
From Intent to Effect:
Tool-based Generation of Time-Triggered Real-Time

Systems on Multi-Core Processors
Florian Franzmann∗, Tobias Klaus∗, Peter Ulbrich∗,

Patrick Deinhardt∗, Benjamin Steffes∗, Fabian Scheler†, Wolfgang Schröder-Preikschat∗,

∗Chair of Distributed Systems and Operating Systems
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany

{franzman,klaus,ulbrich,deinhardt,steffes,wosch}@cs.fau.de

†Process Industries and Drives
Siemens AG, Nuremberg, Germany
fabian.scheler@siemens.com

Abstract—Although the manual creation of time-triggered
schedules for multi-core real-time systems can be a daunting task,
state-of-the-art scheduling algorithms are far from being widely
used. This suggests that the availability of sound algorithms
is only one side of the story: real-time systems have to be
groomed substantially before they can serve as input to available
algorithms. Moreover, systems engineers struggle with the tem-
poral effects of their design decisions, in addition to the intended
timing properties. Therefore, we believe that appropriate tools
are the other side of the story.

In this paper, we present the multicore extension of the Real-
Time Systems Compiler, a compiler-based tool that analyses given
event-triggered real-time systems and transforms them into time-
triggered equivalents. We focus on the challenges and pitfalls
in the transition from theory to practical implementation and
present concrete solutions to resolve them. Existing algorithms
need to be adapted for performance and, at model level, bound
together appropriately to be applicable, for example. Our ex-
periments substantiate the effectiveness and scalability of our
approach, even for large tasks sets. Finally, lessons learned give
an insight into implementation and hardware details and their
impact on schedulability.

I . Introduction

For decades, real-time-system engineering was marked by
the two opposing development paradigms: event and time
triggered (not to be confused with clock driven or periodic tasks
sets, where online scheduling and preemption is mandatory).
The latter, although much less common, indisputably has its
merits when it comes to safety requirements and hard temporal
guarantees. The main reason being the absence of hardware
events barring the timer interrupt: external signals are solely
polled. Accordingly, the resulting task set is fixed at runtime and
precedences as well as mutual exclusions are resolved offline
by a feasible job arrangement and schedule. Consequently, the
real-time operating system (RTOS) itself becomes minimalistic.
It lacks typical facilities for online synchronisation as well as
coordination and basically boils down to a simple dispatcher,
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processing a static schedule table. Hence, the runtime overhead
induced by the RTOS is determined. Even more important,
the analysis of the job’s individual worst case execution times
(WCETs) is dramatically simplified as unplanned preemption
and interrupts are excluded by design. Consequently, overly
pessimistic upper bounds due to cache or pipeline invalidation
can be omitted.
However, the time-triggered approach has some major dis-

advantages, too. First and foremost, the a-priori knowledge
necessary for creating a static schedule in the first place. This,
for example, includes WCETs and minimal interarrival time of
all jobs – a difficult and labour-intensive venture in principle.
Moreover, the static schedule has to be revised with every
software or hardware change (e. g., number of jobs or their
WCET). Consequently, time-triggered systems are harder to
evolve and adapt to changing requirements, a key skill of event-
triggered systems with online scheduling and task coordination.

Traditionally, safety-striving domains such as the avionics in-
dustry rely on the time-triggered paradigm (e. g., ARINC653),
as the costs of damage or loss set off development costs. Here,
the ruling paradigm is early compartmentalization in the time
domain, assigning slots in the hyperperiod to each application.
Contrarily, the automotive domain, as representative of mass in-
dustry, faces a tremendous cost and time-to-market pressure as
well as fast product cycles. Here, the event-triggered paradigm
is predominant, with the time-triggered approach employed
only in a few special cases. In the past, each function in a car
was rendered by a single Electronic Control Unit (ECU), which
made it relatively easy to isolate and satisfy safety requirements.
Recently two important factors have changed: On the one hand,
autonomous driving is just around the corner, making software
even more complex and more safety-critical. On the other hand,
multi-core embedded processors have hit the market, supplying
an amount of processing power unthinkable in the past.

Market pressure forces the industry to seize this opportunity
by consolidating ECUs. Therefore, software of lower safety
requirements now co-resides with applications of high safety
demands, thus increasing interference, complexity and the



certification hurdle at the same time. Yet, multi-core real-
time systems still pose a challenge to systems engineers and
researchers. Here, there seems to be a strong focus on event-
triggered systems and constructive means, such as resource
protocols and scheduling algorithms. Advantageously, this
preserves development freedom and leaves the developers in
their natural (event-driven) habitat.
In spite of it’s inflexibility, the time-triggered paradigm

offers beneficial properties especially in multi-core settings:
Offline scheduling allows for an optimal partitioning of jobs.
Furthermore, synchronising schedule tables among cores is
almost trivial in systems with a common clock. Hence, inter-
core synchronisation and resource contention can be excluded
once again. This also eliminates the need for complex RTOS
facilities, shared data structures and critical sections.

