.

In consequence, a practitioner cannot rely blindly on coding
theory, as it is extremely difficult to predict the implications
on the residual error probability when the algorithm is realized
on a concrete hardware platform.

C. Our Contribution

In this paper we present a practitioner’s guide on how to
deal with these challenges by illuminating typical problem areas
and presenting feasible solutions. A detailed re-evaluation of
the CoRed voter implementation allows for a deeper insight
into the transition steps from coding theory to its machine-
dependent implementation. We show the difficulties of a binary-
aware parametrization of arithmetic error coding by a set of
constructive experiments. Moreover, we provide an EAN code
as well as a voter implementation, which overcome the trans-
formation issues and preserve the intended execution behaviour.
At large, the error coding as well as the CoRed voter behave
as predicted, eventually relieving the practitioner from dealing
with non-functional dependability aspects. In our opinion, the
gained experience can be generalized to common guidelines
for the parametrization, implementation, and evaluation of
arithmetic error coding in practice.

The key contributions of this paper are:

• A binary-aware analysis of AN code parametrization
and fault-detection capabilities.

• Disclosure of typical pitfalls on the transition from
coding theory to machine-level instructions.

• An improved EAN code and CoRed voter implemen-
tation, which comply with the coding theory.

• Experimental verification and fault injection of the
CoRed voter, covering the entire 1 & 2-bit fault space.

• A first glance on the implications of multi-bit faults.

I I . B A C K G R O U N D & R E L AT E D W O R K

Coding theory is a rich area of mathematics. However, from
a practitioner’s point of view, the only thing that matters is
effectiveness – and potentially overhead. Before immersing in

the challenges and pitfalls we faced within CoRed’s EAN code
and voter implementation, this section introduces the necessary
coding basics and the assumed fault model in a nutshell, and
details the corresponding related work.

A. Fault Model

From a software perspective, soft errors manifest as ma-
licious defects within machine-level instructions, being the
software’s most basic structural elements. Independent from the
underlying hardware, three fault classes can be distinguished:
operand, operator, and arithmetic errors [4]. To put it simple,
soft errors may lead to corrupted data, unexpected operations
or simply wrong results. Complex fault patterns and higher
levels of abstraction can be mapped to these elementary fault
classes [5]. Accordingly, the effectiveness of an error coding
scheme is conceptually tied to the fault coverage of this
model. It therefore serves as a comprehensive classification
base throughout the rest of this paper.

B. Arithmetic Error Coding

Common error codes, such as parity or cyclic redundancy
checks, are widely used in communication and memory ap-
plications [6]. They are, however, restricted to data flows and
not designed to cover computational flaws such as operator
or arithmetic errors. In contrast, arithmetic error coding can
cope with all error classes and therefore provides protection
for the actual program execution as well. The major difference
between data and arithmetic error coding is a set of code-
preserving arithmetic operations, which allow for computation
with the encoded values.

There exist different flavours of arithmetic error coding
schemes which differ mostly in their fault-model coverage:
Residue codes [7] and AN codes are the simplest form and
use only the plain value (v) and the constant (A) for encoding.
AN codes are commonly used for software-based soft-error
mitigation [8], [9], although they lack coverage for certain
operator and address errors. To improve on this, ANB codes
introduce an additional per-variable signature (B), which allows
for detecting interchanged operands and operators [10]. Finally,
Forin [4] proposed timestamps (D) to cover outdated operands
as the last gap in the codes fault coverage, forming the ANBD
coding scheme. The encoding is defined by the standard AN
and the BD fraction, as:

AN BD

vc = A · v + Bv + D

Encoded value Constant Value Signature Timestamp

Initially designed for hardware-level protection [4], ANBD
codes are also employed in software-based approaches. Here,
they commonly safeguard entire applications and systems [10],
[11], [12], [3]. We use ANBD codes as the basis for our CoRed
design because of their complete fault coverage.

C. The CoRed EAN Code Implementation

To avoid confusion with other implementations, we labelled
our ANBD coding framework Extended AN (EAN). While it
fully adopts the ANBD coding theory and concepts, its imple-
mentation is specifically tailored to our needs and incorporates
the improvements we will discuss later in this paper.

Within the scope of this paper, the most significant differ-
ence is the additional equality operator provided by EAN. For
the specific purpose of finding a majority, we simplified the
standard comparison according to Equation 1. The equality
of two encoded values can be easily determined by observing
their difference:

xc︷ ︸︸ ︷
(Ax+Bx +D)−

yc︷ ︸︸ ︷
(Ay +By +D) = Ax−Ay +Bx −By

= Bx −By ⇔ x = y

(1)

If equal, the difference of the encoded values (xc, yc) must
match with the constant difference of their signatures (Bx,By).

D. The CoRed Voter

Generally speaking, the CoRed voter can be seen as an
encoded application itself. Its implementation is comprehensi-
ble and self-contained and therefore, in our opinion, especially
suitable as a showcase. For simplicity’s sake we attribute
timestamps to signatures within the voting algorithm and
throughout the rest of this paper.

