
A New Perspective onQuality Evaluation
for Control Systems with Stochastic Timing
Maximilian Gaukler

Chair of Automatic Control

Friedrich-Alexander-Universität Erlangen-Nürnberg

max.gaukler@fau.de

Andreas Michalka

Chair of Automatic Control

Friedrich-Alexander-Universität Erlangen-Nürnberg

andreas.michalka@fau.de

Peter Ulbrich

Chair of Distributed Systems and Operating Systems

Friedrich-Alexander-Universität Erlangen-Nürnberg

peter.ulbrich@fau.de

Tobias Klaus

Chair of Distributed Systems and Operating Systems

Friedrich-Alexander-Universität Erlangen-Nürnberg

tobias.klaus@fau.de

ABSTRACT
As control applications are particularly sensitive to timing varia-

tions, the Quality of Control (QoC) is degraded by varying execution

conditions of the underlying real-time system. In particular, tran-

sitions between different execution or environmental conditions

pose a significant issue as they may impact the QoC unexpectedly.

So far, the QoC is usually evaluated either in a stationary, time-

invariant way, which cannot analyze said transitions, or by simu-

lation, which becomes inefficient when confronted with random

influencing factors. In this paper, we propose a new perspective on

QoC evaluation for modern, adaptive real-time systems with vary-

ing timing conditions. For this, we present a time-variant stochastic

assessment approach that incorporates the effects mentioned be-

fore. Our results demonstrate that adaptive scheduling and runtime

behavior considerably impacts the QoC. At the same time, the pro-

posed scheme significantly outperforms a traditional simulation.

CCS CONCEPTS
• Computer systems organization→ Embedded and cyber-
physical systems; Real-time systems; • Computing methodolo-
gies→ Systems theory; •Mathematics of computing→ Stochas-

tic processes; • Software and its engineering→ Scheduling.
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1 INTRODUCTION
Compliance with an application-specific physical specification is a

primary design objective of real-time control systems: in a vehicle,

this is, for example, to keep lane in a centimeter tolerance range.

Further improvement (i. e., millimeter accuracy) does not lead to

further increase in specification compliance or general benefit. Ac-

cordingly, from a control-theoretical point of view, the system must

be designed and assessed to provide a sufficient Quality of Con-

trol (QoC) under all possible environmental conditions (e. g., wind).

Typically, the QoC is quantified using a quadratic cost function

𝐽 = 𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢 (1)

based on the state error 𝑥 and the control-signal 𝑢: a small devia-

tion from the desired state 𝑥 = 0 and small amount of actuation

corresponds to minimum cost 𝐽 and therefore the maximum QoC.

Automatic control is particularly sensitive to timing variations

due to its close connection to the outside physical world. Any devi-

ation from the assumed temporal properties may negatively impact

the QoC [6, 19, 23]. Thus, the real-time system (i. e., operating

system) is tuned for specific execution conditions (i. e., timing of

computation and input/output) to provide an appropriate Quality

of Service (QoS) to the control application running on top. Here,

quality refers to accurate timing, such as deadline adherence or

periodicity (i. e., absence of jitter), which are commonly used as

assessment criteria. In practice, the prevailing point of view is that

overall QoC should be optimized by maximizing the QoS, which

boils down to tightening temporal bounds [14, 23].

In contrast, current trends in real-time systems foster a well-

directed renouncement from this rigid interpretation by moving

away from achieving the best possible QoC but rather one that

is good enough: approaches such as dynamically reconfigurable

systems or mixed-criticality scheduling trade QoS to boost average

performance while easing system design as well as worst-case han-

dling. For example, mixed-criticality scheduling [5, 22] provides

multiple criticality levels, each with the expectation of a certain

quality (here: QoC). Such approaches are, however, typically limited

to QoS-guarantees in the form of adapted timing and execution

conditions (e. g., control tasks may change priority or even be omit-

ted) for each criticality level. Consequently, it is assumed that there

is a static mapping between the QoS and the actually relevant QoC.

This static assumption is, for example, also shared by feedback

scheduling techniques [6, 8, 20]. Ultimately, deadlines may even

be intentionally violated for runtime adaptivity. A vivid example

being weakly-hard scheduling of automatic control tasks [3] such

that in any window of𝑚 execution periods deadlines have only to

be met for at least 𝑛 < 𝑚 times.

1.1 Motivation
In summary, automatic control will be faced with more dynamic

real-time computing systems, whose timing properties will be less

predictable than they used to be. The question of which QoC results

from these execution conditions is non-trivial. Although execution

conditions (i. e., timing deviations) and environmental conditions

are both determining factors for the QoC, the timing is typically

not considered in the classical design process.
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Existing approaches to evaluate the QoC under consideration of

the actual runtime behavior, such as JITTERBUG [15], typically op-

erate on stationary scenarios. This means that dedicated execution

conditions (i. e., driving conditions) are considered individually and

the effects are only evaluated time-averaged. Therefore, transitions

between different conditions cannot be analyzed.

However, we showcased in previous work [13] that the dynamic

behavior at these transitions is crucial for a sound assessment of the

actual QoC if the environment or timing can vary over time. Thus,

systemic evaluation schemes which capture time-varying condi-

tions are urgently needed to take advantage of said advances in

real-time system design, scheduling, and adaptivity without harm-

ing the actual objective: providing a sufficient Quality of Control.

1.2 Problem Statement
In this work we consider a system consisting of a physical plant and

a digital controller (e. g., lane control in a car) that is implemented

on a real-time operating system. We are looking for a numerical

answer to the question: which Quality of Control results from the

combined negative impacts of

• non-perfect input/output timing

• stochastic physical disturbance, such as side wind,

• measurement noise

• and the control situation, e. g., fast curve vs. straight road?

Because the system is subject to varying situations, these factors

vary over time, resulting in a time-dependent QoC. Due to system

dynamics (e. g., mechanical inertia) the dependency between QoC

and situation is not a static but a dynamic function, as it depends
on the history: a car, for example, cannot change its position instan-

taneously, but will only gradually head towards or away from the

desired path, and therefore the current position accuracy heavily

depends on the prior wind strength and input/output timing.

1.3 Contribution
In this paper, we present a novel approach to QoC evaluation for

adaptive, non-deterministic real-time systems. We consider such

an evaluation technique as a necessary and self-contained starting

point towards a QoC-aware co-design of control application and

real-time executive. We claim the following key contributions:

• New insights into the influence of runtime adaptive real-

time systems on time-related QoC.

• A theoretically well-founded QoC evaluation scheme that

is, to the best of our knowledge, the first to incorporate

time-varying input and output delays and stochastic distur-

bances.

• An extended system model that facilitates the evaluation

of Multiple-Input/Multiple-Output (MIMO) systems.

• A prototypical implementation of our approach that sub-

stantially outperforms traditional simulation-based approaches.

The remainder of this paper is structured as follows: First, Sec-

tion 2 discusses related work. Section 3 and 4 introduce notation

and underlying system model used in this document, respectively.

Section 5 presents our primary approach for deterministic timing,

which is subsequently extended to stochastic timing in Section 6.

Section 7 gives an overview of essential parts of our implementation

and exemplifies its performance. Section 8 concludes the main part

and provides an outlook on current and upcoming work. Active

readers find the main proofs detached in Section 9.

2 DISCUSSION OF RELATEDWORK
With the aim of achieving both high control performance and re-

source efficiency, researchers have been considering many facets

of the co-design of computing and control systems for more than

20 years. From a computing point of view, methods for flexible

timing that respect the QoC have been developed, ranging from

off-line optimization up to on-line adaptation to current environ-

ment conditions. From a control standpoint, the complementary

approach of considering timing in the controller synthesis was

proposed, with the aim of either passive robustness to unknown

or active compensation of known delays. This development con-

tinued towards a co-synthesis of controller and static timing for

individual environmental conditions. As an overarching approach,

radically new architectures were proposed that combine controller

and adaptive timing generator: With Event-Triggered Control, the

control signal is only recomputed when the sensor value violates

a certain condition. For Self-Triggered Control, the next sampling

time is adjusted depending on the current error.

While these approaches offer efficiency improvements, they

come at the expense of partly or completely moving away fromwell-

established and easy-to-use control and real-time design method-

ologies. It is, therefore, an important question whether their use is

necessary for a given system, especially when migrating existing,

well-tested control designs to newer real-time architectures. This

task of analysis and the underlying relation between timing and

QoC has mostly been considered only implicitly.