Neither do we envision further constructive methods for the
event-triggered approach, nor are we proposing to switch to
the time-triggered development paradigm. To the contrary, we
think that it makes sense to continue to use the much easier
to develop event-triggered approach. Instead, we posit a third
way, an approach relying on an analytical, automated, compiler-
based, transformative process converting event-triggered real-
time systems into multi-core time-triggered ones, which, by
delaying design decisions preserves degrees of freedom for the
developer. Such a compiler-based tool would allow systems
integrators to forgo the inflexible time-triggered scheme and
instead perform the – now automated – compartmentalization
step later in the development cycle.
This idea, which we have implemented for single-core

processors in our prototypical Real-Time Systems Compiler
(RTSC) [1], comes with an abundance of advantages: First,
and most importantly, engineers can continue to use their
accustomed development process, regardless of whether this
process is model-based or results in a hand-written real-time
application. The RTSC accepts the source code of an applica-
tion as input. Therefore, it is relatively easy to consolidate
legacy-real-time applications for which the source code is
available. The resulting time-triggered systems are verifiable
by construction, which means that once the necessary real-
time schedule has been determined, it has also been proven
that it will observe all deadlines. Furthermore, the absence
of explicit synchronization, interrupts (except the timer), and
online scheduling, makes it feasible to give tight upper bounds
for the WCET. Finally, the small footprint of a time-triggered
RTOS makes it relatively easy to perform proofs of correctness
of the execution environment itself.

A. Problem Statement
The development processes in industry share some striking

properties: Certain design decisions like the choice of target
hardware and the real-time paradigm employed are made early
on and from then on are almost irreversible. Vast amounts of
legacy real-time software exist that have been written following
the event-triggered paradigm, and, since event-triggered real-
time systems are not trivially composable, this software has
to be rewritten if it is to be consolidated with software of

higher safety requirements. Therefore, supporting tools are
required that remove the need to completely rewrite real-
time systems and instead are capable of proving real-time
properties and generating time-triggered multi-core systems
that are equivalent in functionality to the single-core legacy
software. Appropriate algorithms for solving the problems of
assigning jobs to processing nodes and scheduling them have
been around for at least the past two decades. However, no wide-
spread adoption of these algorithms in the systems community
has happened, which is why the state of the art still is hand
porting application software as stronger safety requirements
arise. This suggests that availability of algorithms is only part
part of the solution – one missing piece here seems to be proper
tool support. Our contributions in this paper therefore are:

• The extended compiler-based RTSC transformation tool
which creates time-triggered systems for multi-core pro-
cessors from event-triggered input using an intermediate
representation (IR) that captures all relevant real-time
properties.

• An implementation of the assignment algorithm by
Peng et al. [2] and the task and message scheduling
algorithm by Abdelzaher et al. [3]. Disclosure of effects
and pitfalls when deploying these theoretically sound
algorithms in the field of real-time system engineering.

• Grooming these algorithms for efficiency and a perform-
ance evaluation for a large number of realistic task sets.

• Practical measurements conducted on the Infineon Aurix
multi-core target hardware.

II . Background
This section first gives an overview of key concepts and

then presents the basic internals of the RTSC, a compiler-
based tool that performs a structural decomposition of real-time
systems. This decomposition results in an IR appropriate for
transforming non-functional properties of real-time systems.

A. Overview of the RTSC
The RTSC is a tool that extracts an abstract IR called

Atomic Basic Block (ABB) graphs from given implementations
of real-time applications and transforms and analyses non-
functional system properties. Based on the LLVM [4], the
RTSC consists of about 53,000 lines of C++ code, ≈4,300
lines of which make up the scheduler and processing node
assigner implementations discussed in this work. The compiler
processes the source code of a real-time application and an
additional system description. In general the RTSC is not
limited to one programming language but accepts any input the
LLVM can process. Similar to most compilers, the RTSC is
structured in terms of a Front-End, a Middle-End and a Back-
End. The Front-End extracts independent ABB graphs from
the implementation of the source real-time system. The Middle-
End uses its own high-level WCET analysis implementation in
combination with AbsInt’s aiT for the low-level analysis, and
maps ABB graphs to the – still abstract – target executive. In
order to do so, it calculates an offline assignment of ABBs
to processing nodes and per-processing-node time-triggered



schedules. The RTSC’s Back-End generates a skeleton that
calls the application’s event handlers at pre-defined points in
time. The application itself is emitted as machine code for
the target platform and OS. The resulting executable real-time
system has to satisfy two invariants: On the one hand, all
structural properties of the source real-time system – like order
of precedence and mutual exclusion – must be observed. On
the other hand, the generated real-time system must abide by
real-time properties, namely release times and deadlines.