Figure 3 illustrates the voter’s fundamental algorithm. The
basic idea is to find a quorum on encoded values without losing
the code’s protection. Therefore, the voter accepts the three
encoded variants (xc, yc, zc) and provides a winner (win) along
with the voting result (equality set E) in terms of a constant
signature BE (lines 15, 18, 22, and 25), defined by:

equality set: E︷ ︸︸ ︷
{xc, yc, zc} ⇔

constant signature: BE︷ ︸︸ ︷
(Bx −By) + (Bx −Bz)

{xc, yc} ⇔ (Bx −By)

{xc, zc} ⇔ (Bx −Bz)

{yc, zc} ⇔ (By −Bz)

{} ⇔ noDecision

(2)

With the data integrity ensured, the voting algorithm itself
can still suffer from soft errors, for example causing false
branch decisions. We solved this problem by introducing
program flow checks in terms of EAN scope signatures. The
voter computes a dynamic signature, based on the branch
decisions that lead to a certain verdict in the correct case,
and applies this signature to the selected variant (lines 14,
17, 21, and 24) before returning it as the winner. The voting
procedure was error-free, if static and dynamic signature match.
To put it simple, the control-flow is recomputed at run-time and
stamped to the winner. Outside the voter’s protection domain,
any succeeding software component can subsequently validate
the correctness of the voting decision and the value itself, by
inversely applying the constant program flow signature (BE).

E. Residual Error Probability

After setting the coding schema, its parametrization is the
second step. From a bird’s eye view, any kind of code is simply
based on the transformation of data (n bit) into code words
(n + k bits) by adding k bits of redundant information. The
fault detection is subsequently based on the distance between
valid code words. The chance for a SDC to mutate a valid
code word into another valid word is thereby defined as the
residual error probability [13]:

psdc =
valid code words− 1

possible code words− 1
=

2 n − 1

2 n+k − 1
≈ 1

2 k
(3)

Require: Static Signatures: Bx, By , Bz

1: function DECODE(vc, A, B)
2: if vc mod A 6= B then SIGNAL_DUE()
3: return (vc −B) div A
4: end function
5:
6: function APPLY(vc, sigdyn)
7: return vc + sigdyn
8: end function
9:

10: function VOTE(xc, yc, zc)
11: if (xc − yc) = (Bx −By) then
12: if (xc − zc) = (Bx −Bz) then
13: win← APPLY(xc, (xc − yc) + (xc − zc))
14: return BE ← (Bx −By) + (Bx −Bz)
15: else
16: win← APPLY(xc, (xc − yc))
17: return BE ← (Bx −By)
18: end if
19: else if (yc − zc) = (By −Bz) then
20: win← APPLY(yc, (yc − zc))
21: return BE ← (By −Bz)
22: else if (xc − zc) = (Bx −Bz) then
23: win← APPLY(xc, (xc − zc))
24: return BE ← (Bx −Bz)
25: else
26: win← noDecision
27: SIGNAL_DUE()
28: end if
29: end function

1

2

3

Fig. 3. The CoRed voter algorithm. It takes the encoded variants (vx,
vy , vz). The majority is found by encoded operations, leading to a unique
static signature BE . This signature is dynamically recomputed and stamped
(A P P LY) to the winner (win) before returning both as a verdict.

This estimation assumes that every kind of error and data
corruption is equally probable – regardless of the number of
bits flipped. In short, the more bits we spend for information
redundancy, the lower psdc. In the case of arithmetic error
coding, the number of possible code words is A · 2n, resulting
in psdc ≈ 1/A. Therefore, the larger A, the lower the residual
error probability. Figure 4 depicts the correlation between A
and psdc (ppred in the figure) for 16-bit numbers.

I I I . T H I N K B I N A RY

Due to our specific implementation with the dynamic
signatures, the CoRed voter behaves like any other ANBD
operation when seen from outside. Accordingly, we expected
the residual error probability to be consistent with the coding
theory. With the implementation of CoRed we ultimately aimed
for a full single-bit soft-error fault coverage according to the
software-level fault model from Section II-A. In this section we
detail the challenges and pitfalls that arise from the transitions
from plain math to a binary computing system.

Choosing Keys and Signatures
Our first step was to find suitable parameters for the EAN’s

keys and signatures. As mentioned before, it seems to be wise to
choose a large number for A. Moreover, Forin [4] recommends
prime numbers, mainly to reduce the number of possible factors
between different coding streams and operations. Although
the use of prime numbers seems intuitively plausible from
a mathematical point of view, their particular advantage is
left unsubstantiated. In fact, Schiffel [3] found some non-
prime numbers to be equally suitable or even superior for
parametrization – without giving good reasons. Thus, all of
these considerations are of little help to find an A that reliably
detects a certain number of bit flips.

pbrd (borderline bit errors)

pavg (8-bit errors)

ppred

(
1
A

)

2 8 192 16 384 32 768 61 440

10−6

10−5

10−4

10−3

values of A (16-bit constant key)

p s
d

c
(r

es
id

ua
le

rr
or

pr
ob

ab
ili

ty
)

Super As

pbrd (borderline bit errors)

pavg (8-bit errors)

ppred

(
1
A

)

2 8 192 16 384 32 768 61 440

10−6

10−5

10−4

10−3

values of A (16-bit constant key)

p s
d

c
(r

es
id

ua
le

rr
or

pr
ob

ab
ili

ty
)

Super As

Fig. 4. psdc versus size of A, compared: ppred plots the coding theory
prediction. pavg graphs the measured value for 8-bit errors, exemplary for
average performance. pbrd illustrates variance of borderline bit errors that
overstress the code by exactly 1-bit (2, 3 or 4-bit errors, depending on A).