One important point of distinction is the theoretical frameworks

employed for analysis or synthesis: With the aim of addressing typ-
ical control performance, a linear-quadratic stochastic framework

has been widely employed, such as in the work of Nilsson et al. for

the synthesis of a delay-compensating optimal controller [18]. Most

closely related to the aim of our work is the JITTERBUG toolbox

by Lincoln and Cervin [10, 15], which explicitly computes the aver-

age QoC of a general linear system consisting of continuous- and

discrete-time elements and noise sources. The delays are described

by a Markov chain, also allowing for a controller dependent on cur-

rent timing. However, only the stationary QoC is calculated, and all

stochastic parameters have to remain constant, which means that

time-varying external disturbance or timing influence cannot be

modeled. For offline control-scheduling co-design, Fontanelli et al.

[12] applied stochastic optimization to a similar framework.

From a safety perspective, stability or worst-case performance is

analyzed to provide a lower bound on QoC. It should be noted that

while this analysis is an important aspect of system design, it does

not address the complementary question of performance in the typi-

cal, average case. The approach by Fontanelli et al. discussed before

verifies stochastic stability in the mean-square sense. Lyapunov

theory is used especially in the context of Event-Triggered Control.

Based on an overapproximation of the set of possible system states

(Reachability Analysis), Al Khatib et al. [1] present a method for
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stability analysis and timing synthesis of control systems with un-

certain control periods, although their work is restricted to output

feedback controllers and zero sampling-to-actuation delay.

A second key point of distinction is the approach to time dis-

cretization: Nilsson et al. use a classical one-step discretization in

which the timestep is one full nominal control cycle, causing a

difficult dependency between discrete transition matrix and delays.

In JITTERBUG and the work of Fontanelli et al., this is simpli-

fied by limiting the Input/Output (I/O) timepoints to a grid, which

is also used for discretization. The result is a discrete system of

significantly higher sampling rate that switches between a finite

number of transition matrices. Instead of an explicit discretization,

Al Khatib et al. employ the formulation as a linear impulsive system,

which is also used by many works on Event-Triggered Control.

3 NOTATION
We will use the following notation: The transpose of 𝑥 is denoted

𝑥𝑇 . 𝐼 is the unity matrix and 𝑒 𝑗 =
[
0 . . . 0 1 0 . . . 0

]𝑇
the 𝑗-th

unit vector, both of appropriate dimension. Intervals are denoted

(𝑎, 𝑏) for open, [𝑎, 𝑏] for closed and (𝑎, 𝑏] ≔ {𝑥 | 𝑎 < 𝑥 ≤ 𝑏}: half-
open interval. For a piecewise-continuous function 𝑓 (𝑡), the left-
and right-hand limits at 𝑡 = 𝑎 are denoted 𝑓 (𝑎−) and 𝑓 (𝑎+).N is set

of positive integers, N0 ≔ N ∪ {0}, and R the set of real numbers.

Random variables. For a random variable 𝑥 , E{𝑥} denotes the
expectation and Pr(𝑥 = 𝑥𝑖 ) the probability, which is abbreviated as

Pr(𝑥𝑖 ). Undetermined random variables in an expectation may be

annotated by a subscript as in E{𝑓 (𝑥)} = E𝑥 {𝑓 (𝑥)}, which means

that the sum E{𝑓 (𝑥)} =
∑
𝑖 Pr(𝑥 = 𝑥𝑖 ) 𝑓 (𝑥𝑖 ) iterates only over 𝑖 .

This subscript does not change the mathematical meaning; condi-

tional expectations are always stated explicitly such as E𝑥 {𝑓 (𝑥) |𝑦}.
By cov{𝑥 (𝑡)} ≔ E

{
𝑥 (𝑡)𝑥𝑇(𝑡)

}
we define the time-varying co-

variance. For the sake of simplicity, we also apply this definition to

signals with E{𝑥 (𝑡)} ≠ 0, slightly abusing the name covariance.

4 SYSTEM MODEL
Plant. The physical system to be controlled is described as a

linear time-invariant plant

¤𝑥p (𝑡) = 𝐴p𝑥p (𝑡) + 𝐵p𝑢 (𝑡) +𝐺p𝑑 (𝑡), 𝑡 > 0, 𝑥p (0) = 0, (2)

𝑦 (𝑡) = 𝐶p𝑥p (𝑡) +𝑤p (𝑡) (3)

with input𝑢 (𝑡) =
[
𝑢1 (𝑡) 𝑢2 (𝑡) . . . 𝑢𝑚 (𝑡)

]𝑇 ∈ R𝑚 , state𝑥p (𝑡) ∈
R𝑛p

and output 𝑦 (𝑡) =
[
𝑦1 (𝑡) . . . 𝑦𝑝 (𝑡)

]𝑇 ∈ R𝑝
. It is influenced

by the stochastic disturbance 𝑑 (𝑡) ∈ R𝑛
dist and measurement noise

𝑤p (𝑡) ∈ R𝑝
, whose random properties are stated later.

Controller. The plant is controlled by the discrete-time controller

𝑥
d
[𝑘 + 1] = 𝐴

d
[𝑘]𝑥

d
[𝑘] + 𝐵

d
[𝑘]𝑦 [𝑘] + 𝑓

d
[𝑘], 𝑥

d
∈ R𝑛

d ,

𝑢 [𝑘] = 𝐶
d
[𝑘]𝑥

d
[𝑘] + 𝑔

d
[𝑘], 𝑥

d
[0] = 0, 𝑘 ∈ N0 . (4)

Beyond a standard linear controller, such as discretized PID

or observer-based state feedback, this formulation also allows for

time-varying controllers and, through the constant terms 𝑓
d
[𝑘] and

𝑔
d
[𝑘], for tracking a deterministic reference trajectory.

The given form has no feedthrough, which means that the con-

trol signal 𝑢 [𝑘] only requires the previous measurement 𝑦 [𝑘 − 1].

This restriction is reasonable for control systems in which timing is

relevant, as it permits a computation time of slightly below one con-

trol period, while with feedthrough any computation time would

inevitably delay the output.

At this point, the time-variant formulation can be used to model

arbitrary timing-dependent execution, especially controllers that

compensate for varying delays, although this will be restricted later.

As it will be seen in the derivations, the restriction to linear plants

and controllers is crucial for the theoretical results that permit an

efficient computation of the QoC.

I/O timing. We assume a fixed nominal controller period of 𝑇

and asynchronous I/O behaviour, which means there is no special

synchronization hardware that ensures that all sampling and ac-

tuation happens exactly at the start of the control period. Such a

synchronization would require support for a global I/O clock signal,

which is typically not available in ADC/DAC units integrated in

microcontrollers and especially not for peripherals connected via

buses such as I2C or CAN.

The main reason for nondeterministic I/O time variation is in-

terference: resources of the real-time system, such as CPU and

communication buses for digital sensors, are shared between con-

trol, I/O and other tasks, causing delays if a resource is already in

use. While allocating fixed time slots based on worst-case execu-

tion times can solve this problem for simple systems, it is no longer

feasible with growing system complexity and flexibility, and highly

inefficient due to the high ratio between worst-case and average

execution time. This is one argument for mixed-critical systems or

dynamic allocation in general.

Nominally, the whole measurement vector𝑦 [𝑘] is sampled at 𝑘𝑇 .

