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Abstract—Worst-case timing analysis traditionally begins with
estimating the worst-case execution time (WCET) of individual
tasks using either static analysis or measurement-based tech-
niques. To derive worst-case response times (WCRTSs), engineers
typically compose these WCETs with bounds on preemption and
operating system overheads.

However, WCRTs depend on complex system-level interac-
tions, including task communication, OS behavior, and asyn-
chronous events. Compositional analysis often overestimates,
assuming that worst-case conditions across components coincide,
admitting infeasible global control-flow paths. Static whole-
system techniques refine this by modeling the system holistically
but require platform-specific tailoring or extensive annotations.
A dynamic equivalent has been missing.

We present FRET, the first dynamic whole-system approach
for estimating WCRTs. FRET employs feedback-guided fuzzing
to uncover timing-critical dependencies, including inter-task com-
munication, task/OS interactions, and interrupt effects, without
requiring prior knowledge of inputs or states. Implemented using
LibAFL and evaluated on FreeRTOS with realistic benchmarks,
FRET consistently outperforms state-of-the-art fuzzing strategies
in estimating accurate response times. Although not sound,
FRET delivers more than timing estimates: it produces action-
able artifacts—worst-case inputs, interrupt schedules, and inter-
task program-flow information—that complement static analyses
and support system validation, runtime monitoring, and robust
mixed-criticality scheduling.

Index Terms—dynamic analysis, measurement-based timing
analysis, whole-system analysis, fuzzing, worst-case response time

I. INTRODUCTION

Determining worst-case timing, crucial for ensuring timely
operations, poses significant challenges in developing real-time
systems. Traditional approaches focus on deriving the worst-
case execution time (WCET) (more precisely, an upper bound
thereof) of individual tasks using static analysis techniques [1],
particularly in hard real-time settings. These techniques are
most effective when the system structure is mainly static and
the hardware platform relatively deterministic (i.e., expressive
hardware models are feasible). Existing timing analysis tools
handle task-local path analysis (i.e., value analysis) but do
not fully account for OS overheads and asynchronous events
such as interrupts [2], [3]. Moreover, static approaches tend to
suffer from excessive overestimation when detailed hardware
information is unavailable.

In cases where hardware models are unavailable or too
pessimistic, the de facto alternative is to apply measurement-
based timing analysis (MBTA) techniques [4]-[7]. The in-
dustry’s reliance on MBTA for early-stage validation [8§]

and real-time certification, especially in mixed-criticality sys-
tems [9], further underscores its practical relevance. Unlike
static analysis, MBTA is based on empirical measurements and
yields realistic but unsound worst-observed execution times
(WOETs) adapted to specific execution scenarios. In practice,
however, MBTA still relies on carefully crafted test cases
that must trigger worst-case paths through appropriate input
selection. Tools such as AbsInt’s TimeWeaver [2] and Rapita
Systems’ RapiTime [3] illustrate how static path analysis can
be combined with MBTA to address this input dependence.
Still, since measurements substitute the hardware model, the
test cases must expose worst-case behavior at the instruction
level, burdening their quality and completeness.

Beyond that, engineers are also interested in the worst-case
response times (WCRTSs) of tasks, which reflect the end-to-
end delay from task activation to completion. WCRTs are
influenced by local WCETs and system-level phenomena such
as OS overheads, resource contention, and asynchronous pre-
emptions. Classical WCRT analysis [10] composes individual
WCETs with conservative upper bounds on interference. This
compositional approach implicitly assumes the worst-case of
each component can coincide, which leads to substantial
pessimism. More critically, it admits global control-flow paths
that may not be feasible in any concrete execution. One
alternative is to fall back on end-to-end measurements to derive
a worst-observed response time (WORT). However, this again
requires triggering the system with worst-case inputs in worst-
case system states, including critical load, interrupt timing and
resource-contention patterns.

Static whole-system techniques have been proposed to
mitigate pessimism in WOCRT analysis. These integrate
application-level and OS-level behavior into a unified analy-
sis framework that explicitly models global system control
flow. By accounting for scheduling effects, system calls,
resource usage, and asynchronous events, such approaches
refine local WCETs estimates using system-level flow facts
and eliminate infeasible interleavings—resulting in tighter,
more realistic WCRT bounds. Despite their analytical power,
these tools are challenging to apply in practice. For instance,
SysWCET [11] targets custom statically configured OSEK
systems and achieves system integration by tailoring source
code and system calls. In contrast, SWAN [12] generalizes the
approach to dynamic real-time operating system (RTOS) con-
figurations but requires extensive manual annotations across
the kernel and application code [13]. Thus, current whole-
system analysis approaches are either constrained to niche



platforms or impose significant integration effort, highlighting
the need for a dynamic whole-system alternative that retains
said benefits while improving generality and automation.