From a binary point of view, in fact, the only purpose of
A is to generate robust bit patterns. Consequently, it might
seem obvious to use the minimum Hamming distance (dH)
between all possible code words as the measure of choice. We
therefore computed the distances for all 32-bit codes. That is,
for each and every 16-bit value v and key A. We found dH to
range from one to six depending on A, which means that zero
to five-bit errors should be detectable by the respective codes.
Interestingly, although we could observe the expected gain in
distance with A growing, the values of dH varied significantly
between adjacent values. For example, the distance for non-
prime 58 368 is two, that of prime 58 831 is three, and finally
the minimum Hamming distance of 58 659 is six – being a
non-prime value. The main reason is that ANBD codes are
non-systematic codes [14], meaning that the assumed n data
and k check bits are stored inseparable and processed together.
Hence, the code’s minimum distance is not necessarily related
to the k bits used for representing A, but may vary according
to the binary representation of A · v. As a result, the bigger
the better is misleading in this case.

To our surprise we found the results to be deviating from
the literature. Schiffel [3] for example performed fault injection
experiments for a small number of As, which indicate a residual
error probability even for faults with a number of bits flips that
is below dH . These deviations in turn would in principle render
the Hamming distance useless for selecting an appropriate A
to reliably detect a certain number of bit flips. We decided to
perform fault-simulation experiments to double check whether
the fault-detection capabilities of the codes correspond to the
computed minimal Hamming distances. These experiments
covered each and every combination of possible vs, As and
bit error patterns. Again we were surprised to actually observe
the exact same deviations in psdc and silent data corruptions,
which should have been detected according to the code’s dH .

We found the problem in the mapping of encoded values to
their binary representation, for example 32-bit machine words.
Of these, a practitioner usually assigns n bits to data and k
additional bits to accommodate A, with A ≤ 2k and n+k ≤ 32.
Choosing A = 2k is obviously unreasonable as this would lead
to a simple bit shift. Selecting A < 2k, however, results in an
incomplete utilization of the machine word, which leaves a

residue in terms of unused values. To put it simple, AN codes
tend to result in odd value ranges that cannot be represented
by exactly a power of two bits. The residue is again non-
systematic and can neither be attributed to certain bit positions
nor a specific number of bits. However, the coding theory is
unaware of this mapping issue and assumes a self-contained
code space and value range. Consequently, soft errors striking
these unused bits can still lead to SDCs as the mutation may
result in a valid but unused code word with v > 2n.

Pitfall 1: Mapping Code to Binary

Our first pitfall is therefore the mapping of code to binary
space: Due to the different and sometimes odd word sizes
of plain and encoded data, dangerous over- and underflow
conditions, coming to light only in the presence of soft
errors, are not always obvious to the developer. This par-
ticular problem led to the observed discrepancies between
dH , predicted psdc and fault-simulation experiments. By
adding a simple range check we were able to fix this issue,
resulting in the following patch for the CoRed voter:

1: function DECODE(vc, A, B)
2: if vc > vc,max or vc mod A 6= B then
3: SIGNAL_DUE()
4: end if
5: return (vc −B) div A
6: end function

1

With this improved implementation of D E C O D E, the fault-
simulation results of EAN match with the fault-detection capa-
bilities as expected by the minimal Hamming distance. On top
of that, this simple check can prevent a huge loss of reliability
to the code in general. For example, the predicted overall psdc
is approximately 0.003 for A = 251. For 64-bit code words,
Schiffel measured the double-bit error’s psdc ≈ 0.013, as we
did in our first attempt. However, with the patch applied the
actual psdc amounts to less than 0.000015 – a factor of 1000.

Consequently, dH is a valid decision criterion for selecting
A. The good news is that any A exhibits a sufficient distance
for single-bit errors, except the aforementioned powers of two.
As expected, the top performers reside in the upper end of
the value range, irrespective of the ubiquitous variations. We
termed the best of them, with a distance of six, Super As1 –
non of them being prime. As expected, bit errors < dH are
reliably detected by the EAN code. However, with bit errors
≥ dH SDCs are still possible, and again we found A to
have a significant influence on the actual psdc. We therefore
evaluated the multi-bit error performance (up to 8 bits) for
all 16-bit As as well. Although the resulting codes generally
behaved as predicted, we identified the borderline bit errors to
be dangerous. These overstress the code by one bit (exactly
dH errors) and induce huge variations in the resulting psdc.
Figure 4 shows the predicted (ppred) and the measured residual
error probabilities versus the size of A. To keep the diagram
readable, we simplified the plot by combining borderline bit
errors in pbrd and hand-picking pavg as a representative for
the benign average case performance. As the actual borderline
depends on the respective A’s distance, pbrd fuses two to
four-bit errors and graphs their range. In contrast, the average
case, non-borderline error probability (pavg) is near below the
prediction and virtually free of scatter.