From this, the control signal 𝑢 [𝑘 + 1] is computed and then emitted

at (𝑘+1)𝑇 . The real timing differs from this: The 𝑗-th control output

component is delayed by Δ𝑡u, 𝑗 [𝑘] (where negative values represent
a too early output), which can formally be stated as

𝑢 𝑗 (𝑡) = 𝑢 𝑗 [𝑘], 𝑘𝑇 + Δ𝑡u, 𝑗 [𝑘] < 𝑡 < (𝑘 + 1)𝑇 + Δ𝑡u, 𝑗 [𝑘 + 1] . (5)
Respectively, the sample 𝑦 𝑗 [𝑘] of the 𝑗-th sensor is acquired with a

time offset Δ𝑡y, 𝑗 [𝑘].
𝑦 𝑗 [𝑘] = 𝑦 𝑗 (𝑘𝑇 + Δ𝑡y, 𝑗 [𝑘]) (6)

The timing of input, computation and output and its dataflow

dependencies (double arrows) are shown in Figure 1. To avoid the

need of extra buffers in the realization and corresponding buffer

states in the resulting model, neighboring cycles 𝑘 and 𝑘 + 1 are
separated by a timing barrier 𝑇

b
[𝑘], which no event may cross:

𝑘𝑇 + Δ𝑡y, 𝑗 [𝑘]
𝑘𝑇 + Δ𝑡u, 𝑗 [𝑘]

}
<𝑇

b
[𝑘] <

{
(𝑘 + 1)𝑇 + Δ𝑡y, 𝑗 [𝑘 + 1]
(𝑘 + 1)𝑇 + Δ𝑡u, 𝑗 [𝑘 + 1]

∀𝑗, 𝑘 (7)

This barrier coincides with the controller computation and can

equivalently be described by a task with zero execution time and

four virtual dependencies as shown in Figure 1. For example, choos-

ing 𝑇
b
[𝑘] = (𝑘 + 1

2
)𝑇 limits all delays to |Δ𝑡... | < 𝑇

2
.

Without loss of generality the barrier is restricted to 𝑇
b
[𝑘] ∈(

𝑘𝑇, (𝑘 + 1)𝑇
)
, which means that each control period 𝑘 includes

its nominal time 𝑘𝑇 and all delays are shorter than one period.

To simplify the timing model, we assume that no two input or

output components are sampled at the same time, although this

restriction will be lifted later.
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𝑇𝑏 [𝑘 − 1] 𝑇𝑏 [𝑘 ]𝑘𝑇

𝑡
Δ𝑡... [𝑘 ]

dataflow

virtual dependency

Sample 𝑦 [𝑘 − 1] Sample 𝑦 [𝑘 ] Sample 𝑦 [𝑘 + 1]

Compute

𝑢 [𝑘 ]
Compute

𝑢 [𝑘 + 1]

Actuate 𝑢 [𝑘 ] Actuate 𝑢 [𝑘 + 1]Actuate 𝑢 [𝑘 − 1]

Figure 1: Timing model for I/O and computation with
dataflow dependencies, the timing barrier 𝑇

b
[𝑘] and its cor-

responding virtual dependencies.

Random Variables. The system is influenced by three indepen-

dent sources of randomness: disturbance 𝑑 (𝑡) ∈ R𝑛
dist , measure-

ment noise𝑤p (𝑡) ∈ R𝑝
and the timing sequence T .

The timing sequence T ≔ (𝑡𝑖 , 𝐴𝑖 , 𝑁𝑖 )𝑖∈N consists of I/O event

times 𝑡𝑖 and event matrices (𝐴𝑖 , 𝑁𝑖 ), which encode the type of event,
such as “sample the fifth sensor”, and a possibly timing-dependent

execution. A formal definition of 𝐴𝑖 and 𝑁𝑖 will be given later.

Disturbance and measurement noise are subsumed as noise

N ≔ (𝑑 (·), 𝑤p (·)), which formally is a tuple of functions. The

disturbance 𝑑 (𝑡) is modeled as average-free white noise with mean

E{𝑑 (𝑡)} = 0 and autocorrelation function

E
{
𝑑 (𝑡)𝑑𝑇(𝑡 + 𝜏)

}
= 𝐻 (𝑡)𝛿 (𝜏), 𝐻 (𝑡) ∈ R𝑛

dist
×𝑛

dist , (8)

where𝛿 is the Dirac delta functional. As amild technical assumption,

𝐻 (𝑡) is assumed to be piecewise constant and may only change

at event times 𝑡𝑖 , although this may be weakened by introducing

virtual (no-operation) events.𝐻 (𝑡) itself is deterministically known.

Continuous-time white noise is the idealization of a signal with

constant spectral density within a very large bandwidth. While it

greatly simplifies the calculations, a mathematically strict definition

of the delta functional and the differential equations containing it

is intricate. This topic is further elucidated in Section 9.1.1.

The measurement noise after sampling is assumed to be discrete-

timewhite noise. Its fictitious continuous-time source is the average-

free continuous-time noise𝑤p (𝑡) of constant and finite covariance:

E
{
𝑤p (𝑡)

}
= 0, E

{
𝑤p (𝑡)𝑤𝑇

p
(𝑡 + 𝜏)

}
=

{
𝑁p, 𝜏 = 0,

0, else.

(9)

The previous assumption that sensor channels are sampled one at a

time implies that all samples have uncorrelated noise and the matrix

𝑁p ∈ R𝑝×𝑝
can be chosen as diagonal without loss of generality.

Quality of Control. As a measure of the time-dependent QoC we

use the instantaneous quadratic cost

𝐽 (𝑡) = (𝑥p (𝑡) − 𝑥r (𝑡))𝑇 𝑄̃ (𝑥p (𝑡) − 𝑥r (𝑡))

+ (𝑢 (𝑡) − 𝑢r (𝑡))𝑇 𝑅̃(𝑢 (𝑡) − 𝑢r (𝑡)), (10)

which weights state and control deviations from a reference trajec-

tory 𝑥r (𝑡), 𝑢r (𝑡) with 𝑄̃ ∈ R𝑛p×𝑛p
and 𝑅̃ ∈ R𝑚×𝑚 , respectively. The

higher this cost, the worse the current QoC. The quadratic form

continuous-time
system

𝑥p (𝑡 )

𝑡

discrete-time
system

𝑥
d
(𝑡 )

𝑡

𝑥
d
[𝑖 ]

𝑥
d
[𝑖 + 1]

linear impulsive
system

𝑥 (𝑡 )

𝑡
𝑥 (𝑡−

𝑖
)

𝑥 (𝑡+
𝑖
) 𝑥 (𝑡−

𝑖+1 )

𝑥 (𝑡+
𝑖+1 )

discrete
discrete

continuous

Figure 2: A linear impulsive system allows for both
continuous-time and discrete-time dynamics.

allows derivations within a linear-quadratic stochastic framework

and is commonly used for optimal control (e. g., Riccati controller).

5 APPROACH FOR DETERMINISTIC TIMING
Our approach is based on reformulating the presented systemmodel

as a linear impulsive system (Section 5.1). Under the assumption

of deterministic timing, we time-discretize the system (Section 5.2)

and evaluate the QoC (Section 5.3). The results will subsequently be

extended to stochastic timing in Section 6. To improve readability,

main proofs are detached to Section 9.

5.1 Reformulation as Linear Impulsive System
To obtain a compact formulation of the closed-loop dynamics, we

introduce the total system state

𝑥 ≔
[
𝑥𝑇
p
(𝑡) 𝑥𝑇

d
(𝑡) 𝑦𝑇

d
(𝑡) 𝑢𝑇(𝑡) 1

]𝑇 ∈ R𝑛, (11)

which combines the continuous-time plant state 𝑥p with piecewise-

constant “discrete-time” states 𝑥
d
, 𝑦

d
and 𝑢 for controller, sensors

and actuators. To simplify the treatment of signals with nonzero

average, a constant 1 is added as the last state entry, yielding a total

order of 𝑛 = 𝑛p + 𝑛d + 𝑝 +𝑚 + 1. The block matrices given in the

following sections are divided according to these state components.

Using this state, the dynamics can be rewritten as a continuous-

time linear system with input 𝑑 that is interrupted by linear jumps

at the time instants 𝑡𝑖 , 𝑖 ∈ N, 𝑡𝑖+1 > 𝑡𝑖 > 0:

¤𝑥 (𝑡) = 𝐴𝑥 (𝑡) +𝐺𝑑 (𝑡), 𝑡 > 0, 𝑡 ≠ 𝑡𝑖 , 𝑥 (0) = 𝑥0, (12)

𝑥 (𝑡+𝑖 ) = 𝐴𝑖𝑥 (𝑡
−
𝑖 ) + 𝑁

1/2
𝑖

𝑣𝑖 ,

E{𝑣𝑖 } = 0, E
{
𝑣𝑖𝑥

𝑇(𝑡−𝑖 )
}
= 0, E

{
𝑣𝑖𝑣

𝑇
𝑖

}
= 𝐼 . (13)

As illustrated in Figure 2, combining continuous-time and discrete-

time states in one state vector 𝑥 results in this linear impulsive

system with both continuous and discrete dynamics. Here, the con-

tinuous dynamics (12) model the plant, while the discrete jumps (13)

represent sampling, actuation and the discrete-time controller.