To address these shortcomings, we turned to fuzzing tech-
niques. Its iterative, feedback-driven nature makes fuzzing
suited for uncovering rare timing dependencies across system
layers. Fuzzing, a technique that has been around since the
1990s [14], is a vital tool within the security community due
to its efficacy in exploring complex system behaviors [15].
This success has inspired its application in other domains,
including real-time systems. However, dynamic techniques
related to fuzzing have been applied only to individual tasks
in isolation [6], [16], [17].

In this paper, we present FRET, the first dynamic
whole-system analysis approach to Fuzzing worst-observed
REsponse Times. FRET provides a gray-box, feedback-driven
approach: it does not require a priori knowledge of worst-
case inputs, execution paths, system states or even task con-
figurations. Instead, it actively explores the system’s control-
flow space across all layers, including user tasks, operating
system interactions, and asynchronous events, and identifies
those conditions that empirically lead to high response times.

A. Problem Statement

In FRET, we must address three key technical challenges:

a) System Tracing and Event Interpretation: Capturing
realistic worst-case behavior (i.e., WORT) requires tracing
interactions across application tasks, the OS, and asynchronous
events. However, to guide fuzzing meaningfully, these traces
must be semantically interpreted to expose system-wide de-
pendencies such as data flow, preemptions, and blocking.
FRET addresses this by instrumenting all system calls through
an OS-specific binding layer. This enables minimal-overhead
event-level tracing and system-specific interpretation of exe-
cution semantics, including resource usage and scheduling.

b) Inferring Feasible System States: Instruction- or
event-level traces quickly become unmanageable due to their
sheer volume. Instead, FRET abstracts execution into a com-
pact, semantic model by leveraging the concepts of Atomic
Basic Blocks (ABBs) and state-transition graphs (STGs) intro-
duced by the aforementioned static analysis tools [11], [18]-
[21]. The ABBs capture coherent control-flow units between
system calls, while the STG encodes transitions between
system states. This abstraction allows FRET to efficiently
record and generalize control-flow structure, task interactions,
and timing-relevant behavior.

¢) Multi-Objective Fuzzing: Dynamic exploration must
optimize not only for high task-local execution times but also
for maximal response times. These two objectives can conflict:
inputs that maximize WCET for a task may reduce overall
interference, leading to local rather than global maxima. FRET
tackles this challenge using a bi-objective fuzzing scheme that
evolves inputs and interrupt patterns along both dimensions
simultaneously. This allows FRET to explore local execution
time peaks while also converging on global WCRT scenarios.

B. Contributions & Outline

In summary, we make the following four contributions:

1) Dynamic WCRT Estimation: FRET’s dynamic whole-
system analysis approach systemically infers timing,
worst-case input data, and feasible system states.

2) State-Aware Exploration: FRET derives a global state-
transition model from execution traces, capturing task in-
teractions and OS behavior. FRET explores asynchronous
events and their worst-case impact.

3) Empirical Validation: We evaluate FRET using various
benchmark systems and compare against state-of-the-art
fuzzing techniques.

4) Open-Source Prototype: We release FRET to support
further research on whole-system MBTA analysis.

Importantly, FRET is not a replacement for static WCET
analysis or sound WCRT techniques. Instead, it complements
existing methods by uncovering hard-to-trigger worst-case
interactions and exposing concrete system states and input
conditions. This makes FRET particularly useful for empir-
ical validation or use in optimistic runtime monitoring and
scheduling scenarios in mixed-criticality systems.

II. BACKGROUND AND FRET’S SYSTEM MODEL

With FRET, we adopt a whole-system view, capturing
application-OS interactions to dynamically infer system-level
global control flow to (a) eliminate infeasible execution paths
and (b) achieve more accurate WCRT estimates. This section
outlines our system model and essential background.

A. OS-State-Aware Timing Analysis

Unlike traditional timing analysis approaches that often
abstract away (or ignore) OS interactions, whole-system analy-
sis requires an explicit representation of OS states and their
transitions in response to task interactions. A more abstract
control-flow model is necessary to manage this complexity,
which avoids the excessive detail inherent in typical control-
flow graphs (CFGs). ABBs provide a practical abstraction for
representing OS-application control flow by grouping basic
blocks that span between syscalls (either in user or kernel
space). Each ABB is uniquely associated with the application
or the OS, maintaining a single entry and exit point. Thus,
ABBs effectively abstract from local control flow (either
user or kernel space) and allow a high-level view of control
flow where each ABB executes in an atomic manner (apart
from interrupts) on its respective level. Figure 1 (bottom left)
illustrates an ABB graph spanning the application logic of the
given system with two tasks and an interrupt handler.

