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Abstract
Path expressions provide a precise and concise method for
defining synchronization rules for accessing shared data. In
conjunction with predicates, even finer control of the se-
quences can be achieved. Furthermore, path expressions,
with their ability to abstract from a specific synchronization
technique, demonstrate a high level of adaptability. Despite
being developed nearly five decades ago, they remain under-
represented in current software engineering and have yet to
achieve widespread applicability. This paper reevaluates ex-
isting approaches and presents an automaton-based version
of path expressions written in C++. We extend the concept
of predicates to allow access to external system states and
evaluate the feasibility and performance of our approach.
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1 Introduction
The advent of multi- and many-core CPUs has created many
synchronization primitives, as evidenced by the literature
(e.g.,[10, 11, 13]). For instance, the pthreads library offers five
primary synchronization techniques (i.e., mutexes, condition
variables, read-write locks, spinlocks, and barriers), while
popular Python extends the options available to developers
to six primary primitives1 plus queues and multiprocessing
variants. This is in addition to the possibilities offered by con-
temporary OS kernels, such as Linux [10] or FreeBSD [11],
or even non-blocking synchronization techniques [12]. Basic
synchronization primitives, such as semaphores, are often
the building blocks for constructing complex synchroniza-
tion patterns, including those that tackle the reader-writer

1https://docs.python.org/3/library/asyncio-sync.html
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problem [13]. This process, while common, is not without its
challenges, underscoring the need for advanced techniques.
This process is time-consuming and susceptible to errors,
resulting in the generation of considerable code for each pat-
tern. The programmer’s primary concern is the correctness
and efficiency of the synchronization implementation. They
aim to express both the steps involved in accessing a shared
memory and the degree of parallelism.
One potential solution to this issue is path expression-

based synchronization, which is the focus of this paper. Ini-
tially introduced as early as 1974 by Campbell and Haber-
mann [3], the concept represents an abstract description
language for the specification of execution sequences. Based
on these classic path expressions, some extensions were
proposed to increase the expressive power of the path ex-
pressions. These extensions were put forth by Andler (1979),
Habermann (1975), and Flon Habermann (1976) [1, 5, 7], re-
spectively. Of particular note is Andler’s work on predicate-
based path expressions, which endeavors to consolidate all
situational extensions into a single concept: introducing pred-
icates. In this context, the term "predicate" refers to a concept
derived from predicate logic, in which predicates represent
the truth-functional component of atomic statements. The
evolution of path expressions continued with the introduc-
tion of the path-process notation by Lauer and Campbell
(1975) [8], which later merged into the COSY notation devel-
oped by Lauer, Torrigiani, and Shields (1979) [9]. However,
both approaches lack an operator for explicit parallelism,
as provided by the preceding approaches. It is also worth
noting that path expressions seem to be rarely used in prac-
tice, although there have been previous implementations in
Pascal [2], proposals to introduce them in C++ [14], and an
orphaned Python GIT project [6] on the subject.
In light of the potential advantages of path expression-

based synchronization, this paper seeks to address the rea-
sons for this discrepancy and to elucidate the potential bene-
fits of path expression-based synchronization. The contribu-
tions of this paper are as follows:
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symbol automaton

p ; q
p q

p , q
p,q

p*

p

p[con]
[con] p

{p}
{ p }

Table 1: Syntax of automaton-based path expressions:
p and q indicate procedures, con predicate, ; sequence opera-
tor, , selection operator, * repetition operator, [] restriction
operator, {} braces operator.

• Introduction of automata-based path expressions de-
rived from predicate-based path expressions,

• extension of the existing concept of predicates and
• evaluation of the approach above regarding expres-
siveness, usability, and performance.

2 Approach
We adopted the predicate path expressions methodology,
initially proposed by Andler [1], for this work. We refer to
the resulting approach in the following as automaton-based
path expressions. This approach, which we’ve tailored to our
needs, is adaptable and can be applied to a wide range of
scenarios. We employ five of the six operators described
in Andler’s approach, namely, the selection operator, the
sequence operator, the repetition operator, the restriction
operator, and the braces operator excluding the collateral
operator, as its function can be achieved through the use
of the other operators. Our semantics of the operators are
analogous to that of Andler’s approach, with the exception of
the restriction operator. We’ve enhanced this operator by in-
corporating an expansion regarding the potential predicates,
which we believe significantly improves its functionality. In
addition to the req, act, and term counters and constants
in predicate path expressions as described by Andler, ex-
ternal integer-compatible variables may now also be used
as references in predicates. This modification enables the
dependency of permitted execution sequences on external
system states contingent on a specified path expression. To
illustrate, the execution of a procedure may be contingent