The random increment per jump is factorized as 𝑁
1/2
𝑖

𝑣𝑖 to sep-

arate its time-varying covariance 𝑁𝑖 from the actual randomness,

which is represented by a random variable 𝑣𝑖 of unity covariance.

𝑁
1/2
𝑖

is defined by the Cholesky decomposition 𝑁
1/2
𝑖

𝑁
1/2
𝑖

𝑇
≔ 𝑁𝑖 ,
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which is not necessarily unique, but always exists because any

covariance matrix is symmetric and positive semidefinite [4].

In the following, the system matrices for the closed-loop control

are determined. From there on, only two cases need to be handled:

a discrete jump from 𝑥 (𝑡−
𝑖
) to 𝑥 (𝑡+

𝑖
) and the continuous transition

from 𝑥 (𝑡+
𝑖
) to the state 𝑥 (𝑡−

𝑖+1) just before the next jump. Together,

these two cases describe the evolution from 𝑥 (𝑡+
𝑖
) to 𝑥 (𝑡+

𝑖+1), which
equals a time discretization with time steps placed at the I/O events.

5.1.1 Continuous Dynamics. Between two events the discrete-time

states are constant, that is

d

d𝑡

[
𝑥𝑇
d
(𝑡) 𝑦𝑇

d
(𝑡) 𝑢𝑇(𝑡) 1

]𝑇
= 0. (14)

Combining this with the plant ODE (3) yields

𝐴 =


𝐴p 0 0 𝐵p 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


, 𝐺 =


𝐺p

0

0

0

0


. (15)

5.1.2 Discrete Events. The discrete transition and noise matrices

for the 𝑘-th control cycle are given in the following.

Sample. The 𝑗-th sensor’s value is acquired as

𝑦
d, 𝑗 (𝑡+𝑖 ) = 𝑒

𝑇
𝑗

(
𝐶p𝑥p (𝑡−𝑖 ) +𝑤p (𝑡−𝑖 )

)
, 𝑡𝑖 = 𝑘𝑇 + Δ𝑡y, 𝑗 [𝑘], (16)

where the unit vector 𝑒 𝑗 used to select one output channel is of

length 𝑝 . As the other entries of 𝑦
d
remain unchanged, it holds that

𝑦
d
(𝑡+𝑖 ) = (𝐼 − 𝑒 𝑗𝑒

𝑇
𝑗 )𝑦d (𝑡

−
𝑖 ) + 𝑒 𝑗𝑦d, 𝑗 (𝑡

+
𝑖 ) (17)

= (𝐼 − 𝑒 𝑗𝑒𝑇𝑗 )𝑦d (𝑡
−
𝑖 ) + 𝑒 𝑗𝑒

𝑇
𝑗 𝐶p𝑥p (𝑡

−
𝑖 )︸                                       ︷︷                                       ︸

𝐴̃𝑖𝑥 (𝑡−𝑖 )

+ 𝑒 𝑗𝑒𝑇𝑗 𝑤p (𝑡−𝑖 )︸        ︷︷        ︸
𝑣̃𝑖

. (18)

It can be shown that because of its stochastic properties, the mea-

surement noise𝑤p (𝑡−𝑖 ) and therefore also 𝑣𝑖 is independent of the

current state 𝑥 (𝑡−
𝑖
). Therefore (18) can be extended to the whole

state 𝑥 and noise vector 𝑣 so that it matches (13). Extending 𝐴̃𝑖 and

𝑁̃𝑖 = cov{𝑣𝑖 } accordingly results in the event matrices

𝐴𝑖 =


𝐼 0 0 0 0

0 𝐼 0 0 0

𝑒 𝑗𝑒
𝑇
𝑗
𝐶p 0 𝐼 − 𝑒 𝑗𝑒𝑇𝑗 0 0

0 0 0 𝐼 0

0 0 0 0 1


, (19)

𝑁𝑖 =


0

0

𝑒 𝑗𝑒
𝑇
𝑗
𝑁p𝑒 𝑗𝑒

𝑇
𝑗

0

0


. (20)

Compute. After all sensors have been sampled, their measure-

ments, which were saved in 𝑦
d
, are used to update the controller

state 𝑥
d
so that the new output is available for actuation:

𝑥
d
(𝑡+𝑖 ) = 𝑥d [𝑘 + 1] = 𝐴d

[𝑘]𝑥
d
(𝑡−𝑖 ) + 𝐵d [𝑘]𝑦d (𝑡

−
𝑖 ) + 𝑓d [𝑘] · 1

(21)

⇔ 𝐴𝑖 =


𝐼 0 0 0 0

0 𝐴
d
[𝑘] 𝐵

d
[𝑘] 0 𝑓

d
[𝑘]

0 0 𝐼 0 0

0 0 0 𝐼 0

0 0 0 0 1


, 𝑁𝑖 = 0. (22)

The update formally takes place at 𝑡𝑖 = 𝑇b [𝑘], which is the timing

barrier between the control cycles 𝑘 and 𝑘 + 1 as introduced in (7).

As the computation itself has no physical effect, the time of this

event is not relevant as long as the order of events is preserved.

Therefore, it may be merged with the preceding or successive event.

Actuate. Similarly to sampling, emitting the 𝑗-th actuator’s value

𝑢
d, 𝑗 (𝑡+𝑖 ) = 𝑒

𝑇
𝑗 (𝐶d [𝑘]𝑥d (𝑡

−
𝑖 ) +𝑔d [𝑘] · 1), 𝑡𝑖 = 𝑘𝑇 +Δ𝑡u, 𝑗 [𝑘], (23)

where the unit vector 𝑒 𝑗 is of length𝑚, is described by

𝐴𝑖 =


𝐼 0 0 0 0

0 𝐼 0 0 0

0 0 𝐼 0 0

0 𝑒 𝑗𝑒
𝑇
𝑗
𝐶
d
[𝑘] 0 𝐼 − 𝑒 𝑗𝑒𝑇𝑗 𝑒 𝑗𝑒

𝑇
𝑗
𝑔
d
[𝑘]

0 0 0 0 1


, 𝑁𝑖 = 0. (24)

Merging concurrent events. The restriction that no I/O events hap-

pen simultaneously can be lifted easily: To sample multiple sensors

𝑗1,2,... at once, 𝑒 𝑗 can be replaced with the matrix

[
𝑒 𝑗1 𝑒 𝑗2 . . .

]
.

The same holds for multiple actuators. If two events, such as sam-

pling and actuation, occur at the same time 𝑡1 = 𝑡2, they can be

merged into one with 𝐴𝑖 = 𝐴2𝐴1 and 𝑁𝑖 = 𝑁2 +𝐴2𝑁1𝐴
𝑇
2
.

5.2 Stochastic Discretization for
Deterministic Timing

For evaluating the performance without computing a multitude of

simulations with different random noise inputs, we use the time-

varying state covariance 𝑃 (𝑡) ≔ E
{
𝑥 (𝑡)𝑥𝑇(𝑡)

}
as internal repre-

sentation. For now, the timing will be assumed to be deterministic,

although this restriction will be removed in Section 6.

Start. The initial state is deterministically known as

𝑥 (0) = 𝑥0 =
[
0 . . . 0 1

]𝑇 ⇒ 𝑃 (0) = 𝑥0𝑥𝑇0 . (25)

The zero entries of 𝑥0 may be changed without loss of generality.

An extension to random initial states is also possible.