To extend the utility of ABBs in whole-system timing
analysis, Dietrich et al. [11], [20], [21] introduced the state-
transition graph (STG) for OS-level state enumeration, repre-
senting feasible system states and transitions between them.
Each state captures relevant kernel data, such as ready lists,
pending interrupts, and taken resources (illustrated in Figure 1,
top right). Transitions in the STG reflect the global execution
paths initiated by task control flows, syscalls, and asyn-
chronous events, as depicted in Figure 1 (bottom right). This
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Figure 1: Whole-system analysis abstractions: ABB graph and state-transition graph for two tasks and an interrupt handler.
ABBs collapse local control flow that does not alter the system state. STG nodes pair ABBs with their enabling system states,
edges induced by system calls or interrupts capture feasible global control flow.

line of work relies on system-state enumeration [20] by static
analysis of the application logic (i.e., ABB graph) utilizing
the scheduling semantics (i.e., fixed-priority scheduling and
resource protocols) and an interrupt model (i. e., minimal inter-
arrival times) to statically infer all feasible state .S; from an en-
try state Sp. A fully enumerated STG contains all possible OS
states represented as S = {S; | S; is reachable from S}, with
transitions 7' C S x S. The STG distinguishes transitions by
their semantic type: (1) local (intra-task) transitions (Tjocai),
dispatch transitions (Tg;spatcn) that dispatch between tasks,
and interrupt transitions (1;.4) that indicate asynchronous
events. Each combination of program location (ABB) and
system state corresponds to exactly one node. Therefore,
the STG contains cycles whenever the same combination
of program location and state is encountered multiple times
during execution. Since we cannot go into the intricacies
further in the paper, we refer to the original work [22] for
further details on the construction of the STG.

FRET lifts the STG to a dynamic analysis: at runtime, it
discovers system objects, incrementally updates the STG based
on observed interactions, and steers feedback-guided fuzzing
toward worst-case behavior, enabling the realistic exploration
of the feasible state space.

B. System Model

Our approach demands the following properties from the
system under test: (1) Data exchange between tasks is made
explicit (i.e., system or API calls). (2) Fixed-priority pre-
emptive scheduling and a suitable resource protocol (e.g.,
PCP [23]). (3) Internal system state of the operating system is
traceable. (4) Interrupts can be triggered artificially. (5) Exter-
nal inputs (e. g., sensor data) can be simulated.

Some of these, particularly the simulation of inputs, require
instrumentation of the target’s code to facilitate the fuzzer’s
interaction with the target.

Most scheduling-relevant system objects, such as tasks,
shared resources (e.g., mutexes, semaphores) are dynamically
discovered as part of the system state, which is extracted
at runtime. Thus, only limited information about the sys-
tem (e. g., allowed interrupt sources and timings and the task
to be maximized) needs to be known a priori.

Throughout this paper, we model execution on a single-core
system. This aligns with current industry practice in domains
like automotive and aerospace, where partitioned scheduling
is the prevailing design paradigm and hardware platforms
exhibit little cross-core interference and sharing. We discuss
the extension to multi-core scheduling in Section V-B.

This work focuses on path aspects and evaluates against
manually derived ground truths (WCRTs). Therefore, we rely
on an emulated, deterministic processor model that allows
for counting instructions. Importantly, FRET is conceptually
hardware-agnostic. We revisit accuracy in Section V-C.

III. THE FRET APPROACH

This section introduces FRET, our dynamic whole-system
analysis technique. Unlike traditional timing analyses, FRET
requires no prior knowledge about worst-case inputs or critical
instants of asynchronous events. Instead, it performs system-
wide exploration at runtime using feedback-guided fuzzing to
uncover execution conditions that lead to WOETs.

We begin in Section III-A by summarizing the input and
output of the fuzzing loop. Section III-B details how the
system is instrumented and traced to observe control flow,
OS interactions, and task states. Section III-C describes how
FRET constructs an STG to represent observed global control
flow. This graph then informs trace evaluation and feedback
in Section III-D. Section III-E covers corpus management to
prioritize relevant and diverse inputs. Finally, Section III-F
introduces the bi-objective mutation strategy for jointly opti-
mizing local execution costs and global response times.
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Figure 2: FRET’s fuzzing loop. Inputs are loaded, and states are traced during the execution (top left). State traces are inserted
into the graph (top right), rated according to different factors (bottom right), and potentially inserted into the corpus. Subsequent
inputs are created by mutation, including specialized ones informed by the states (bottom left). As outputs FRET infers WOETSs

and WORTSs, worst-case inputs, interrupt timings, and a STG for downstream analysis.

A. Required Fuzzing Inputs & Analysis Results

FRET is a grey-box approach applicable with minimal
system knowledge. The required inputs are: (1) the kernel
binary of the target system, (2) a configuration defining the
structure and size of the input array, and (3) minimum in-
ter-arrival times for asynchronous interrupts. Only lightweight
instrumentation is required: inputs from various sources (e. g.,
sensors) are simulated by reading from a central data array,
and task completions must be signaled to support response
time measurement.