upon the status of a variable that indicates the readiness of
a peripheral device utilized during that procedure.
In addition to their symbol representations, we assigned

the individual operators an automaton representation as il-
lustrated in Table 1. In the automaton representation, a state
represents the current state of the synchronization system.
Transitions may be classified into two categories: normal pro-
cedure transitions and functional transitions. Functional tran-
sitions provide additional functionality to procedure transi-
tions but can never be triggered independently. There are
two distinct types of transitions: predicate transitions, which
can only be completed if the predicate protecting them is sat-
isfied at the time of the transition, and parallel environment
transitions, which indicate the commencement or conclu-
sion of parallel environments. Each valid transition process
triggers precisely one procedure transition and unlimited
functional transitions. However, each transition process can
utilize a maximum of one parallel environment transition,
either entering or exiting.

3 Implementation
To analyze the performance of automaton-based path expres-
sions, we developed a C++ prototype. It is comprised of three
principal functional units implemented by a dedicated class:
Predicate, Automaton, and Synchronizer.
The Predicate class represents a recursive data struc-

ture that implements the functionality of the predicates. A
single object of the class can either process an operand with
an unary logical or arithmetic operator or link two operands
with a binary logical or arithmetic operator. The possible op-
erators are other Predicate objects or references to variables
of an integral type compatible with the C++ standard [4].

The Automaton class represents a data structure for stor-
ing a state graph with all its transitions. This is specified
directly by an automaton-based path expression. The logic
is oriented in a manner that is highly consistent with the
automaton analogy. Additionally, the automaton maintains
a record of the currently active states and provides functions
for determining whether a specific procedure is permitted to
execute within the current system state. Moreover, it over-
sees the management of counters, specifically req, act, and
term, for each procedure within the path expression. The
transitions within an Automaton object are predicated upon
the use of Predicate objects.
The Synchronizer class serves as the control structure

that implements the actual synchronization. It utilizes an
automaton object as a representation of the path expression.
A thread may use a function call via the Synchronizer
object to ascertain whether executing is currently permit-
ted. To this end, incoming threads are placed in a queue and
are awaiting processing in the order of their requests. Upon
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determination that a woken thread is permitted to execute,
the invocation of the Synchronizer object is terminated,
thereby enabling the critical section to be entered. If the
requisite waiting period has not been reached, the thread
re-enters the queue at the rear. This unsuccessful checking
is regarded as active waiting. A thread that has already been
permitted to run then signals the conclusion of its critical
section to the Synchronizer object by calling another func-
tion, which updates the corresponding data structures and
activates further threads if necessary.

4 Experiment Setup
We conducted runtime experiments to assess the effective-
ness of our prototype, comparing it to the established syn-
chronization methodology. To ensure the relevance of our
findings, we designed a complex synchronization scenario
that mirrors real-world applications, thereby enhancing the
practicality of our evaluation. The example comprises two
distinct types of producers or writers (write1 and write2),
each capable of accessing a type-specific ring buffer with
limited capacity. If there is still free capacity, these writers
can store data in the buffer element by element. Addition-
ally, a consumer or reader (read) type is present, which
reads a minimum number of elements once they have been
stored in both ring buffers and releases the capacities accord-
ingly. In the experiment, there are multiple instances of the
writers and a single instance of the reader. Consequently,
each access to the ring buffer is exclusive, either to an in-
stance of the respective writer type or to the instance of
the reader. Such a scenario is conceivable, for example, in a
server-client setup where multiple clients provide disparate
sensor data, such as temperature and pressure, temporarily
stored on the server side and processed into gas volumes by
value pairs through a regular server-side process. The ring
buffer capacities (𝑛write1,max bzw. 𝑛write2,max) were set to 8 and
the minimum number of elements (𝑛read,min) before reading
was set to 4. Furthermore, the variables 𝑛write1 and 𝑛write2 de-
scribe the current capacity in the respective ring buffer. The
resulting automaton representation of this synchronization
scenario is shown in Figure 1 and given by:

cond1 ≔ act(write1) = term(write1) ∧ act(write2) = term(write2)
∧𝑛write1 ≥ 𝑛read,min ∧ 𝑛write2 ≥ 𝑛read,min

(1)

cond2 ≔ act(write1) = term(write1) ∧ 𝑛write1 < 𝑛write1,max

∧
(
req(read) = act(read) ∨ 𝑛write1 < 𝑛read,min

) (2)

cond3 ≔ act(write2) = term(write2) ∧ 𝑛write2 < 𝑛write2,max

∧
(
req(read) = act(read) ∨ 𝑛write2 < 𝑛read,min

) (3)

The two primary variables of interest in the experiments
were the mean start times of all threads following their cre-
ation and the mean end times, or the times at which the
final thread terminated. In the course of the experiments,
five influencing variables were varied:

(1) The synchronization method (Sync.m.)
(2) The number of threads per type of writer (TpT)
(3) The number of repetitions per thread (RpT)

𝑞0

𝑞1

𝑞2

𝑞3

𝑞4

𝑞5

[cond1] read

{

[cond2]

[cond3]

write1

write2

}
Figure 1: Automaton representation of the synchro-
nization scenario.