B. Intermediate Representation
The first invariant can be complied with if the real-time

system is transformed into an IR that encompasses the ap-
plication’s control and data flow as well as all synchronizing
interactions with the OS. The RTSC derives such an IR –
which we call ABB graphs – from the application’s source
code. Using synchronizing system calls as boundaries, the ap-
plication’s basic blocks are aggregated and split to form ABBs.
Individual ABBs are connected by edges, tracing the basic
block graph’s flow of control. In the next step, all OS-dependent
system calls, like GetResource, ReleaseResource, ActivateTask,
. . . , are purged from the ABB graphs and replaced by directed
(activations) and undirected (mutual exclusion) dependency
edges. This is important since the target OS’s system calls
may be different from the source OS’s. Only if all edges
leading to an ABB have been satisfied does this ABB become
ready for execution, ensuring that each ABB can be executed
independently of the rest of the system once its dependencies
have been fulfilled.
To illustrate the ABB concept, Figure 1 depicts an imple-

mentation pattern typical in embedded real-time systems: an
event handler consisting of an ISR triggered by a physical event,
and a task, activated by the ISR. The ISR fetches a single byte
from the serial interface and assembles the message. Whenever
a message is complete, the task is activated by a system call.
Thus, a directed dependency is created between the ISR and the
delayed message handler by means of the underlying OS. This
relationship is captured by a global control flow dependency
within the ABB graph. Since the task contains only a single
system call at its end, only ABB4 is created here. However, the
ISR issues a system call that creates a directed dependency to
the task. Therefore ABB2 ends here and in total three ABBs
are necessary to model the ISR. Note that the actual system
calls – though for better traceability depicted within the ABBs –
are not part of the IR – any information included in these calls
is represented by dependencies among ABBs.

C. System Model
The second invariant is satisfied by means of the RTSC’s

system model, which makes all timing-related properties avail-
able. By definition real-time systems have to react to external
events, which can be periodic or non-periodic. Periodic events
are annotated with a period while non-periodic events carry a
minimal interarrival time and a jitter. All events can have soft,
firm or hard deadlines. The entities handling these events are
called tasks and consist of one or more subtasks. Subtasks

ISR(SerialByte)

uint8_t rec = rs232_get();
msg_addTo(msg, rec);

if(isComplete(msg)) {ABB1

buffer_ins(buf, msg);
msg = pool_getfree(msgPool);
ActivateTask(MsgHandler); ABB2

} return; ABB3

TASK(MsgHandler)

Message *msg = NULL;

InitHandler();

msg = buffer_get(buf);
msg_prepare(msg);
handle(msg);

TerminateTask(); ABB4

l

Figure 1. Atomic Basic Blocks tracing CFGs and connecting an ISR to a
task by means of a directed dependency.

may be connected by directed (activations) and undirected
dependencies (mutual exclusion).

D. Executive
An important goal of the RTSC is the ability to generate

solutions for hard real-time problems, meaning that an un-
handled missed deadline may have catastrophic consequences.
Therefore the RTSC has to generate real-time systems that are
either easy to verify or verified-by-construction, an objective
that can only be achieved if the real-time system’s executive is
also verifiable. Since verification becomes easier if the system
that is to be verified is straightforward, the executive has to be
as simple as possible. Thus we are aiming for a time-triggered
executive, which in contrast to a clock-driven executive [5] does
not allow for any interrupts other than the timer – physical
events therefore must be perceived by polling. No facilities for
mutual exclusion and directed dependencies are provided and
hence these properties of the application are enforced implicitly
by the generated schedule. As a consequence the code base
of the executive is small and it becomes possible to calculate
tight upper bounds for WCETs.

The combination of system model and ABB graphs allows us
to describe any real-time system in an abstract way, independent
of the underlying real-time architecture. This is necessary
in order to perform arbitrary transformations on the real-
time system while still guaranteeing all deadlines. Overall the
RTSC is a solid foundation for the generation of time-triggered
multi-core systems. The ABB graphs feature an IR that is
independent of architectural details and easy to extend.