The output artifacts of the fuzzing process include: (a) the
WORTSs of selected tasks, (b) the worst-case input values
and corresponding interrupt timings that triggered the worst
case, (c) a detailed execution trace of the WORT run, (d) the
final state-transition graph representing the feasible global
control-flow paths observed during fuzzing, and (e) per-ABB
WOET estimates extracted from the STG.

B. System & State Tracing

The heuristics in FRET rely on the system-state transition
graph. Thus, tracing system transitions and identifying the
active ABB is the first step in FRET’s fuzzing loop (see
Figure 2). Relevant events include entries and exits of sys-
tem calls and interrupt handlers and can be traced through
software-based instrumentation or hardware-level tracing. We
will discuss platform portability and instrumentation strategies
in Section V-A. For our prototype, we chose QEMU [24],

enabling deterministic timing and full system accessibility
without modifying the system under test.

We trace the system under test at discrete snapshots (snap),
which correspond to state transitions triggered by system calls
or interrupts. At each snap, FRET records the following data:

o Current time in cycles (t¢mestamp)

e Current event (event): a tuple of type (type €
{syscall_entry, syscall_exit, isr_entry,isr_exit})
and function name (callname)

o Source (call site/point of interruption) and target ad-
dresses (addr_source, addr_target)

o Current task (curr_task): a task control block from the
target system, including the name, priority, state, and
pending notifications

o Ready list (readylist): all tasks in the ready state

o Delay list (delaylist): all tasks in the blocked state

« Consumed input bytes (inputreads): a list of tuples of
(byte, addr) read since the last snapshot

These snapshots do not contain information about ABBs or
individual jobs of each task, which correspond to the execution
interval between two snapshots. Each ABB is identified by
its start and end point. An application ABB, for example,
starts with the return from a system call and ends with another
system call, and vice versa for a system call ABB or interrupt
handler. Additionally, we must account for preemption, which
will cause a preempted ABB to resume later. To address
this, we use addr_source and addr_target to identify which
intervals continue a preempted ABB (abb) and sum up their



execution times (et), as well as their consumed inputs (bytes)
from all inputreads. Apart from ABBs, job instances need
to be identified to determine response times, which can be
specific to the target system. For our FreeRTOS target [25],
we instrumented the application’s code to signal a finished
job. readylist and delaylist then identify when a new job is
released. The result from this stage consists of the snapshots
described above, along with information which ABB runs
between them and all job releases/responses.

C. System-State Transition Graph Construction

From tracing data, FRET dynamically constructs a system-
state transition graph (STG) that captures all observed state
transitions during execution, including inter-task data depen-
dencies. Each node in the STG represents a system state com-
bined with the currently executing ABB. Each edge denotes a
transition between these nodes and is annotated with relevant
timing and input information. Figure 2 (top right) illustrates
the trace insertion process and associated timing metadata.

To build the graph from a trace, we define a system state
S; = (curr_task;, readylist;, delaylist;, abb;) for each snap-
shot snap,. The ABB executed between snap; and snap,
is denoted as abb;. Note that abb; does not necessarily
start with snap; or end with snap,,,, because it could have
been preempted. abb;’s total execution time (including all
segments) is denoted as et;. bytes; denotes the set of tuples
consisting of all input bytes read by abb;, along with their
memory address. Each state S; will become a node in the
STG. Each edge corresponds to an event. Note that all states
identical to S; refer to the same node, which can occur
multiple times within a trace.

The graph is constructed iteratively as follows: (1) Let S
be the last node visited, initially set to the root S;y,;¢iq;- (2) For
each snapshot snap, with state S;, check if .S; exists as a node
in the graph; if not, insert it. (3) Check for an edge from S
to S; exists and is labeled with the triggering event event;; if
absent, insert it. (4) If some abbj, was running between snap;
and snap;_1, annotate the edge with ety and bytesy, or update
existing values as described in Section III-D. After processing
the full trace, we add a terminal edge to a designated S, 4 to
mark termination. The resulting STG is the central abstraction
driving FRET’s state-aware feedback and mutation.

The inferred STG typically under-approximates reachabil-
ity; nevertheless, empirical convergence can be operationalized
via plateaus in STG coverage for a fixed configuration, as
demonstrated in Section IV. We discuss convergence and
soundness aspects further in Section V.

D. Input Rating & Fitness Function

The feedback function steers fuzzing by rewarding inputs
that advance the objective and discarding those that do not.
With FRET, we designed our feedback function to focus on
multiple instrumental objectives, ultimately aiming to maxi-
mize the selected task’s response time. The components of
the feedback function are illustrated in the lower right corner
of Figure 2.

The first instrumental objective is the exploration of new
system states, which correspond to differences in the schedule
and all inter-task effects. To this end, our feedback function
considers a run to be interesting if it caused the insertion of
a new node or edge in the graph during the previous step
described in Section III-C.