1Super As: 58 659, 59 665, 63 157, 63 859, and 63 877.

Alarmed by the partial exceeding of ppred by borderline
bit errors, we extended our experiments to cover all possible
bit errors – due to the exponential growth in computation time,
we limited these experiments to 16-bit codewords. Figure 5
illustrates the residual error probability distribution relative to
the number of bits flipped. The three As shown here exemplify
typical distribution patterns. For A = 73 the leading borderline
(double-bit errors) psdc is orders of magnitude off the other
values, whereas this is the case at the trailing edge (15-bit
errors) for A = 199. Likewise both sides can be affected, as
for A = 239. In all these malicious examples, ppred is violated
by the borderline outliers. Fortunately, we found 33 percent
of all 8-bit As to behave benignly, staying below ppred under
all circumstances. Interestingly, this share varies significantly
between non-prime (24.5 %) and prime (65.5 %) numbers. For
the super As, we conducted the same experiments for up to
32-bit errors, as shown in Figure 4. They proved to be still
very suitable as three of them behaved benignly and the other
two being of trailing edge pattern (27 and 28-bit errors). The
bottom line is, that one should consider the psdc distribution
in addition to the Hamming distance for choosing A.

As the signatures B are appended additively, they do not
directly interfere with the choice of A. To fulfil the intended
purpose of detecting operator and addressing errors, they have
to remain in force under arithmetic operations and bit errors.
Besides the mandatory prerequisites, such as B < A, we
applied the same evaluation process to the set of signatures
used in the CoRed voter and selected them to match the code’s
capabilities. For a detailed description on the selection of the
signatures and timestamps in general, we refer to Schiffel [3].

I V. K N O W Y O U R C O M P I L E R & A R C H I T E C T U R E

In the previous section we showed that our improved EAN
implementation can comply with coding theory by choosing
appropriate parameters. In the following, we uncover further
pitfalls that arise from the platform specifics and the transition
from programming language to machine code.

A. Fault-Injection Experimental Setup with FAIL*

For a detailed reliability analysis of the assembly emitted
by the compiler, we chose a practical approach: extensive fault
injection (FI) campaigns. A FI campaign is a systematic series
of experiments, which is defined by a fault pattern, a location
(memory address or register) and a point in time. We focus
on the generally accepted single-error single-bit assumption, as
these amount to over 95 % of the overall soft-error rate [15],
[16], [17]. Injecting all possible single-bit flips in all registers
for every instruction (point in time) within the CoRed voter
would result in a huge amount of experiments. Therefore, we
relied on the generic FA I L* [18] FI framework. It offers
sophisticated fault space pruning to economise the experiments
to effective faults, without losing full fault-space coverage.

We used FA I L*’s IA32 backend, which is based on the
Bochs emulator [19] and is the most mature one. The common
workflow is to perform a correct and complete golden run of the
program under test and to record each and every instruction and
memory access. The instructions are disassembled to extract
the register usage. Subsequently, the experiments are derived
stepwise from the golden run: each instruction determines an
injection time, whereas the registers define the locations. Each

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

2

·10−2

ppred (A = 73)

ppred (A = 199) ppred (A = 239)

bit errors (16-bit word, n = k = 8-bit)

p s
d

c
(r

es
id

ua
le

rr
or

pr
ob

ab
ili

ty
)

A = 73 A = 199 A = 239

Fig. 5. A detailed view on the psdc distribution for multi-bit errors (16-bit
code words). The selected As (all malicious in this example) illustrate typical
borderline patterns: outliers located on the leading, trailing or on both sides.

individual experiment is stored in a database. FA I L* is then
used to parallelise and execute the resulting campaigns and to
consolidate the results within the database.

B. Voter Implementation, Environment, and Test Input

We compiled the CoRed voter as well as an unprotected
(simple) voter for comparison to the IA32 architecture, using
Debian Linux with GCC 4.7.2-5, optimization level -O2. Both
voters are implemented in C++, with the EAN primitives being
available as a C++ library. After compilation, the simple and
the CoRed voter consist of 38 and 92 machine instructions re-
spectively and occupy 112 (301) bytes of memory. Both voters
call no other functions and operate only on their arguments.

We ensured that all memory loads and stores are done via
registers2, as we inject faults only in registers, instructions, and
the program counter. Therefore, we manually restricted the
IA32 instruction set to a subset that only works directly on
registers. Hence, all values used for computation are visible
in registers and the assumptions we used for pruning the FI
experiments are valid. Additionally, we employed fine-grained
spatial and temporal isolation provided by the operating system:
jumps out of scope and illegal memory accesses are detected by
an memory management unit (MMU). Likewise, deadlines are
enforced by a watchdog. Isolation violations as well as further
hardware traps, such as invalid instruction, are considered as
detected errors, since they can be handled actively.