III . Approach

Recent years have seen quite some research into multi-
core real-time systems. However, most approaches perform
scheduling at runtime [6], [7], making proofs of correctness in
the presence of directed and undirected dependencies infeasible.
Compiler techniques have been used in real-time systems for
program slicing [8], [9] to improve schedulability, and to inject
wrappers for porting applications to the logical execution time
model. Hierarchical event streams have been extracted from
control flow graphs (CFGs) [10], however, this approach is
only partially automated. Many approaches require domain-
specific languages as input [11], [12], forcing the real-time
developer to abandon established development paradigms and



thus legacy code. Others generate time-triggered systems from
event-triggered ones [13] but operate on the coarse-granular
task level or are limited to task sets with harmonic periods [14].
In contrast, the RTSC strives to
1. support directed (activations and events flags) and undir-

ected dependencies (mutual exclusion),
2. apply a structural decomposition of the real-time system

into ABBs, instead of the functional one dictated by
the application design process, allowing for arbitrary
transformations while honouring real-time constraints,

3. employ optimal processing node assignment and schedul-
ing algorithms,

4. adapt these algorithms where necessary to handle the fine-
grained load generated by the structural decomposition,

5. transform the ABBs to allow the algorithms to reach
meaningful results, and

6. consolidate legacy applications regardless of implementa-
tion details.

In general, the RTSC already provides the correct representa-
tion of the real-time system and the means for extracting the ne-
cessary information from the real-time system implementation.
The rest of this section will present the steps necessary to allow
the RTSC to fulfil all of the abovementioned requirements in
a multi-core setting.

a) Middle-End: The goal of the RTSC is to assign and
schedule an arbitrary static workload of interdependent real-
time tasks on the processors of a multi-core system. We assume
that missed deadlines have catastrophic consequences for the
real-time system and its environment. Structural decomposition
into ABBs results in more fine-grained jobs that have to be as-
signed and scheduled. This means that the processing resources
required for assignment and scheduling may be much higher
than for traditional task-level loads. However, since scheduling
and assignment are performed offline, vast resources are avail-
able and therefore choosing optimal algorithms makes sense.
To extend the RTSC toward multi-core targets, two additional
components in the middle-end are required: An algorithm that
assigns ABBs to processing cores and a scheduling algorithm
that creates a dispatcher table for each core. Both algorithms
must be optimal and handle precedence constraints and mutual
exclusion introduced by interaction between individual ABBs.
Since scheduling under precedence constraints is an NP-hard
problem, both algorithms should exhibit acceptable behaviour
w. r. t. run time as well as memory consumption.

Most of the algorithms in recent literature are not op-
timal [15] or do not support directed dependencies [16],
[17] and are therefore unsuitable for our workload. But-
tazzo et al. [18] found that their algorithm is optimal but does
not scale beyond 20 tasks. The scheduling and assignment
algorithms finally chosen for the RTSC implement partitioned
EDF scheduling in combination with Branch and Bound (B&B)
to ensure optimality. Although in general B&B decreases com-
putational complexity, optimal scheduling algorithms remain
challenging in this regard. In Section IV-B we will show how
we handled this problem.

Assignment: The RTSC’s assignment pass implements
an algorithm by Peng et al. [2]. The first solution generated by
the algorithm is an empty assignment. This solution is refined
successively along the search tree by assigning one more task
to each processing node. Inner nodes of the tree are incomplete
and only leafs are candidates for solutions. The cost function
for solutions is the maximum Normalized Task Response Time
(NTRT) of all its tasks, which is calculated from the task’s
completion time c, release time r and absolute deadline d as
c̄ := c−r

d−r . In each solution, the algorithm adjusts the release
time of tasks so that all precedence constraints are respected
and then arranges the tasks in non-decreasing order of their
release times, creating disjoint blocks of jobs. Then the lowest-
cost task is removed from its block and the remaining tasks
in this block are rearranged in order of their modified release
times, respecting all precedence constraints, and the removed
block is reinserted into the now freed-up space. These steps are
repeated for all tasks. In addition to the NTRT a lower bound
for the load caused by unallocated tasks is taken into account.