The second instrumental objective is the maximization of
local execution times. Increased local execution times increase
response times directly and indirectly, that is, by allowing more
preemptions. As mentioned, each edge between two nodes S
and 5 in the graph stores a worst-observed execution time ety
of abby. If any of these values have increased, the values of
the edge are updated and the input is considered interesting.

Since the overall objective is to increase response times for
a selected task, one of our feedback components also rewards
this while considering a diverse set of global control-flow
paths. Maintaining diversity is important because it is unknown
in advance which task interactions lead to the longest response
time. It is possible to construct task sets where, for example,
a long-running task with high priority is only activated under
specific, rare conditions. Our feedback function supports this
by recording every path through the STG (i.e., the list of node
indices visited) and storing the associated WORT. If an input
exceeds the record, it is considered interesting. To eliminate
redundant traces, the node indices for each trace are sorted
before lookup, making the paths order-independent.

With the STG constructed, we now define how FRET
evaluates input quality to guide future exploration.

E. Corpus Management

FRET collects interesting inputs in a corpus, which serves
two key roles: selecting the most promising input for the next
mutation and pruning obsolete inputs. As the corpus grows, it
inevitably accumulates outdated entries that only cover subsets
of the graph and offer limited utility for further exploration.
To mitigate this, FRET uses a prioritization heuristic.

While response time is the primary criterion for prioritiza-
tion, it does not ensure path diversity alone. To address this, as
noted in Section III-D, each input’s (order-independent) path
through the STG is used to classify traces. FRET marks the
longest-running input for each unique path as a favored input,
influencing selection and pruning decisions.

During selection, inputs are weighted by their response
times, and one is chosen at random. If this input is favored, it
proceeds to mutation. Otherwise, it is likely (e.g., 95 %) to be
discarded, and another input is taken. This process maintains
focus on high-value inputs without eliminating randomness.

Despite the emphasis on long-running inputs, corpus size
can become unwieldy, consuming significant memory and
retaining numerous favored inputs linked to obsolete paths. To
contain this, FRET periodically prunes the corpus by removing
most non-favored inputs if its size exceeds a preset multiple
of the number of favored entries (default: 20x). Additionally,
a cap on favored inputs (default: top 1 000) eliminates shorter
traces, even among the favored set.



F. Bi-Objective Mutation

The mutator is responsible for generating new inputs based
on existing ones from the corpus. Fuzzers usually perform
mutations using a set of random operations on the input bytes,
unless a specialized mutator for the target application (e. g.,
a grammar-based generator) exists. We designed FRET for
the general RTOS domain, meaning that it has an awareness
of the system’s internal state but remains agnostic to the
specific applications running. We exploit this RTOS awareness
to implement two distinct mutators that aim to uncover both
local and global worst-case timing conditions.

1) Interrupt Mutation: This mutator enhances the state
space exploration by strategically modifying interrupt injec-
tion timings. Since interrupt handlers can significantly impact
system behavior, precise timing is as critical as task activation
patterns. Rather than treating interrupt times as generic input
values, FRET enforces a per-source n minimum inter-arrival
time (menia,) to prevent unrealistic interrupt storms. This
is a common assumption since, in real-world applications
with strict real-time requirements, minimum arrival times are
typically enforced by corresponding guards at the interfaces
of the embedded system, for example, using appropriately
configurable timer arrays.

Building on this, each interrupt activation time ?,, ; is con-
fined to a valid interval, typically [t,, ;—1 + minian, tnit1 —
minia,|. The mutator then examines which states occurred
in this window and checks if the STG lacks an edge cor-
responding to the given interrupt. If such a gap is found, the
interrupt is rescheduled within that interval to expand the graph
potentially.

2) Per Task Input Handling: This mutator aims to max-
imize the execution time of each ABB by synthesizing the
worst-observed local input patterns. It uses the edge annota-
tions in the STG, which record the highest execution time
and the corresponding input bytes read by each ABB in its
originating node.

When mutating an input, FRET locates the trace’s path in
the STG, retrieves the annotated bytes for each edge, and
injects them into the mutated input at the positions where the
corresponding reads were performed initially. This strategy
effectively propagates local execution-time increases across
different global control-flow paths in the corpus, enhancing
the likelihood of encountering global worst-case conditions.

G. Implementation-Related Remarks

We implemented our prototype using LibAFL [26], a modu-
lar fuzzer library, in combination with an instrumented version
of QEMU [24] for execution. Noteworthy modifications to
QEMU and LibAFL are new callbacks for tracing of sys-
tem calls and interrupts, time measurements using QEMU’s
instruction counter feature, and interrupt injection according
to fuzzing inputs using QEMU timers. Our implementation of
the STG relies on abstractions of task control blocks, ready-
lists and ABBs, in order to be applicable to a multitude
of target systems. Each implementation of the target system
needs custom code to extract the relevant information from

the target. Currently, the implemented target is FreeRTOS,
which is supported using bindings for the data structures (using
bindgenl), and hand-written functions to read them from the
target. The data structures are located using the symbol table
of the kernel binary. We discuss FRET’s porting potential in
Section V-A.