Discrete events. From the discrete system equation (13) and the

stochastic properties of 𝑣𝑖 , the covariance update can be derived as
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𝑃 (𝑡+𝑖 ) =E

{
𝐴𝑖𝑥 (𝑡−𝑖 )𝑥

𝑇(𝑡−𝑖 )𝐴
𝑇
𝑖 + 𝑁

1/2
𝑖

𝑣𝑖𝑣
𝑇
𝑖︸︷︷︸

E{·}=𝐼

𝑁
1/2
𝑖

𝑇

+ 𝑣𝑖𝑥𝑇(𝑡−𝑖 )︸    ︷︷    ︸
E{·}=0

𝐴𝑇𝑖 +𝐴𝑖 𝑥 (𝑡
−
𝑖 )𝑣

𝑇
𝑖︸   ︷︷   ︸

E{·}=0

𝑁
1/2
𝑖

𝑇

}
(26)

=𝐴𝑖𝑃 (𝑡−𝑖 )𝐴
𝑇
𝑖 + 𝑁𝑖 + 0 + 0 ≕ jump(𝑃 (𝑡−𝑖 ), 𝐴𝑖 , 𝑁𝑖 ) . (27)

Continuous dynamics. The continuous evolution from 𝑥 (𝑡+
𝑖
) to

𝑥 (𝑡−
𝑖+1) between two discrete jumps can be described by the discrete

covariance update equation

𝑃 (𝑡−𝑖+1) =Φ(𝑡
−
𝑖+1 − 𝑡

+
𝑖 ) 𝑃 (𝑡

+
𝑖 ) Φ

𝑇(𝑡−𝑖+1 − 𝑡
+
𝑖 )

+ Ψ(𝑡−𝑖+1 − 𝑡
+
𝑖 , 𝐻 (𝑡

+
𝑖 ))

≕elapse

(
𝑃 (𝑡+𝑖 ), 𝑡

−
𝑖+1 − 𝑡

+
𝑖 , 𝐻 (𝑡

+
𝑖 )

)
(28)

with Φ(Δ) = e
𝐴Δ, Ψ(Δ, 𝐻 ) =

∫ Δ

0

e
𝐴𝜏𝐺𝐻𝐺𝑇 (e𝐴𝜏 )𝑇 d𝜏 . (29)

The proof was detached to Section 9.1.2. This result makes use of

the technical assumption that the noise covariance 𝐻 (𝑡) remains

constant in the concerned timespan (𝑡𝑖 , 𝑡𝑖+1). A faster method of

calculating Φ and Ψ is obtained using the results of Van Loan [17]:

Φ = 𝑀𝑇
3
, Ψ = 𝑀𝑇

3
𝑀2 (30)

with

[
𝑀1 𝑀2

0 𝑀3

]
= exp

(
Δ

[
−𝐴 𝐺𝐻𝐺𝑇

0 𝐴𝑇

] )
, 𝑀1,2,3 ∈ R𝑛×𝑛 . (31)

By these calculations, the continuous covariance update can be

mapped to an equivalent discrete covariance update, as it holds that

jump(𝑃,Φ(Δ),Ψ(Δ, 𝐻 )) = elapse(𝑃,Δ, 𝐻 ) . (32)

Therefore, the result can be interpreted as a discrete-time stochastic

system. This discretization is not an approximation.

Combined result. Following the alternating chain of discrete

events (jump(·)) and continuous evolution inbetween (elapse(·)),
the covariance 𝑃 (𝑡) can be calculated at every event and, if needed,

also at arbitrary time points. This stochastic evaluation immedi-

ately yields the covariance without computing individual random

trajectories as in a Monte-Carlo simulation.

We denote the covariance evolution from 𝑡 = 𝑎+ to 𝑡 = 𝑏+ as

𝑃 (𝑏+) ≕ 𝐹
(𝑎,𝑏 ]

(
𝑃 (𝑎+),T

)
, 𝑏 > 𝑎, (33)

which is the combined result of the stochastic discretization pre-

sented in this section and, implicitly, the event matrices given in

Section 5.1. An implementation is given in Algorithm 1.

Two important properties of 𝐹 will be used later: Firstly, 𝐹 (𝑃,T)
is a quadratic matrix form in 𝑃 just as the functions jump(·) and
elapse(·) it is composed of, that is

𝐹
(𝑎,𝑏 ]
(𝑃,T) = 𝑀𝑇

1
(T , 𝑎, 𝑏) 𝑃 𝑀1 (T , 𝑎, 𝑏) +𝑀2 (T , 𝑎, 𝑏), (34)

where𝑀1,2 are matrix-valued functions.

Secondly, the evolution from 𝑡 = 0 to a later time 𝑡 = 𝑏+ can be

split at any intermediate time point 𝑡 = 𝑎+, where 𝑏 > 𝑎 > 0:

𝑃 (𝑏+) = 𝐹
(0, 𝑏 ]
(𝑥0𝑥𝑇0 ,T) = 𝐹

(𝑎,𝑏 ]

(
𝐹
(0, 𝑎]

(
𝑥0𝑥

𝑇
0
,T(0, 𝑎]

)
︸                  ︷︷                  ︸

𝑃 (𝑎+ )

,T(𝑎,𝑏 ]
)

(35)

Algorithm 1 Covariance computation for deterministic timing

Input: Start covariance 𝑃 (𝑡 = 𝑎+), time range (𝑎, 𝑏] with𝑏 > 𝑎 > 0

and list of events T = (𝑡𝑖 , 𝐴𝑖 , 𝑁𝑖 )𝑖 .
Output: Covariance 𝑃 (𝑡 = 𝑏+).
𝑡 ← 𝑎

𝑃 ← 𝑃 (𝑡 = 𝑎+)
for all 𝑖 = 1, 2, . . . ,∞ with 𝑡𝑖 ∈ (𝑎, 𝑏] do
𝑃 ← elapse(𝑃 , 𝑡𝑖 − 𝑡 , 𝐻 (𝑡+))
𝑡 ← 𝑡𝑖
𝑃 ← jump(𝑃 , 𝐴𝑖 , 𝑁𝑖 )

end for
if 𝑡 < 𝑏 {No event at the end time.} then
𝑃 ← elapse(𝑃 , 𝑏 − 𝑡 , 𝐻 (𝑏)) {Elapse the remaining time.}

end if
𝑃 (𝑡 = 𝑏+) ← 𝑃

This can be seen from the causal iterative structure of Algorithm 1,

in which 𝑃 can be interpreted as stochastic state: 𝑃 (𝑏+) only de-

pends on an initial value 𝑃 (𝑎+) and the subsequent timing T(𝑎,𝑏 ] ,
which is defined as the subsequence of the complete timing T with

𝑡𝑖 ∈ (𝑎, 𝑏]. In Equation (35) the timing dependencies are narrowed

because the evolution 𝐹 (𝑎,𝑏 ]only processes the events T(𝑎,𝑏 ] within
the considered time range.

5.3 QoC Evaluation
To simplify the following derivations, the QoC defined in (10) can

be rewritten as the quadratic form 𝐽 (𝑡) = 𝑥𝑇(𝑡)𝑄 (𝑡) 𝑥 (𝑡) with

𝑄 (𝑡) =


𝑄̃ 0 0 0 −𝑄̃𝑥r (𝑡)
0 0 0 0 0

0 0 0 0 0

0 0 0 𝑅̃ −𝑅̃𝑢r (𝑡)
−𝑥𝑇

r
(𝑡)𝑄̃ 0 0 −𝑢𝑇𝑟 (𝑡)𝑅̃ 𝑥𝑇

r
(𝑡)𝑄̃𝑥r (𝑡) + 𝑢𝑇r (𝑡)𝑅̃𝑢r (𝑡)


.

(36)

It should be noted that𝑄 (𝑡) is time-varying, but deterministically

known. The resulting cost 𝐽 (𝑡) is random. For a classical simulation,

one has to choose a particular random sequence for disturbance

and measurement noise. To obtain a representative value for com-

parison, we instead take the expectation E{𝐽 (𝑡)} with regard to

the noise N to obtain a noise-averaged, but time-dependent QoC.

This expectation can be computed from the covariance using

E{𝐽 (𝑡)} = E
{
𝑥𝑇(𝑡)𝑄 (𝑡) 𝑥 (𝑡)

}
= trace

(
𝑄 (𝑡) E

{
𝑥 (𝑡)𝑥𝑇(𝑡)

}
︸           ︷︷           ︸

𝑃 (𝑡 )

)
(37)

[21, p. 11]. The required covariance is calculated by Algorithm 1.

For ease of computation, the cost is evaluated at one discrete

sampling point per cycle. While other choices or finer discretiza-

tions are possible, we choose this point as the timing barrier 𝑇
b
[𝑘]

to ensure that timing changes cannot move the update of 𝑢 across

the evaluation point. Furthermore, it does not matter for this choice

whether 𝑇 +
b
[𝑘] or 𝑇 −

b
[𝑘] is considered, as this would only make a

difference for the controller state, which is not weighted in 𝑄 .

6 EXTENSION TO STOCHASTIC TIMING
In this section, we generalize the previous results to stochastic

timing. Therefore, we first address arbitrary stochastic timing in
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Section 6.1, which is then specialized for piecewise-independent

timing to enable a practical implementation in Section 6.2. To im-

prove readability, the main proof is again detached to Section 9.