Scheduling: For scheduling the RTSC uses the algorithm
by Abdelzaher et al. [3]. In contrast to the assignment al-
gorithm, the initial solution is already complete, containing
all tasks that have to be scheduled, and respects their directed
and undirected dependencies. If this solution is also feasible,
the search ends here. Otherwise refined solutions are generated
by and by, moving late tasks to earlier points in the schedule.
Solutions in the search tree are generated by scheduling all tasks
using the EDF with Deadline Inheritance (EDF-DI) algorithm.
The cost function is the maximum lateness of all tasks. A
lower bound for the cost of refined solutions is calculated by
scheduling a simplified version of the load that does not contain
any dependencies spanning multiple processing nodes.

b) Back-End: The RTSC’s back-end’s job is to transform
the per-processing-node schedules generated by the middle-end
into dispatcher tables for target hardware and OS. Currently, the
RTSC supports two multi-core time-triggered back-ends: The
first generates tables for time-triggered AUTOSAR, which we
then deploy on an Infineon Aurix processor using the ERIKA
Enterprise OS. Since AUTOSAR expects a master/slave multi-
core environment, the code generated by the RTSC uses one
of the cores of the execution platform to kick-start the other
cores. From then on, the cores run independently of each
other. No injection of OS-specific system calls is necessary for
time-triggered execution since any synchronization required is
enforced through the dispatcher table. The second back-end
generates time-triggered code that runs on POSIX-compatible
OSes. Although POSIX does not standardize a time-triggered
RTOS API, it is possible to execute code in a clock-driven
fashion. The RTSC’s POSIX back-end uses POSIX timers to
execute dispatcher tables, and the thread-affinity mechanism
to bind jobs to processing cores. A semaphore for each core
re-synchronizes execution at the start of the hyperperiod.

IV. The Implementation and Its Consequences
In the previous section we presented the algorithms we

have chosen for the RTSC. In the following we shift our



focus to the modifications necessary and the hurdles we had
to overcome to integrate the algorithms. We will present the
effects of the modifications and our insights and lessons learned
while implementing, using and evaluating the assignment and
scheduling algorithms.

Terminology: When we speak of an optimized algorithm,
we mean the algorithm with our modifications applied while
the naïve algorithm refers to the version by the original authors.
The RTSC analysing a system means that the compiler is able
to determine if a system is feasible or not. Failure to analyse
a system indicates that the RTSC ran out of memory. Where
we say that the algorithm was able to schedule a system, we
mean that a feasible schedule has been found.

A. Conceptual Hurdles
The original assignment algorithm by Peng et al. models

directed dependencies by moving release times. Explicit de-
pendencies are therefore converted into an implicit form. In
the context of the workloads this algorithm is intended for, this
may be sufficient. However, in the RTSC all ABBs belonging
to the same task inherit that task’s deadline, which is valid since
all of the task’s ABBs must have finished by said deadline and
precedence relationships are enforced by directed dependencies.
Yet, unlike precedence constraints, deadlines impact a solution’s
cost and therefore situations arise where ones that should
cause different cost are indistinguishable w. r. t. their NTRT,
preventing algorithmic termination. Therefore – similar to the
approach proposed in [19] –, in addition to shifting release
times from front to back, the implementation also performs a
transformation on deadlines, shifting these from back to front
along the path of the ABB dependencies.

In the original scheduling algorithm, if a deadline is inherited,
only the currently running task inherits that deadline. With the
original workload this makes sense, since only the running
task needs the resource. In our case an entire chain of ABBs,
connected by directed dependencies, may require a resource.
Therefore the deadline is bequeathed to all ABBs in the chain,
preventing uncontrolled priority inversion.

B. Performance Hurdles
From a real-time engineer’s point of view, it is often neces-

sary to split a system into fine-grained artefacts for scheduling
and assignment so it becomes possible to schedule the load
at all [20]. The ABB concept provides such a fine-grained
subdivision of the system. However, the resulting host of ABBs
leads to serious problems: The search space resulting from
the fine-granular decomposition is much larger than the task-
level problem the algorithms have originally been designed for.
Since the search space grows exponentially with the number
of ABBs it may become so large that finding a feasible assign-
ment and schedule is impossible due to limited computational
resources. The target domain of multi-core systems aggravates
this problem further. For this reason we introduced a number of
optimizations while exercising great care so as not to break (cf.
Section V) the algorithm’s optimality. The idea here was that
in places where the algorithm’s behaviour is unspecified, it is

{0
{1
{2

4ms 4mscore

Figure 2. Oscilloscopic trace of the Highstriker experiment: Each row shows
one subtask and the hyperperiod is 4ms. The Highstriker’s short but critical
tasks are allocated and scheduled on core 1 next to two soft-real-time tasks.
The other long-running extra tasks have been scheduled on cores 0 and 2.

adequate to make a deliberate choice that guides the algorithm
towards early termination. Therefore, the implementation of
the algorithm continues to use the original cost function as
long as it can distinguish solutions. However, if two solutions
have the same cost, the one that has more ABBs assigned is
preferred. This solution is deeper in the tree and thus closer
to algorithmic termination.