IV. EVALUATION

This section evaluates FRET’s ability to maximize WORTS
and identify their specific inputs systematically. Thus, we
compared FRET against genetic testing and a coverage-guided
fuzzing technique. Our experiments focused on three critical
aspects to validate the efficacy of FRET: input-data manipula-
tion, interrupt placement, and the interaction of the two.

We outline our evaluation setup and criteria in Section IV-A
and describe application scenarios in Section IV-B. FRET is as-
sessed in Section IV-C, with results discussed in Section IV-D.

A. Evaluation Setup

The field of whole-system WCRT fuzzing is relatively new,
resulting in a lack of adequate timing analysis tools that
employ dynamic testing of entire real-time systems. Accord-
ingly, we implemented multiple candidates for comparison
analogous to established dynamic timing analysis techniques.
We also utilized LibAFL [26] for these implementations,
ensuring that the heuristic component is solely responsible for
any disparity in performance between the techniques. A vital
commonality is LibAFL’s default mutator, which randomly
selects from a set of mutations. This set includes various
bit operations as well as a crossover mutator that combines
random pieces of different inputs. The latter is significant for
genetic algorithms. FRET adds mutation stages as described in
Section III. The alternative approaches replace FRET’s targeted
interrupt mutator with its default mutators or randomly select
times within the execution interval.

The first candidate is the evolutionary approach [27]. It
utilizes response time as a fitness function in a genetic
algorithm that performs mutations and selects a set of best-
performing inputs. We picked a generation size of 100, which
performed best in a quick test. The second candidate is the
coverage-guided approach. This fuzzer uses an adapted edge-
based strategy derived from LibAFL’s default configuration.
The adaptation ensures that every increase in execution counts
of edges and response times is rewarded. As a final comparison
candidate, we used randomized testing without heuristics.

Finally, we manually and thoroughly determined the WCRT
of our evaluation scenarios. To this end, we tuned the tasks’
execution time simulation to be able to infer the specific
worst-case time with respect to the local and inter-task data
dependencies. We then manually set the interrupts to trigger
the worst-case overlap scenarios. We then manually set the
interrupts to trigger the worst-case overlap scenarios. We
assume it to be accurate within a few instructions (due
to compiler optimizations), but there is no general method

Thttps://github.com/rust-lang/rust-bindgen



to verify this approach. We could have underestimated an
interaction within the system. Furthermore, for reference and
to showcase pessimism, we composed bounds by traditional
response-time analysis (RTA) [28] using presumed WCETSs
obtained from the previous step. While having confidence in
our approach, there is potential for error.

To summarize, we provide the following evaluation sce-
narios: (1) FRET: our technique, (2) evolutionary: evolution-
ary testing, (3) coverage: WCRT-adapted edge-based fuzzing
approach, (4) random: Monte-Carlo testing using random
inputs, (5) WCRT: the actual manually determined WCRT,
and (6) RTA Bound: static bounds composed by traditional
response-time analysis [28].

a) Evaluation Criteria: We evaluated the efficacy of
the various techniques by measuring the reported WORTS.
The evolution of the corpus over time represents a crucial
factor that enables fuzzers to identify progressively longer
runs. Accordingly, the techniques run for a prolonged duration,
with the observed WCRTs recorded for subsequent analysis.
We ran each test at least eight times with different (fixed)
random seeds to assess relative performance. The subsequent
figures report the maximum (colored solid line) and median
(colored dashed line) observed WCRT estimate. The maxima
show how well the variants perform in a parallel testing
campaign, and this value would be used in a development
process. The median is an essential measure for assessing the
random process in fuzzing. We further provide the presumed
WCRT as a constant bound (gray dashed line) and the upper
bound as a number in the graphs.

b) The Fuzzing Platform: We conducted the experiments
on a server using an AMD EPYC 9554P with 405 GB RAM.
All fuzzing variants were executed in single-threaded mode,
with one physical CPU core allocated for each instance. Each
scenario was evaluated using the same number of instances
per configuration (ten, five in Figure 6). The 24-hour timeout
is standard in the general fuzzing domain (see [29]) and was
sufficient to reach the presumed WCRT in each case.