In order to achieve full branch coverage, we executed
both voters with all possible equality sets (E) reflecting all
combinations of agreeing and differing input values: x=y=z,
x 6=y=z, x=y 6=z, x 6=z=y, and x 6=y 6=z. As we already verified
the fault-detection capabilities of EAN codes for all possible
input data (v) in Section III, we used a fixed set of inputs as
part of the following instruction-level FI.

C. Acid Test: FI in Instructions and General Purpose Registers

As a first acid test, we injected errors in terms of single-
bit flips into the voters’ static instructions. Likewise, we ran
experiments for all general purpose registers (GPRs). Table I
shows the experimental results. Note that the total number
of experiments differs due to the different sizes in code and
data. The bottom line is, that the unprotected voter suffered
significantly from dangerous SDCs, amounting to over 21
percent of all effective errors. In contrast, the CoRed voter

2This is by definition the case for RISC systems. For a CISC architecture,
like IA32, this has to be ensured explicitly.

Instructions Registers and Flags Program Counter 2-bit faults in General Purpose Registers

Simple EAN Simple EAN Simple EAN Super A= 58 659 Bad A= 58 368

Ok (No influence) 784 2772 1040 3204 127 267 38 639 38 639
Detected (EAN) – 995 – 1435 – 420 21 596 21 519
Detected (HW-Trap) 93 246 8 41 21 241 47 47
Detected (Jump outside .text) 149 208 173 559 2614 5614 471 471
Detected (Inv. Mem. Acc.) 676 1626 1652 3177 190 626 59 967 59 967
Detected (Timeout) 0 1 0 0 0 0 0 0
Undetected (SDC) 450 0 807 0 152 0 0 77∑

2152 5848 3680 8416 3104 7168 120 720 120 720

TABLE I. R E S U LT S O F T H E V O T E R F A U LT- I N J E C T I O N C A M PA I G N S . T H E E N T I R E 1 - B I T F A U LT S PA C E I S C O V E R E D B Y I N J E C T I N G
I N S T R U C T I O N S , R E G I S T E R S , A N D P R O G R A M C O U N T E R . D O U B L E - B I T E R R O R S S H O W T H E E F F E C T O F A N A D V E R S E LY C H O S E N A.

performed as expected with more than 17 percent of the errors
caught by the EAN code. Although these experiments already
cover the vast majority of possible fault locations, further
experiments are necessary to achieve full fault-model coverage.

D. CPU status: The flags register

The flags register, holding the CPU status and the arithmetic
flags is just one more register but yielded more surprising
results: The CoRed voter accesses the flags only for compar-
isons and conditional jumps, and in 12 experiments it failed
silently. The reason is that as most pipelined instruction set
architectures (ISAs), IA32 lacks a compound test-and-branch
instruction. Instead, this conditional control-flow decision is
separated (e.g., cmp eax, edx and je Lequal). A test
instruction that sets arithmetic flags, followed by an conditional
jump using these flags. In this short example two registers (eax,
ebx) are compared, and the zero flag is set on equality. The
jump-equal instruction redirects the control flow to the label
Lequal if the zero flag is set. However, between those two
instructions the information about the control-flow change is
stored only in a single bit in the flags register. This is a striking
example for the impact of the last transition step, leading to
an unexpected single point of failure and SDCs. The following
listing exemplifies the effects on the voting algorithm:

19: else if (yc − zc) = (By −Bz)
20: win← APPLY(yc, (yc − zc))
21: return BE ← (By −Bz)
22: else if (xc − zc) = (Bx −Bz)
23: win← APPLY(xc, (xc − zc))
24: return BE ← (Bx −Bz)

Control-Flow
ErrorCorrect

In this case, two unequal but correctly encoded values
are compared. Hence, the voter should take the else-branch.
However, when the zero flag is altered right in between
comparison and branch, an incorrect winner is selected.

Pitfall 2: Inter-Instruction State

When x 6= z but a dynamic signature (xc−zc) is calculated
because of corrupted inter-instruction state, the dynamic
signature is off by a multiple of A and subsequently > A.
In consequence, a somewhat valid but too large signature is
generated. After identifying the cause of the problem, the
remedy is straightforward: The A P P LY function is replaced
by a version with an additional range check that verifies if
the dynamic signature is absolutely smaller than A.

1: function APPLY(vc, sigdyn)
2: if ‖sigdyn‖ ≥ A then SIGNAL_DUE()
3: end if
4: return vc + sigdyn
5: end function

2

E. Corrupting the Program Counter

Extending the FI to the program counter (PC), we observed
another unexpected and extremely rare phenomenon, observable
in only three corner-case experiments. Injecting single-bit flips
in the PC resulted in random jumps by an offset of power of two,
leading to an incorrect control flow. Most of those jumps are
detected by the MMU-based isolation. However, intra-function
jumps still remain undetected and may lead to SDCs.

We subsequently injected only effective faults in the PC that
do not trigger MMU exceptions. By investigating the resulting
SDCs, we found zombie values in registers as the surprising
cause for the errors. The parameters, three correctly encoded
variants, are computed and stored on the program stack by
the caller. However, these values also remain in registers by
coincidence. The corner-cases manifested themselves as control
flow deviations leading from the very beginning of V O T E to
one of the exit sequences. As the registers still hold the valid but
incorrect zombie values at this point, a decodable but malicious
result is calculated.