C. Implementation Hurdles
a) Knowing the Execution Platform: The measures intro-

duced so far enabled the RTSC to employ the two algorithms.
However, for deployment on real hardware, additional require-
ments beyond theoretical models had to be met. The original
scheduling algorithm adjusts deadlines and release times sim-
ilar to the assignment algorithm. In the case of the scheduling
algorithm, however, this approach would have lead to many
expensive context switches, negatively affecting schedulability.
Therefore, instead of shifting deadlines and release times, an
explicit ready queue of ABBs is maintained. This measure
has the same effect as shifting deadlines and release times
but avoids context switches. Additionally, to further reduce
detrimental context switches, ties between equivalent ABBs
are broken such that a context switch is avoided if possible.

Earlier the assignment algorithm’s cost function was exten-
ded to deal with complexity due to the large number of ABBs.
The cost function was extended further to avoid expensive
context switches. Furthermore, in the assignment as well as the
scheduling algorithm context switches are punished by injecting
additional WCET into each ABB that causes a switch.
Another difficulty are the timers, which have a finite res-

olution and hence can trigger alarms only at discrete points
in time, and therefore release tasks only at these points. This
fact, however, is abstracted away in the design of the original
scheduling algorithm, which assumes that tasks can be released
at arbitrary points in time. Unless a discrete time base is
enforced, the algorithm might slide into solutions that are
schedulable on a continuous time basis but cannot run on actual
hardware. Therefore, we introduced an explicit scheduling grid
into our model, having ABBs only scheduled at points in time
where a hardware tick occurs.



b) Migration: One central problem on the way to a
multi-core-capable RTSC is that inevitably jobs have to be
cut apart so they can migrate between cores, since otherwise
it may be impossible to find a feasible schedule [20]. However,
one requirement for the RTSC is that it must be possible to
execute the resulting system on a minimalist, time-triggered
run-time system that does not provide the facilities necessary
for migration. Therefore, it is the RTSC’s job to conduct all
steps necessary for migration at compile time. The RTSC
breaks the tasks and subtasks of the real-time system up into
ABBs and migration can only happen at ABB boundaries.
Therefore – from an external perspective – tasks and jobs
migrate, while – from an internal point of view – ABBs always
run to completion on the core they were started on. From a
technical perspective, whenever migration becomes necessary,
a shadow stack for the resulting job fragments is created,
converting formerly local job state into global state shared by
the job fragments. For the second part of the job fragment a
function wrapper is generated which is passed a reference to
the shadow stack so the shared state becomes accessible.

D. Experimental Setup

a) Case Study – Consolidation of Legacy Systems: The
Highstriker real-time demonstrator consists of a vertical acrylic
glass tube ringed by electromagnets. Inside the tube is a freely
moving ferromagnetic core that can be manipulated by the
electromagnets. Above each electromagnet there is a light
barrier that detects the core shortly before it enters the coil’s
area of influence. The Highstriker’s aim is to pass the core
from electromagnet to electromagnet without ever dropping it
to the ground. To do so the electromagnets have to be activated
by an Infineon Aurix processor in time to catch the core but
not so early that the core is accelerated towards the ground.
The Aurix is a five-core microcontroller with a CPU frequency
of 200MHz commonly used in automotive applications. Four
cores run in pair-wise lock step.
The relative deadline of the event that signals that a light

barrier has been passed is 500 µs. For the RTSC the event-
handler job is sampled with a period of 1ms and a second
job managing the Highstriker’s state machine is sampled with
1ms too. Both job’s deadlines are hard. To show that it is
possible to consolidate legacy software with the help of the
RTSC we added five additional periodic tasks connected by
directed dependencies, standing in for long-running soft-real-
time jobs. Figure 2 shows the result of the experiment. All
of the highstriker’s deadlines as well as the soft ones of the
additional tasks were met.

b) Statistical Evaluation: We decided to use synthetically
generated random input systems that can be analysed automat-
ically to evaluate the RTSC on a large scale and to examine
the influence of various parameters on the performance of
the compiler. Therefore, we implemented a generator tool that
creates random real-time systems, consisting of sources and
system descriptions for an OSEK OS executive. The generation
process can be parametrised by the number of tasks, directed
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Figure 3. Prevalent assignment and scheduling on task or subtask-level
compared to scheduling at the granularity of ABBs for the same set of 12,812
random systems with up to 68 ABBs.

dependencies and the utilization of the system, just to name a
few.