B. Application Scenarios

To evaluate our approach, it is necessary to identify appro-
priate application scenarios for testing that exhibit meaningful
interactions between tasks, specifically about data dependen-
cies within tasks, between tasks and the operating system,
and between tasks and interrupts. As an execution platform,
we selected FreeRTOS [25], running on an (emulated) ARM
Cortex-M3 platform (mps2-an385 in QEMU). FreeRTOS is
configured to use fixed-priority preemptive scheduling. Mul-
tiple tasks of the same priority are handled using round-
robin. All input was modeled by reading sequentially from an
input array. Communication between tasks is made explicitly
using notifications, which are visible in the system state. The
computations were simulated using busy-waiting loops, with
the iteration count dependent on the input values or values
passed from other tasks. In all of the presented scenarios, we
selected a single task for which we sought to maximize the
WCRT. In the following, we detail our application scenarios:

a) WATERS Industrial Challenge: We used the
WATERS Industrial Challenge [30] as the basis for our first
benchmark. We reduced the original set by choosing nine
periodic tasks (one runnable each), one ISR, and four chains
of inter-task communication due to the effort involved in
manually translating the model into an actual implementation
in FreeRTOS. Each task starts by reading input from the
fuzzer, waiting for notifications from chain predecessors,
notifying chain successors, and then performing some time-
consuming computation depending on these input sources.
The objective of the experiments is the third of four tasks in a
chain that share a priority level. To compensate for the reduced
number of tasks and to induce frequent preemption, we scaled
up the execution times until we observed comparable CPU
utilization. We simulated data-dependent execution times by
setting loop bounds based linearly on the input values and
branches on arbitrary conditions. The system also features a
sporadic task that directly impacts one of the chains, as well
as an indirect effect on the order of execution.

b) UAV: Our second example, named UAV, is based on
the evaluation in related work on static timing analysis [11].
It simulates the flight control software of a UAV and contains
multiple periodic and a single sporadic task. The latter has
the lowest priority and, therefore, has a limited impact on the
response times of the other tasks. We translated their stubbed
code from the OSEK API into an equivalent FreeRTOS
system. Again, we chose an arbitrary factor to scale the task’s
execution times, as their code only contained placeholders
with relative computation times. To simulate data-dependent
execution times, we let part of each waiting period depend on
a polynomial function of the input.

c) Asynchronous Task Release: We constructed the final
example with the specific intention of evaluating the effects
of interrupt timings. Therefore, we created a set of tasks
that share a resource, some of which are activated by an
interrupt handler and perform differently depending on the
availability of the resource. The WCRT for our chosen task is
only reached if it is released by an interrupt handler right after
a lower-priority task has taken the resource, causing a priority
inversion. To prolong this inversion as much as possible, a
second handler needs to activate a different task exactly when
the resource is released again.

d) Large Automotive: We assessed FRET’s scalability
using a large benchmark system inspired by automotive control
applications. Again, we based the setup on the WATERS task-
set generator, which features a real-world industrial configura-
tion shared by an industry partner. The system has 37 tasks in
47 cause-effect chains, with periods of up to 100 ms. Four
asynchronous interrupts with defined minimum inter-arrival
times (as low as 10ms) were added to reflect I/O-driven
behavior common in automotive systems. These affect some
of the chains. To simulate realistic inter-task dependencies, we
injected input-dependent control flow. Tasks receive messages
whose values influence subsequent paths, and execution times
are determined by arbitrary polynomial functions over input
data. We set the system load to 90 % utilization.
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C. Experiments

We conducted experiments to validate our research goals
using all analysis variants and application scenarios. These
experiments assess FRET’s ability to uncover worst-case re-
sponse times and highlight the role of inter-task dependencies
and interrupt timing.

1) Input-Data Assessment: To evaluate FRET’s ability to
guide input mutations toward long execution paths, we focused
on benchmarks with input-dependent execution times and
inter-task communication. We used the WATERS Industrial
Challenge benchmark with interrupts disabled (the sporadic
task was made periodic) to isolate data effects. We also
evaluated the UAV scenario, where interrupt presence does not

significantly affect WORT, but data dependencies are more
complex. Figure 3 presents the results.

In WATERS Industrial Challenge, where dependencies are
mostly linear in input values, FRET and evolutionary both
converge rapidly. As shown in Figure 3a, FRET reaches
saturation early, followed closely by evolutionary, confirming
that simple data dependencies are easily exposed.

In contrast, UAV features polynomial input relationships,
which are harder to explore. Figure 3b shows that FRET is
initially the only method to reach the presumed WCRT. Over
the whole 24-hour period, both FRET and evolutionary identify
this WORT, but FRET exhibits better median performance. We
attribute this to FRET’s ability to preserve and combine local
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worst-case inputs across dependent tasks, which purely local
methods often miss.

In conclusion, while multiple techniques could maximize
simple data-dependent execution times and inter-task depen-
dencies, FRET was the only one most suitable for more
complex data dependencies.