6.1 General Stochastic Timing
Under the restriction of deterministic timing, the previous sections

give results for the covariance dynamics 𝐹 , which stochastically

describe the state evolution:

E
N

{
𝑥 (𝑡+)𝑥𝑇(𝑡+)

}
= 𝐹
(0, 𝑡 ]

(
E
N

{
𝑥 (0)𝑥𝑇(0)

}
,T

)
for known T (38)

Because noise N and timing T are independent, this can be gener-

alized as the conditional expectation

E
{
𝑥 (𝑡+)𝑥𝑇(𝑡+) |T

}
= 𝐹
(0, 𝑡 ]

(
E
{
𝑥 (0)𝑥𝑇(0) |T

}
,T

)
(39)

also valid for uncertain timing, which is the starting point for the

following derivation of a general result for nondeterministic timing.

For any function 𝑓 (𝛼, 𝛽) of random variables 𝛼, 𝛽 it holds that

E{𝑓 (𝛼, 𝛽)} = E
𝛼

{
E
𝛽
{𝑓 (𝛼, 𝛽) |𝛼}

}
(40)

[21, Lemma 2.2]. The evolution of 𝑥 (𝑡) depends on the noiseN and

the timing T . Therefore, the covariance dynamics for stochastic

timing can be split as

E
{
𝑥 (𝑡+)𝑥𝑇(𝑡+)

}
(40)

= E
T

{
E
N

{
𝑥 (𝑡+)𝑥𝑇(𝑡+) |T

}}
(41)

(39)

= E
T

{
𝐹
(0, 𝑡 ]

(
E
N

{
𝑥 (0+)𝑥𝑇(0+) |T

}
,T

)}
(42)

As the start state 𝑥 (0+) = 𝑥 (0) is certain, it holds that

E
{
𝑥 (0+)𝑥𝑇(0+) |T

}
= E

{
𝑥 (0+)𝑥𝑇(0+)

}
= 𝑥0𝑥

𝑇
0

(43)

and therefore

E
{
𝑥 (𝑡+)𝑥𝑇(𝑡+)

}
(42), (43)

= E
T

{
𝐹
(0, 𝑡 ]

(
𝑥0𝑥

𝑇
0
,T

)}
, (44)

which means that the covariance under timing uncertainty is the

timing-probability-weighted average of the covariance for certain

timing. Assuming discrete-valued timing, this allows for a first,

naive implementation by individually computing the covariance for

each possible timing sequence, as described in Section 5, and then

taking the weighted average. Unfortunately, the number of timing

sequences and therefore the complexity of this implementation

grows exponentially with the length of the analyzed timespan.

6.2 Piecewise-Independent Stochastic Timing
To allow for a feasible implementation, we assume that the timing

is independent across deterministically known separation points
𝑡
s,𝑘 , i. e., the timing T(0, 𝑡s,𝑘 ] up to and including each separation

point is independent of the timing T(𝑡s,𝑘 , 𝑡s,𝑘+1 ] after it.
Independent control periods are themost important case of piece-

wise-independent timing. Here, the timing barriers are separation

points (𝑡
s,𝑘 = 𝑇

b
[𝑘]). This assumption is motivated by the obser-

vation that dependencies are typically confined to a single control

period: For example, if two sensors cannot be sampled concur-

rently, their timing is dependent within one period. Consequently,

we excluded cross-period dependencies in the first analysis step

for performance reasons, since they are typically rare, indirect and

therefore weaker.

The new timing barriers allow iterating the covariance from one

separation point to the next, as will be derived in the following. We

reintroduce the previous notation 𝑃 (𝑡) ≔ E
{
𝑥 (𝑡)𝑥𝑇(𝑡)

}
, where the

expectation is now also computed with regard to random timing.

𝑃 (𝑡+
s,𝑘+1) = E

{
𝑥 (𝑡+

s,𝑘+1)𝑥
𝑇(𝑡+

s,𝑘+1)
}

(45)

= E
T

{
𝐹

(0, 𝑡s,𝑘+1 ]

(
𝑥0𝑥

𝑇
0
,T(0, 𝑡s,𝑘+1 ]

)}
. (46)

Inside the expectation, the timing is no longer random, but a de-

termined variable of integration. Therefore, (35) may be applied

to split the evolution at 𝑡
s,𝑘 , even though it was only derived for

deterministic timing:

𝑃 (𝑡+
s,𝑘+1)

(35)

= E
T(0, 𝑡

s,𝑘 ] ,T(𝑡s,𝑘 , 𝑡s,𝑘+1 ]

{
𝐹

(𝑡s,𝑘 , 𝑡s,𝑘+1 ]

(
𝐹

(0, 𝑡s,𝑘 ]

(
𝑥0𝑥

𝑇
0
,T(0, 𝑡s,𝑘 ]

)
,T(𝑡s,𝑘 , 𝑡s,𝑘+1 ]

)}
. (47)

As the timings before and after the separation point, T(0, 𝑡s,𝑘 ] and
T(𝑡s,𝑘 , 𝑡s,𝑘+1 ] , are independent, we get

𝑃 (𝑡+
s,𝑘+1) = E

T(𝑡
s,𝑘 , 𝑡s,𝑘+1 ]

{
E

T(0, 𝑡
s,𝑘 ]

{
𝐹

(𝑡s,𝑘 , 𝑡s,𝑘+1 ]

(
𝐹

(0, 𝑡s,𝑘 ]

(
𝑥0𝑥

𝑇
0
,T(0, 𝑡s,𝑘 ]

)
,T(𝑡s,𝑘 , 𝑡s,𝑘+1 ]

)}}
. (48)

Because 𝐹 (𝑃,T) is a quadratic form of 𝑃 , the expectation can be

moved inside of 𝐹 . The proof for this, which is given in Section 9.2,

relies on the linearity of controller and plant.

𝑃 (𝑡+
s,𝑘+1)

(67)

= E
T(𝑡

s,𝑘 , 𝑡s,𝑘+1 ]

{
𝐹

(𝑡s,𝑘 , 𝑡s,𝑘+1 ]

(
E

T(0, 𝑡
s,𝑘 ]

{
𝐹

(0, 𝑡s,𝑘 ]

(
𝑥0𝑥

𝑇
0
,T(0, 𝑡s,𝑘 ]

)}
︸                                    ︷︷                                    ︸

𝑃 (𝑡+
s,𝑘
) (44)

,T(𝑡s,𝑘 , 𝑡s,𝑘+1 ]

)}
(49)

The resulting iteration equation

𝑃 (𝑡+
s,𝑘+1) = E

T(𝑡
s,𝑘 , 𝑡s,𝑘+1 ]

{
𝐹

(𝑡s,𝑘 , 𝑡s,𝑘+1 ]

(
𝑃 (𝑡+

s,𝑘
),T(𝑡s,𝑘 , 𝑡s,𝑘+1 ]

)}
(50)

allows to compute the covariance and therefore the QoC iteratively

with linear complexity regarding the time horizon and the number

of timing possibilities within one separation period.

7 IMPLEMENTATION AND EXAMPLE
To verify the presented results, the stochastic QoC-model was im-

plemented in MATLAB and compared to a classical Simulink simu-

lation of the underlying system model from Section 4. The imple-

mentation and further examples are available at https://doi.org/10.

5281/zenodo.1145674, for future versions see http://qronos.de/.

https://doi.org/10.5281/zenodo.1145674
https://doi.org/10.5281/zenodo.1145674
http://qronos.de/
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7.1 Simulation
For the simulation, a fixed-step solver with a small step size of

𝑇sim ≪ 𝑇 was used and accordingly the I/O timing was restricted to

multiples of𝑇sim. Continuous-time white noise with E{𝑑 (𝑡)𝑑 (𝜏)} =
𝛿 (𝑡 −𝜏) was approximated by discrete-time white noise of variance

1/𝑇sim as per [16]. The model does not prescribe a noise probability

density, so we chose it as Gaussian for the simulation.

One simulation run corresponds to one realization of the random

process. To simulate the mean cost E{𝐽 (𝑇b [𝑘])}, which the QoC-

model can directly compute, but a deterministic simulation cannot,

𝑀 simulation runs with different pseudorandom noise and tim-

ing sequences were averaged. This was implemented by cyclically

repeating the process and taking the cyclic average.