The solution space of both assigning and scheduling grows
exponentially with the number of ABBs, while the number of
tasks and subtasks is largely irrelevant. As exploring the impact
of varying amounts of ABBs was more interesting to us, we
decided to fix the number of cores to four. Nevertheless due
to the large system sets we wanted to explore with resources
available to every developer, we limited the available memory
per RTSC process to 7GB for each run.

E. Lessons Learned
a) Usefulness of the IR: In order to assess the usefulness

of the ABB IR an experiment was conducted to compare
assignment and scheduling for the usual task, subtask and the
ABB granularity. 12,812 Systems with up to 68 ABBs were
scheduled for a four-core CPU with each of these granularities.
As can be seen in Figure 3, our approach improves schedulab-
ility, especially in case of higher system utilization. This effect
can be explained with the fact that fine granular decomposition
into ABBs provides many more migration opportunities and
degrees of freedom to the algorithms.

b) From Theory to Reality: Our experience with the
RTSC shows that the selected algorithms are fragile if their
often implicit assumptions are not met. These algorithms are
designed with much smaller problem sizes in mind, namely
assignment and scheduling on the task level of real-time
systems designed 20 years ago. Due to the inherently NP-hard
nature of the scheduling problem, the solution space explodes
if the algorithm and its input are not tuned to the assumptions
made by the underlying theoretical model. Here, tool support
is mandatory since it is impossible for an engineer to explore
the entire solution space by hand.

Fortunately, the selected algorithms allowed for optimization
on the implementation level as randomness is used to simplify
some decisions in performance-critical paths. For a B&B
algorithm, this randomness is not an inherent property of its
working principle, as would have been the case with a heuristic
algorithm. We exploited this underspecification by adding more
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Figure 4. Effect of optimizations: The same random system set of 4,814
systems was analysed two times for a four core CPU, at first with the original
algorithm and then with our optimizations.

distinct criteria to force the assignment algorithm to terminate
as quickly as possible. For the experiment depicted in Figure 4,
the same random system set was analysed by the RTSC once
with and once without the optimizations. The generated systems
consisted of 2 to 3 tasks including 1 to 4 subtasks summing
up to a maximum of 12 interacting jobs connected with up to
6 additional directed dependencies. These parameters lead to
systems consisting of 6 to 24 ABBs that had to be allocated.
For both experiments we made a maximum of 7GB of RAM
available to each RTSC process. The range of analysable sys-
tems could be extended massively. Besides that, one optimized
RTSC run took only 4.460 s and consumed 424MB on average
compared to 44.455 s and 4.844GB without optimizations.

c) Relate Intention and Effect: The primary purpose of
the RTSC is to provide the engineer with a tool in which
a real-time system can be expressed conveniently. Instead
of teaching engineers yet another method for the design of
real-time systems, as would be the case with model-based
approaches, it should be possible to stay with the textbooks. To
enable transformations, the systems engineer’s intention for the
real-time system has to be translated into models that first the
tool can deal with (ABBs and their dependencies), second the
employed algorithms can handle, and finally the target platform
is compatible with (release times).
One example of such a translation is the way we moved

deadlines from back to front in the assignment algorithm:
The original algorithm by Peng et al. cannot deal with the
explicit model employed in the RTSC, which expresses directed
dependencies by edges connecting ABBs. These relationships
were initially not respected in the assignment algorithm’s
scheduler and had to be translated into shifted deadlines in
order to be represented in the cost function. This example
demonstrates the overall need for transformations between
varying models, to make the different algorithms usable and
interoperable. Consequently, the abstract and implementation-
independent concept of ABBs is the enabler to achieve this
very transformation, making it the ideal vehicle to implement
and evaluate different algorithms.

With this enhanced version of the RTSC we now have a
tool that handles tasks efficiently that up to now engineers
painstakingly had to do by hand or couldn’t do at all.

V. Discussion and Threats to Validity
We are aware of the fact that threats to validity arise from

various sources. In this section, we discuss our approach and
face the experimental results with the most common issues
from appropriateness to generalisability.
In this paper we introduced several modifications to the

original algorithms as well as to the RTSC. Here, we argue
that these modifications do not endanger the correctness of
the algorithms or change real-time systems in a way that
would violate real-time properties. The assignment algorithm’s
cost function was changed slightly to make it easier to find a
feasible assignment quickly and to discourage context switches.
However, these modifications were limited to areas where
the original algorithm makes an arbitrary decision anyway.
Since the former did not harm the algorithm’s optimality,
even if that arbitrary decision is always unfavourable, we
conclude that a guided decision would not do harm either. The
measurements showed that due to this change the RTSC was
able to schedule ≈50% more real-time systems on average with
the limited resources available. The same reasoning applies to
the optimization of the cost function avoiding context switches.