(4) The ratio of non-critical iterations (NCIt) to critical
iterations (CIt)

(5) The execution mode (Exm.)

The synchronization method could be utilized in two dis-
tinct ways: the classic synchronization (C) method, which
employs primitives, or the path expression-based (PE) ap-
proach, which uses the implemented prototype. The number
of TpT represents the number of instances of the two writer
types that were created and could be either 1, 10, or 100.
The number of RpT describes the frequency with which an
instance should repeat its task until its thread is completed.
This value was either 1, 10, or 100. The ratio of non-critical
iterations (NCIt) to critical iterations (CIt) simulates a work-
load resulting from active idling outside and within the criti-
cal section. The ratios 3,000,000 NCIt : 1,000,000 CIt, 2,000,000
NCIt : 2,000,000 CIt, and 1,000,000 NCIt : 3,000,000 CIt were
employed, with the total load remaining constant. The Exm.
designation indicates whether the experiment was conducted
in a pseudo-parallel (pp) mode on a single CPU core or a
parallel (p) mode on three CPU cores.

We conducted 21 experimental repetitions for each of the
108 resulting combinations of influence variables. The total
running time was calculated in each instance as the differ-
ence between the end and start times. The median of the
21 results was employed as the position parameter for a
direct comparison of the running times for C and PE syn-
chronization. The scatter was quantified using the lower
and upper quartiles. Furthermore, we derived three ratios
to visualize the relationship between the runtimes of the
two synchronization methods. The ratios observed from the
perspective of PE synchronization are classified according
to their relative performance as follows:
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Figure 2: Comparison of runtimes for all threads for both synchronization methods. The values depend on the
configuration (ConfID), which includes the execution mode {pseudo-parallel, parallel}, threads per type (TpT) {1, 10, 100}, and
repetitions per thread (RpT) {1, 10, 100}. Ratio of non-critical to critical iterations (NCIt: CIt): 3:1, 1:1 and 1:3. Median runtimes
are plotted with lower and upper quartiles.

• The worst ratio is obtained by dividing the maximum
runtime for PE synchronization by the minimum run-
time for C synchronization.

• The average ratio is calculated by dividing the me-
dian runtime for PE synchronization by the median
runtime for C synchronization.

• The best ratio is obtained by dividing the minimum
runtime for PE synchronization by the maximum
runtime for C synchronization.

5 Results
Figure 2 plots the median running times for C and PE syn-
chronization in nanoseconds on the y-axis. Please note that

the scale is logarithmic. The lower or upper error corre-
sponds to the lower or upper quartile. The various experi-
ment configurations are represented on the abscissa. The run-
times for classic synchronization are illustrated as deep blue
bars, while those for path expression-based synchronization
are represented by orange bars. All configurations executed
in a pseudo-parallel manner are situated in the left half of
the diagram, while all configurations executed in a parallel
manner are located on the right half. Each half comprises
three principal groups, with the number of TpT varying from
1 to 10 to 100 from left to right. Each of these larger groups
is composed of three smaller groups, in which the number of
RpT is increased from left to right, from 1 to 10 to 100. In each
of these smaller groups, the ratio of NCIt to CIt is varied in
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Figure 3: Ratios of total runtimes of all threads for both synchronization methods; plotted are the best, average
and worst observed ratios of path expression-based synchronization. The values depend on the configuration (ConfID),
which includes the execution mode {pseudo-parallel, parallel}, threads per type (TpT) {1, 10, 100}, and repetitions per thread
(RpT) {1, 10, 100}. Ratio of non-critical to critical iterations (NCIt: CIt): 3:1, 1:1 and 1:3.

a stepwise manner, beginning with 3,000,000 NCIt:1,000,000
CIt, then decreasing to 2,000,000 NCIt:2,000,000 CIt, and fi-
nally reaching 1,000,000 NCIt:3,000,000 CIt.
The ratios of the running times for C and PE synchro-

nization are shown in Figure 3. The different ratios of the
running times are plotted on the ordinate. The various exper-
iment configurations are plotted on the abscissa. The best,
average and worst observed ratio from the perspective of
PE synchronization is shown for each configuration from
left to right in blue, green and deep blue respectively. The
remaining structure of the illustration with regard to the
various configurations is identical to that of Figure 2.