Pitfall 3: Undefined Execution Environment

The problem arises from our assumption of a clean exe-
cution environment for our voter, where components are
properly isolated from each other. The lack of CPU state
isolation between voter caller and the voter function (the
compiler lazily leaves non-live values in GPRs) leaks
correctly encoded values to the voter’s exit sequence. We
eradicated all SDCs by clearing the local storage, in our
case only the registers, before starting the voting sequence:

1: function VOTE(xc, yc, zc)
2: ZERO_LOCAL_STORAGE()
3: win = 0
4: if (xc − yc) = (Bx −By) then
5: . . .

3

The Program Counter column in Table I contains the results
for the FI experiments. As already mentioned, most errors are
detected by the MMU. However, the simple voter again suffered
from almost five percent of SDCs, whereas the CoRed voter
remains SDC free and detects 420 faults in the decoding phase.

V. T I G H T E N T H E R U L E S – M U LT I - B I T FA U LT S

So far, we focused on single-bit FI experiments (cf. Sec-
tion II-A, fault model). However, multi-bit flips may be an
issue and should be detectable by EAN codes that exhibit an
appropriate dH anyway. With FA I L* at hand, we were able
to gain an insight into the domain of multi-bit faults. In the
following, we briefly present and discuss our first results from

Multibit Faults in GPR (A= 58 659) 3 bits 4 bits 5 bits

Ok (No influence) 33.742 % 33.605 % 33.544 %
Detected (EAN) 18.209 % 18.356 % 18.431 %
Detected (HW-Trap) 0.001 % <0.001 % 0 %
Detected (Outside .text) 0.054 % 0.009 % 0.001 %
Detected (Inv. Mem. Acc.) 47.993 % 48.030 % 48.023 %
Detected (Timeout) 0 % 0 % 0 %
Undetected (SDC) 0 0 0∑

579 838 627 886 1.3 × 106

Size of fault space 3.59 × 106 1.03 × 108 2.90 × 109

Covered fault space 16.13 % 0.59 % 0.04 %

TABLE II. M U LT I - B I T E R R O R F A U LT- I N J E C T I O N R E S U LT S .

campaigns injecting 2 to 5-bit faults. While the semantics of a
single-bit flip is relatively easy to describe (there is only one
injection time, one injection location, and a single injection
pattern) this is not as straightforward for multi-bit faults. For
a first examination we therefore restricted our experiments by
only varying the injection pattern and flipping a number of bits.

With double-bit faults we were able to examine the influ-
ence of a poorly chosen A, backing the expected behaviour
on assembly level. We evaluated all 120 720 combinations
of double-bit flips for the CoRed voter (14 16-bit register
operations, 240 32-bit operations). As predicted (cf. Section III),
using an appropriate A, the voter was able to detect all double-
bit faults (Super A – Table I). In contrast, using a poorly
chosen A with a Hamming distance of two resulted in 77 SDCs
(Bad A – Table I). Hence, the choice of A had the expected
impact on the residual error probability.

For 3–5 bit faults (Table II), we only performed random
(Monte-Carlo) experiments to cope with the exploding fault
space. In our first campaigns, we managed to cover 16 percent
of the 3-bit fault space, with significantly lower percentages for
4 and 5-bit faults. As expected, we could not see any SDCs,
although these statistical results do not prove the absence in
turn. In future work, we plan to extend and improve the fault
model to even cover multi-bit multi-errors, that is multiple
patterns, locations and points in time.

V I . D I S C U S S I O N

Even with proper coding theory at hand, bullet-proof
software-based fault tolerance is hard to implement – as
our detailed investigation of CoRed’s EAN and voter imple-
mentation revealed. Although arithmetic coding schemes are
mathematically sound and well understood, the transition to real
hardware is highly technical. It may weaken the abstract model
to a point where the fault-mitigation capability suffers and does
not meet the predicted residual error probability. So, from a
practitioner’s perspective, it is vital to grasp the transition and
take the implementation platform into account.

A. Lessons Learned

Section III detailed the impact of binary code representation
and encoding parameters on the residual error probability. The
first pitfall and its solution – adding a range check – might
appear trivial and caused by sloppy software development in
the first place. However, the consideration of soft errors in a
traditional development process and quality assurance is not
necessarily given. Developers cannot find much support by
programming languages, compilers or other static analysis tools,

as these are usually are not aware of or even consider unreliable
execution. Furthermore, at least for non-systematic codes, the
mapping between theory and binary representation is non-trivial.
We were especially surprised by the variations in dH as well as
the specific multi-bit psdc distribution. Consequently, rules of
thumb, as the generally recommended prime numbers, are not
necessarily applicable on the binary level. Overall, in-depth
system knowledge and thorough evaluation of the encoding
parameters are essential but worth the effort – as we showed
with the decrease in psdc for A = 251 by a factor of 1000.