7.2 Example Setup
As a system, we chose the linearized inverse pendulum, a widely

used benchmark for control systems. Its parameters

𝐴p =

[
0 1

𝜔2

0
−2𝜉𝜔0

]
, 𝐵p =

[
0

𝜔0/9.81

]
, 𝐺p =

[
0

1

]
, 𝐶p =

[
1 0

]
,

𝐻 = 10
−3, 𝑁p = 10

−6, 𝜔0 = 𝜋, 𝜉 = 0.5, 𝑇 = 0.2 (51)

are based on [2]. To keep the pendulum in the unstable upright po-

sition (𝑥r = 0, 𝑢r = 0), an observer-based state feedback controller

𝑥 [𝑘 + 1] = 𝐴
p,d𝑥 [𝑘] + 𝐵p,d𝑢 [𝑘] + 𝐿(𝑦 [𝑘] −𝐶𝑥 [𝑘]) (52)

𝑢 [𝑘] = 𝐾𝑥 [𝑘] (53)

is designed by pole placement for the discretized plant (𝐴
p,d, 𝐵p,d).

The continuous-time equivalent poles are chosen as {−10,−11} for
the controller and {−20,−22} for the observer, and discretized by

𝜆
d
= 𝑒𝜆𝑇 . It will be seen that this naive choice of very fast poles

compared with the plant poles of {1.94,−5.08} is problematic, as the

controller becomes especially sensitive to larger timing deviations.

The cost weighting factors 𝑄̃ = 550 · 𝐼 and 𝑅̃ = 0.8 were chosen

such that 𝑥p and 𝑢 contribute an equal part of the total cost, which

is 1 if no delays are present. The timing barrier was chosen as just

before the nominal I/O point 𝑘𝑇 .

The system was subject to deterministic piecewise-constant de-

lays in the range of [0,𝑇 /2) for sampling and actuation, which

could result from switching between execution modes with static

timing.

It should be noted that, for the sake of clarity, this example only

covers a limited set of features, but the results will nevertheless

show important effects. The source package contains additional ex-

amples for stochastic timing, time-varying disturbance parameters,

multiple inputs and outputs and reference trajectory tracking.

7.3 Results
The chosen sequence of delays and the resulting cost, which is the

opposite of QoC, are shown in Figure 3. The plot underlines the

importance of the dynamic aspect of the QoC: changing to worse

execution conditions, such as increased actuator delay at 𝑡 = 10,

has a very limited immediate effect, but instead causes a gradual

increase of cost, corresponding to a decrease of the QoC. Even

after better timing has been restored (𝑡 = 20), aftereffects of the

previous worse conditions still have to decay (𝑡 = 20 . . . 22) before

the QoC is as good as before. Additionally, the dynamics may be
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Figure 3: QoC evaluation for a controlled inverse pendulum
for time-varying actuation and sampling delays: comparison
between our model and a classical simulation.

counterintuitive in the sense that switching to better execution

timing may incur a short-time negative effect (𝑡 = 20). A static

approximation of QoC as a function of the timing, an assumption

often underpinning embedded control systems design [7, 9, 11],

fails to describe these memory-like behaviors, as it would instead

predict a piecewise-constant QoC for the given timing. A similar

result as for the actuator delay is obtained for varying sensor delays

(𝑡 = 30 . . . 40), although the impact on QoC is lower. This underlines

that each I/O component has to be treated separately and models

with only one delay parameter cannot be enough.

While the model was computed in less than one second, the

classical simulation with𝑇sim = 10
−4

and𝑀 = 3 ·104 runs took over
five hours on an Intel Core i7-4790 processor, which exemplifies

the computational efficiency gained by the stochastic evaluation.

Simulation andmodelmatchwithin a relative deviation
1
of |Δ𝐽

rel
| <

0.03, which can be attributed to the remaining randomness after

averaging a finite number of simulation runs.

8 CONCLUSION AND OUTLOOK
Conclusion. Overall, our results confirm that the previous assump-

tion of a simple, static relationship between timing and QoC is

highly questionable. With our evaluation, we were able to demon-

strate that the temporal progression and state history of the system

(i. e., scheduling and control) can have a massive impact on the re-

sulting Quality of Control. Moreover, our system model takes into

account MIMO systems with heterogeneous sensor and actuator

delays. It could, therefore, be used to extend existing approaches

with more limited timing models, such as [1].

For the first time, we offer a systematic approach for evaluating

the temporal progression of the QoC that accounts for both, vary-

ing environmental and execution conditions. We consider this a

1
defined as |Δ

rel
(𝑎,𝑏 ) | ≔ |𝑎 −𝑏 |/min( |𝑎 |, |𝑏 | ) for 𝑎,𝑏 ≠ 0, but also Δ

rel
(0, 0) ≔ 0.
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vital step towards an accurate usage of QoC as an evaluation metric

in highly dynamic and adaptive real-time settings, such as mixed-

criticality scheduling, and as a basis for further research on co-

design of control and real-time executive. Since our approach takes

traditionally-designed control systems as input, it can be applied

to existing systems for the retrospective evaluation of execution-

condition impact. In future research, it could be used to tailor adap-

tive real-time approaches by systematically limiting their adaptivity

so that they no longer jeopardize the overall QoC.

A further core aspect of our work is the stochastic evaluation of

the QoC model, which fundamentally differs from and outperforms

current brute-force simulation approaches. In this work, we have

limited our model to linear systems, which significantly simplifies

computation. While this is a restriction in principle, we consider it

a compelling starting point for the validation of our approach and

a good match for a broad range of practical applications.

Outlook. We are currently working on further reduction of the

computational effort, with the aim of using the model at runtime for

QoC-aware timing adaptation. In addition, we plan to generalize our

research to nonlinear systems, albeit at the cost of highly increased

computation time. This will allow addressing adaptive controllers,

which are inherently nonlinear as they depend on amplitude.

In this work, we derived our final result under the assumption

of piecewise-independent timing, which is appropriate for typical

I/O jitter that has no cause outside of the current control period.

However, a main limitation is that external timing disturbances

with longer time horizons cannot be represented. To address sys-

tems where such dependencies become significant, future research

will be concerned with extending the provided results towards

Markov-chain timing models. This extension is expected to yield a

time-varying generalization of [15], which would facilitate a direct

comparison of both frameworks.

9 PROOFS
In this section, two key results used in Sections 5 and 6 will be

derived: firstly, for the stochastic discretization, and secondly, for

the expectation of affine matrix functions.

9.1 Stochastic discretization
9.1.1 Notes about the delta functional. Modeling the disturbance as

white noise greatly simplifies the calculations, because it is uncor-

related at different time points. However, the infinite signal power

of white noise makes the system description (12) a stochastic dif-

ferential equation, which gives rise to unnecessary mathematical

difficulties. As an engineer’s approach, the delta functional 𝛿 (𝑡) can
be seen as shorthand for a short rectangular impulse of area 1,

𝛿 (𝑡) =
{
ℎ, |𝑡 | < 1

2ℎ
0, otherwise

with ℎ →∞, (54)

or any other function whose integral approaches∫ 𝑡1

𝑡0

𝛿 (𝑡) d𝑡 →
{

1, 𝑡0 < 0 < 𝑡1
0, 0 ∉ (𝑡0, 𝑡1)

for 𝑡0 < 𝑡1 . (55)

The limit ℎ →∞ then has to be taken after inserting the defini-

tion (54) into the system equations, which roughly corresponds to

exciting the system with bandwidth-limited noise of a bandwidth

significantly larger than the closed-loop bandwidth.