The RTSC’s assignment algorithm’s scheduler moves dead-
lines from back to front along chains of dependent ABBs;
deadlines are only tightened, never relaxed. This modification
of the workload does not violate real-time properties. Here, the
RTSC’s explicit model (directed dependencies) is converted to
the implicit model employed by the algorithm (individual dead-
lines). Bequeathing deadlines to chains of ABBs is justified too.
It enforces correct behaviour w. r. t. synchronization – otherwise
jobs would yield an inherited priority before being done with
a resource, leading to uncontrolled priority inversion.
The fact that deadlines and release times are not shifted in

the scheduling algorithm is correct, too. Release times and
deadlines still end up where they would have without the
modification while avoiding the harm done by encouraging
costly context switches.
One serious limitation of the RTSC is not due to the

algorithms employed or the fact that the workload is modified in
some way. Rather, the problem of accurately estimating WCETs
on current CotS multi-core systems has not been solved, not
even in theory [21]. The impact of shared memory buses and
caches on actual execution times may be tremendous, and using
the worst-case scenario would yield overly pessimistic results.
As a consequence, workloads that are schedulable in practice
would appear unschedulable to the RTSC. Therefore our current
solution is limited to applications that fit into core-local caches
or scratch-pad memory. This limitation is partially alleviated
by the fact that most current multi-core processors intended
for real-time applications, like Infineon’s Aurix, rely almost
completely on core-local memory. Special-purpose hardware
like the one proposed in [21] may allow for tighter WCET
bounds but currently exists only as a research prototype.



Furthermore, the modified versions of the algorithms still
have to deal with NP-hard problems. Therefore the number of
ABBs in a system that can be mapped successfully to multi-
core hardware is limited.
To make it easier for other researchers to reproduce our

results, we made the input systems used for creating the plots
in this paper, the source code of the processing node assigner
and that of the scheduling algorithm available.
Project details, data and sources:
http://www4.cs.fau.de/Research/RTSC

VI. Conclusion and Outlook
Undeniably, time-triggered systems have their advantages in

terms of verifiability. Still, such systems are poorly adopted in
the industry. We believe that, beyond pure theory in terms of
algorithms for assignment and scheduling, proper tool support is
a key aspect for time-triggered multi-core systems to be widely
used. One step towards this goal is the RTSC, a compiler-based
tool that is able to effectively and efficiently generate time-
triggered multi-core systems from given real-time applications.

By way of example of two existing algorithms for assignment
and scheduling, we illustrated the challenges that arise in the
transition from theory to practice: a naïve implementation
quickly becomes infeasible even for small applications and
systems. Moreover, implementation aspects such as explicit
consideration of runtime costs like context switches can have
a strong influence on the feasibility of given real-time systems.
We were able to solve those issues by combining tool-

based analysis with a tailored implementation of the algorithms
relying an architecture-independent IR by ABB graphs. These
contain the system’s structural and temporal properties as
intended by the developer such that it can be transformed
automatically to fit the algorithm’s needs, creating the correct
temporal effect in the time-triggered variant. We showed the
feasibility of consolidation of legacy applications by generating
code for the Aurix processor that executes the Highstriker real-
time demonstrator running in parallel with additional load.

With the RTSC, developers now have an efficient tool at hand,
which allows for a tight feedback loop within the development
process – moving the automatic generation of time-triggered
multi-core real-time systems a fraction closer to reality.
We continue our way to improve the general applicability

of the RTSC and envision the following future improvements:
Locality: To improve the schedulability and WCET estim-

ates, we intend to implement an integrative approach: assign-
ment and scheduling details available within the RTSC can be
leveraged by the aiT’s WCET analysis. This way, beneficial
effects of locality of ABB chains can be taken into account.

Heterogeneity: Asymmetric multi-core processors are
becoming more and more common in embedded applications.
We intend to extend the RTSC to support these settings,
subsequently advancing into the realm of distributed systems.

Mixing Real-Time Paradigms: The time-triggered
paradigm has serious limitations when handling high-frequency
sporadic events. In a time-triggered real-time system these have
to be polled as per the sampling theorem, even if the minimum
interarrival time is only a corner case. We intend to extend

the RTSC to generate hybrid real-time systems, handling high-
frequency sporadic events in an event-triggered fashion and
periodic task in a time-triggered way.
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