The second pitfall takes the same line as its predecessor
but illustrates another problem: control-flow errors. Here, the
processor architecture and its inter-instruction states are a dan-
gerous and little obvious source of vulnerabilities. Pitfall 3 falls
into the same category but is caused by either the laziness of the
compiler or the incompleteness of the aspired spatial isolation.
That SDCs may arise from the way the compiler assigns
registers, is probably one of the most obscure error pattern.
The solution is to provide a clean execution environment and
perfect isolation. We therefore advocate for the system software
as the right layer for implementing fault-tolerance techniques.

Furthermore, Section IV showed the general importance of
sophisticated fault-injection tools. Pitfalls 2 and 3 were discov-
ered only by systematic fault-injection experiments conducted
with the FA I L* framework. Pitfall 2 manifested itself in less
than 20 out of over 8000 experiments. Therefore, Monte-Carlo
experiments lack a trustworthy statement on the absence of
SDCs. FA I L* enabled us to systematically cover the entire
fault space. Furthermore, as it is based on emulation, we
were able to incorporate flag register and program-counter
injections that were impossible with the hardware–debugger-
based framework we used in the original CoRed evaluation.
Here, tooling speed is crucial for short measure-improve cycles
and for the iterative evaluation of software-based fault-tolerance.
For example, the GPR experiments improved from two weeks
with the debugger to 15 minutes using FA I L* on an off-the-
shelf desktop computer.

B. Threats to Validity

Threats to validity arise mainly from the fault-model
assumptions and the characteristics of the IA32 architecture
used for our fault-injection experiments.

The single-fault assumption is certainly the most important
one we made for the fault model. This means, for a certain
period (experiment), faults occur only once and are limited
to a single data word. However, this is only valid for RISC
architectures where instructions and operands are separated
(fixed length instructions). Otherwise, an operator error could
lead to an totally different alignment of the operands. This
would in turn manifest in an unknown number of bit flips and
potentially cause multi-word faults. From this point of view, the
IA32 seems to be a very bad choice as it neither features fixed
length instructions nor separated instruction and data memory.
As the current version of FA I L* only provides a full feature
set for the IA32 architecture, we had to circumvent this issue by
restricting the compiler to a RISC-equivalent instruction subset.
We therefore consider the general fault model still valid.

Another simplification was to omit most of the input
parameter space (v) in the fault-injection campaigns. In our

opinion, it is sufficient to cover the entire input parameter space
for v by means of simulation experiments (see Section III) as
validation for data errors. As the data and control flow errors
can be seen independently, according to the aforementioned
single-fault assumption, we can focus on control-flow errors
within the fault-injection experiments.

We are aware of the fact that our experimental approach
represents a platform-specific evaluation rather than a general
validation. However, we believe it to be absolutely accurate with
respect to the assumed fault model. Certainly, our results depend
on the specific architecture and compiler employed and have
to be reasserted when switching the platform. Although we
cannot exclude further pitfalls caused by architectural specifics,
the guidelines presented in this paper can significantly help to
simplify this task. We identified a tight feedback loop with fault-
injection experiments as a suitable tool for accompanying this
process. The decoupling of a small system part – in our case
the CoRed voter – by spatial and temporal isolation allowed
us to put the implementation to the acid. For a fault-tolerant
system it is crucial to utilize isolation techniques provided by
the system software to limit unpredictable side-effects.

V I I . C O N C L U S I O N A N D O U T L O O K

Arithmetic error coding schemes (AN codes) are a mathe-
matically sound and well understood technique to effectively
mitigate soft errors. However, even with proper coding theory
at hand, software-based fault tolerance is hard to implement –
and even more difficult to verify. In reality, the resulting
residual error probability can deviate from theory by orders of
magnitude. On the example of the CoRed voter, we investigated
the roots of these deviations from a systems perspective – and
found them in implementation glitches introduced in every
stage of the transition from coding theory to the machine
code for a specific architecture. By exhaustive simulation and
fault-injection experiments (100 % fault space coverage for
single and double-bit faults), we identified typical pitfalls that,
if addressed, result in the reliable detection of all errors and
an implementation that matches the predictions from theory.
Accordingly, developers can systematically improve reliability
up to the elimination of all software-visible errors. With CoRed
pushed to the coding theory’s prediction, we finally achieved
our initial goal to provide reliable, hardware-independent and
selective protection of safety-critical applications, which can
be even applied to existing systems.

From the experiences made, we see both supportive fault-
aware tooling as well as fault-tolerant system software as
essential weapons in the battle against soft errors. We envision
CoRed [1] and FA I L* [18] to be part of an integrated approach
for the development and the verification of safety-critical
systems. One step in this direction is the advancement of
CoRed’s concepts to the dOSEK [20] dependable operating
system. Extending FA I L*’s functionality (e.g., multi-bit fault
injection) and devising methods to deal with the resulting fault-
space explosion is another one.

The bottom line of this paper is: When implementing error
coding schemes, it is vital to also take a systems perspective.
Know your system and validate each step in the transition from
abstract concepts to binary code. Bullet-proof software-based
fault tolerance is possible.