The “sifting property” (55) implies the two-dimensional version∫ 𝑡2

𝑡1

∫ 𝑡4

𝑡3

𝑓 (𝛼) 𝑔(𝛽) 𝛿 (𝛼−𝛽) d𝛼 d𝛽 =

∫
(𝑡1,𝑡2 )∩(𝑡3,𝑡4 )

𝑓 (𝜏) 𝑔(𝜏) d𝜏

for 𝑡1 < 𝑡2 and 𝑡3 < 𝑡4 . (56)

9.1.2 Stochastic Discretization for Deterministic Timing. For the
known start and end time 𝑡0, 𝑡1, the continuous system

¤𝑥 (𝑡) = 𝐴𝑥 (𝑡) +𝐺𝑑 (𝑡) (57)

has the general solution

𝑥 (𝑡1) = e
𝐴(𝑡1−𝑡0 )𝑥 (𝑡0)+

∫ 𝑡

𝑡0

e
𝐴(𝑡1−𝜏 )𝐺𝑑 (𝜏) d𝜏, 𝑡1 > 𝑡0 ≥ 0. (58)

It is excited by independent white noise 𝑑 (𝑡) with constant covari-

ance within the time range:

E{𝑑 (𝑡)} = 0, E
{
𝑑 (𝑡)𝑑𝑇(𝑡 + 𝜏)

}
= 𝐻𝛿 (𝜏) for 𝑡0 < 𝑡 < 𝑡1 (59)

Taking the covariance of the general solution yields

cov{𝑥 (𝑡1)} = E
{∫ 𝑡1

𝑡0

e
𝐴(𝑡1−𝜏 )𝐺𝑑 (𝜏) d𝜏

∫ 𝑡1

𝑡0

𝑑𝑇(𝜏)𝐺𝑇 (e𝐴(𝑡1−𝜏 ) )𝑇 d𝜏

+ e𝐴(𝑡1−𝑡0 )𝑥 (𝑡0)𝑥𝑇(𝑡0) (e𝐴(𝑡−𝑡0 ) )𝑇 +𝑀 +𝑀𝑇
}
,(60)

where the mixed term

𝑀 =

∫ 𝑡1

𝑡0

e
𝐴(𝑡1−𝜏 )𝐺𝑑 (𝜏) d𝜏︸                       ︷︷                       ︸

𝑀1

𝑥𝑇(𝑡0) (e𝐴(𝑡1−𝑡0 ) )𝑇 (61)

has zero expectation as we will show now by splitting off inde-

pendent factors: 𝑀1 = 𝑥 (𝑡1) |𝑥 (𝑡0 )=0 is the random influence of

noise 𝑑 (𝑡) on the state 𝑥 (𝑡1). As 𝑑 (𝑡) is white noise, this influence
is independent of the initial state 𝑥 (𝑡0). For deterministic 𝑡0, 𝑡1 we

get

E{𝑀} =
∫ 𝑡1

𝑡0

e
𝐴(𝑡1−𝜏 )𝐺 E{𝑑 (𝜏)}︸   ︷︷   ︸

0 (59)

d𝜏 E
{
𝑥𝑇(𝑡0)

} (
e
𝐴(𝑡1−𝑡0 )

)𝑇
= 0.

(62)

Continuing the calculations from (60), it follows that

cov{𝑥 (𝑡1)} =e𝐴(𝑡1−𝑡0 )cov{𝑥 (𝑡0)} (e𝐴(𝑡1−𝑡0 ) )𝑇

+
∫ 𝑡1

𝑡0

∫ 𝑡1

𝑡0

e
𝐴(𝑡1−𝜏 )𝐺 E

{
𝑑 (𝜏)𝑑𝑇(𝛾)

}
︸           ︷︷           ︸
𝐻𝛿 (𝜏−𝛾 ) (59)

·𝐺𝑇 (e𝐴(𝑡1−𝛾 ) )𝑇 d𝜏 d𝛾 . (63)

With Δ ≔ 𝑡1 − 𝑡0, the 2D sifting property (56) leads to

cov{𝑥 (𝑡1)} =e𝐴(𝑡1−𝑡0 )cov{𝑥 (𝑡0)} (e𝐴(𝑡1−𝑡0 ) )𝑇

+
∫ 𝑡1

𝑡0

e
𝐴(𝑡1−𝜏 )𝐺𝐻𝐺𝑇 (e𝐴(𝑡1−𝜏 ) )𝑇 d𝜏 (64)

= e
𝐴Δ︸︷︷︸

≕Φ(Δ)

cov{𝑥 (𝑡0)} (e𝐴Δ)𝑇︸  ︷︷  ︸
Φ𝑇 (Δ)

+
∫ Δ

0

e
𝐴𝜏𝐺𝐻𝐺𝑇 (e𝐴𝜏 )𝑇 d𝜏︸                           ︷︷                           ︸

≕Ψ(Δ)
(65)

=Φ(Δ)cov{𝑥 (𝑡0)}Φ𝑇(Δ) + Ψ(Δ) . (66)
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This matches the result given in [21, pp. 86 ff.] for systems with

constant sampling period Δ.

9.2 Expectation of an affine matrix function
Theorem 9.1. Anymatrix-valued function 𝐹 : R𝑛×𝑛×Y ↦→ R𝑛×𝑛

that is affine in its first argument 𝑋 ∈ R𝑛×𝑛 and may possess an
arbitrary second argument 𝑦 ∈ Y fulfills

E
𝑋,𝑦
{𝐹 (𝑔(𝑋 ), 𝑦)} = E

𝑦

{
𝐹

(
E
𝑋
{𝑔(𝑋 )} , 𝑦

)}
(67)

if 𝑋,𝑦 are independent random variables (or 𝑦 is deterministic) and
therefore

Pr(𝑋 |𝑦) = Pr(𝑋 ) (68)

holds. Here, 𝑔(𝑋 ) : R𝑛×𝑛 ↦→ R𝑛×𝑛 is an arbitrary function.

We define “affine” in this context that 𝐹 can be written as

𝐹 (𝑋,𝑦) = unvec(𝑀 (𝑦) vec𝑋 ) +𝐶 (𝑦) (69)

with the matrices 𝑀 (𝑦) ∈ R𝑛2×𝑛2

and 𝐶 (𝑦) ∈ R𝑛×𝑛
, which is a

generalization of the scalar case 𝑓 (𝑥) =𝑚𝑥 + 𝑐 . Here,

vec

[
𝑣1 · · · 𝑣𝑛

]︸             ︷︷             ︸
𝑉 ∈R𝑎×𝑏

≔
[
𝑣𝑇
1
· · · 𝑣𝑇𝑛

]𝑇
, (70)

is the vectorization operator, which concatenates the column vec-

tors 𝑣𝑖 of 𝑉 into one column vector. The corresponding inverse

operator is defined by unvec(vec(𝑉 )) ≔ 𝑉 .

A particular case of (69) used in this paper is the quadratic form

𝐹 (𝑋,𝑦) = 𝐴𝑇(𝑦)𝑋𝐴(𝑦) + 𝐵(𝑦), 𝐴(𝑦), 𝐵(𝑦), 𝑋 ∈ R𝑛×𝑛 . (71)

This can be seen from the relation

vec(𝐴𝑇𝑋𝐴) = (𝐴𝑇 ⊗ 𝐴𝑇 ) vec𝑋, (72)

where ⊗ is the Kronecker product [4].

Proof. To prove (67) under the assumption (68), we split the

expectation using (40) and then use the linearity of vec, unvec and

the matrix multiplication, which permits

unvec

(
𝑀 (𝑦) vec

(∑︁
𝑖

𝛼𝑖𝑋𝑖

))
=

∑︁
𝑖

𝛼𝑖 unvec(𝑀 (𝑦) vec𝑋𝑖 ) (73)

with the dimensions as stated above and 𝛼𝑖 ∈ R.

E
𝑋,𝑦
{𝐹 (𝑔(𝑋 ), 𝑦)} (40)= E

𝑦

{
E
𝑋
{𝐹 (𝑔(𝑋 ), 𝑦) |𝑦}

}
(74)

(69)

= E
𝑦

{
E
𝑋
{unvec(𝑀 (𝑦) vec𝑔(𝑋 )) +𝐶 (𝑦) |𝑦}

}
(75)

= E
𝑦

{∑︁
𝑖

Pr(𝑋 = 𝑋𝑖 |𝑦) · (unvec(𝑀 (𝑦) vec𝑔(𝑋 )) +𝐶 (𝑦))
}

(76)

(68),(73)
= E

𝑦

{
unvec

(
𝑀 (𝑦) vec

(∑︁
𝑖

Pr(𝑋 = 𝑋𝑖 ) 𝑔(𝑋𝑖 )︸                     ︷︷                     ︸
E𝑋{𝑔 (𝑋 ) }

))

+
∑︁
𝑖

Pr(𝑋 = 𝑋𝑖 )︸             ︷︷             ︸
1

𝐶 (𝑦)
}

(77)

(69)

= E
𝑦

{
𝐹

(
E
𝑋
{𝑔(𝑋 )} , 𝑦

)}
(78)

□
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