6 Discussion
As anticipated, the observable step-like increases in runtime
align with expectations. Notably, the runtimes, particularly
for C synchronization, consistently increase proportionally
to the combined number of orders of magnitude, dependent
on TpT and RpT. This phenomenon aligns with the premise
that an increase in TpT and RpT by one order of magnitude
equates to an equivalent rise in the operational load by two.

The observation that the runtimes for C and PE synchro-
nization remain primarily unchanged when 1 TpT is applied
but show significant differences when 10 or 100 TpT are uti-
lized suggests that thread count may be the principal factor
influencing the overhead of the PE approach. This indicates
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that most observed runtime differences are likely attribut-
able to active waiting, significantly impacting performance.
Threads are awakened from the synchronizer queue but are
not yet permitted to execute. They then monitor their sta-
tus and wake other threads until, eventually, the scheduler
awakens the thread that is ready to proceed.
This hypothesis is corroborated by the observation that

the overhead of PE synchronization increases as the load
ratio shifts into the critical section. This elevates the prob-
ability that the time slice of the actually productive thread
will expire before its completion as the time spent in the
critical section increases and active waiting takes place as a
consequence.
The reduction in runtimes for PE synchronization when

switching from pseudo-parallel to parallel execution mode
by a factor of more than three provides further substantiation
of this interpretation. Given that the number of CPU cores
utilized in parallel execution mode is three, the theoretical
speedup is constrained to a factor of three unless additional
effects, such as the reduction of active waiting, are consid-
ered. The availability of multiple cores allows for a reduction
in active waiting by approximately three. It also permits the
scheduler to prioritize productive threads, identified by their
high utilization and extensive use of their time slice, over un-
productive waiting threads, which can significantly reduce
active waiting.
With regard to the runtime ratio between the two syn-

chronization methods, it can be stated that the runtime of PE
synchronization in practical multi-core operation never de-
viates from the runtime of C synchronization by more than
a factor of two. Indeed, there are configurations in which the
ratio is nearly equal to one, such as for the high load scenario
with ConfID 53. Given that classical synchronization should
be a reasonable approximation of best-effort synchronization
in terms of performance, this suggests a favorable progno-
sis regarding the tradeoff in using path expression-based
synchronization. The performance benefits, such as the pre-
sumed greater ease of use, make the PE synchronization
method a confident choice.
When it comes to expressive capacity, automaton-based

path expressions are clearly superior to predicate-based ones.
However, it’s important to note that the approach of using
two dummy procedures and their counters to dynamically
generate any value at runtime has its own set of advantages
and limitations. The gradual increase or decrease of the coun-
ters, as opposed to the immediate change with real variable
references, is one such advantage. But there are also draw-
backs, such as higher overhead and potential inaccessibility
of the dummy processes. Extending predicates introduces
new possibilities for more straightforward and generalizable
solutions to synchronization problems.

In terms of user-friendliness, the prototype implemented
in this work has already demonstrated significant enhance-
ments compared to traditional synchronization techniques,
as perceived by the authors. Implementing the considered
synchronization scenario was more rapid and free of errors,
but the construction of the corresponding automaton also
facilitated a comprehensive understanding of the scenario’s
requirements. It should be noted that the specification of the
path expression represents a fundamental prerequisite for
synchronization, as even in instances where classical syn-
chronization is employed, it is essential first to determine
which sequences are permissible under which conditions.
This is precisely the role that path expressions fulfill by de-
sign.

7 Conclusion
We presented the approach of automata-based path expres-
sions, which represents a functional extension of the predicate-
based path expressions proposed by Andler [1]. We devel-
oped a working prototype in C++ and evaluated its perfor-
mance. The results demonstrated that for a complex syn-
chronization example in a practical multi-core environment,
the runtime difference between the path expression-based
synchronization and the classical approach was consistently
below a factor of two, with some configurations exhibiting
a runtime nearly identical to that of the classical approach.
Under the assumption that implementing synchronization
via path expressions can be more straightforward, faster, and
less susceptible to errors than the classical approach, these
findings suggest a promising outlook for the potential ben-
efits of path expression-based synchronization in modern
applications.

Nevertheless, further research into the properties of path
expression-based synchronization is warranted. Potential
avenues for further investigation include optimizing the im-
plementation to define the performance limits and directly
mapping the specification given by an automaton-based path
expression to synchronization primitives, as initially pro-
posed by Campbell and Habermann [3].

To enhance user-friendliness, it would be advantageous to
automate the utilization of path expression-based synchro-
nization, beginning at the user’s synchronization scenario
specification stage. A suitable graphical interface with an
integrated debugger could also optimize the creation of the
specification using the automata.
Moreover, empirical studies employing a suitable proto-

type should corroborate our assessment of path expression-
based synchronization’s user-friendliness.
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