R E F E R E N C E S

[1] P. Ulbrich, M. Hoffmann, R. Kapitza, D. Lohmann, W. Schröder-
Preikschat, and R. Schmid, “Eliminating single points of failure in
software-based redundancy,” in 9th Eur. Dep. Computing Conf. (EDCC

’12). Washington, DC, USA: IEEE, May 2012, pp. 49–60.
[2] P. Ulbrich, R. Kapitza, C. Harkort, R. Schmid, and W. Schröder-

Preikschat, “I4Copter: An adaptable and modular quadrotor platform,”
in 26th ACM Symp. on Applied Computing (SAC ’11). New York, NY,
USA: ACM, 2011, pp. 380–396.

[3] U. Schiffel, “Hardware error detection using AN-codes,” Ph.D. disser-
tation, Technische Universität Dresden, Fakultät Informatik, 2011.

[4] P. Forin, “Vital coded microprocessor principles and application for var-
ious transit systems.” in Symp. on Control, Computers, Communication
in Transportation (CCCT ’89), Sep. 1989, pp. 79–84.

[5] O. Goloubeva, M. Rebaudengo, M. S. Reorda, and M. Violante,
Software-Implemented Hardware Fault Tolerance. Heidelberg, Germany:
Springer, 2006.

[6] W. W. Peterson and E. J. Weldon, Error-correcting codes, 2nd ed.
Cambridge, MA, USA: MIT Press, 1972.

[7] A. Avižienis, G. Gilley, F. P. Mathur, D. Rennels, J. Rohr, and D. Rubin,
“The star (self-testing and repairing) computer: An investigation of the
theory and practice of fault-tolerant computer design,” IEEE Transac-
tions on Computers, vol. 20, no. 11, pp. 1312–1321, 1971.

[8] N. Oh, S. Mitra, and E. McCluskey, “Ed4i: Error detection by diverse
data and duplicated instructions,” IEEE Transactions on Computers,
vol. 51, no. 2, pp. 180–199, 2002.

[9] J. Chang, G. Reis, and D. August, “Automatic instruction-level software-
only recovery,” in 36th Int. Conf. on Dep. Systems & Networks (DSN

’06). Washington, DC, USA: IEEE, 2006, pp. 83–92.
[10] U. Wappler and C. Fetzer, “Software encoded processing: Building

dependable systems with commodity hardware,” in 26th Int. Conf. on
Comp. Safety, Reliability, and Security (SAFECOMP ’07), F. Saglietti
and N. Oster, Eds. Heidelberg, Germany: Springer, 2007, pp. 356–369.

[11] C. Fetzer, U. Schiffel, and M. Süßkraut, “AN-encoding compiler: Build-
ing safety-critical systems with commodity hardware,” in 28th Int. Conf.
on Comp. Safety, Reliability, and Security (SAFECOMP ’09), B. Buth,
G. Rabe, and T. Seyfarht, Eds. Heidelberg, Germany: Springer, 2009.

[12] U. Schiffel, A. Schmitt, M. Süßkraut, and C. Fetzer, “ANB- and
ANBDmem-encoding: detecting hardware errors in software,” in 29th
Int. Conf. on Comp. Safety, Reliability, and Security (SAFECOMP ’10),
E. Schoitsch, Ed. Heidelberg, Germany: Springer, 2010, pp. 169–182.

[13] R. A. Frohwerk, “Signature analysis: A new digital field service method,”
Hewlett-Packard Journal, vol. 28, no. 9, pp. 2–8, 1977.

[14] T. R. N. Rao, Error Coding for Arithmetic Processors, 1st ed. Orlando,
FL, USA: Academic Press, 1974.

[15] X. Li, K. Shen, M. C. Huang, and L. Chu, “A memory soft error
measurement on production systems,” in 2007 USENIX ATC. Berkeley,
CA, USA: USENIX, 2007, pp. 1–14.

[16] J. Maiz, S. Hareland, K. Zhang, and P. Armstrong, “Characterization
of multi-bit soft error events in advanced SRAMs,” in Intern. Electron
Devices Meeting (IEDM ’03). New York, NY, USA: IEEE Press, 2003.

[17] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham, “Ferrari: A flexible
software-based fault and error injection system,” IEEE Transactions on
Computers, vol. 44, pp. 248–260, 1995.

[18] H. Schirmeier, M. Hoffmann, R. Kapitza, D. Lohmann, and O. Spinczyk,
“FAIL*: Towards a versatile fault-injection experiment framework,” in
25th Intern. Conf. on Architecture of Comp. Systems, ser. Lecture Notes
in Informatics, vol. 200. Gesellschaft für Informatik, Mar. 2012.

[19] K. P. Lawton, “Bochs: A portable PC emulator for Unix/X,” Linux
Journal, vol. 1996, no. 29es, p. 7, 1996.

[20] M. Hoffmann, C. Dietrich, and D. Lohmann, “dOSEK: A dependable
RTOS for automotive applications,” in 19th Int. Symp. on Dependable
Computing (PRDC ’19). Washington, DC, USA: IEEE, Dec. 2013, fast
abstract, to appear.

Implementation and further experimental results:

http://www4.cs.fau.de/Research/CoRed

http://www4.cs.fau.de/Research/CoRed