2) Interrupt Timing Assessment: We also need to validate
the effectiveness of our state-aware interrupt mutation in
isolation. For this purpose, we use the Asynchronous Task
Release application, with input values fixed at all ones, which
is not the worst case in terms of data dependencies. This way,
the interrupt timing can only affect the activation of two tasks
and, as such, the state in which they are activated. We also
use the WATERS Industrial Challenge application, with inputs
set the same way, leaving only changes in the interrupt timing
to influence the order of activation for certain tasks. Figure
4 shows the results. For the UAV application in Figure 4b,
multiple techniques reached almost the same result, which we
confirmed to be the worst possible pattern.

While there is little differentiation between them, evolution-
ary is the only technique that did not find the same pattern
in the median case. Even the random almost found the worst
interrupt timing. Also, FRET was the fastest to find the worst
pattern in both the highest and median instance.

Figure 4a shows the same comparison for the WATERS
Industrial Challenge application. It shows that most instances
found the same pattern, but an instance of FRET did find a
pattern slightly longer than any other technique. We attribute
this to FRET’s targeted exploration of all possible system states
to interrupt.

Overall, while multiple techniques were able to randomly
encounter the worst-case interrupt pattern in one case, FRET
found it first and was the only one to reach the true worst case
in the other case. These benchmarks suggest that FRET’s state-

aware interrupt mutation offers an advantage over the default
set of mutations that all other techniques utilize.

3) Combined Assessment: For our assessment of simultane-
ous maximization of input data and interrupt times, we use our
Asynchronous Task Release and WATERS Industrial Challenge
applications (UAV only has a trivial interrupt and was already
shown in Figure 3b). Figure 5b shows that FRET was the
only technique to maximize both input components to reach
the WCRT on our Asynchronous Task Release application.
Figure 5a shows the same for our Asynchronous Task Release
application, with both coverage and evolutionary close behind
in their maxima but further behind in their median.

In previous experiments, we consistently showcased a low-
priority task, assuming that its response time had the greatest
significance for our evaluation. In order to validate our assess-
ment on a broader set of tasks, we performed an additional
evaluation for multiple tasks in our WATERS Industrial Chal-
lenge example. The results are given in Figure 6. It shows that
FRET meets or exceeds the competition for each task.

Overall, this result underlines that FRET’s advantages over
the other techniques also manifest when both values and inter-
rupt timings are to be mutated. FRET was the only technique
in our comparison that consistently found the true WCRT. The
evolutionary yields times closest to FRET in scenarios where
the emphasis lies on input-data dependencies.

4) Scalability Assessment: We used the Large Automotive
application to test FRET with a large system. This scenario
has a much greater number of possible states compared to the
previous examples. As a result of this complexity, the STG
initially exceeded our system’s memory capacity. We identified
and excluded two major contributors to the high number of
possible states. For one, tasks of the same priority can have
a different order in the ready queue, which is affected by the
pattern of preemption. We chose to reduce the combinations
by ignoring the order of the queues beyond their first element.
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over the course 24 hours. Scenario: WATERS Industrial Chal-
lenge with inter-task data dependencies and interrupts.

Another major contributor to the state-space is the value of
task notifications, which can be an arbitrary 32-bit value in
this scenario. We chose to disregard the value in this case and
only respect the notification’s status in the state. With these
changes, we were able to keep the STG manageable.

The results of a limited eight-hour evaluation with five
instances can be seen in Figure 7. Both the runtime and
number of instances were reduced due to resource limita-
tions, compared to previous examples. Since there is no tight
baseline, this scenario serves to demonstrate the feasibility of
FRET’s approach and its advantage over other techniques, at
least within the initial window of time.

The resulting STG contained 195.7 million nodes and 216.5
million edges, representing 184 962 complete execution paths,
including 42 346 order-independent paths. The peak memory
use was 106.5GiB. At this size, the graph remained struc-
turally manageable and usable for feedback-driven fuzzing.
Runtime-wise, FRET’s heuristics scale is based on the length
of the observed global control-flow path, not the number
of tasks. Overall, this evaluation scenario demonstrates the
computational viability of FRET for larger systems.

D. Summary

Based on our observations from the evaluation scenarios, we
draw the following main conclusions: Our evaluation demon-
strates that FRET effectively discovers worst-case response
times across diverse scenarios. Compared to baseline tech-
niques, it consistently reaches higher WORTSs more quickly
and reliably, thanks to its integration of system-state modeling,
interrupt-aware mutation, and targeted feedback. FRET not
only maximizes timing metrics but also reveals the input
conditions, execution paths, and system interactions respon-
sible for worst-case behavior. This transparency is essential
to understand and validate real-time systems under realistic
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Figure 7: Scenario: Large Automotive. Maximum (solid) and
median (dashed) between five instances are shown. The gray
area represents FRET’s memory usage. FRET’s analysis is
based on a simplified STG.

assumptions. Finally, while FRET imposes substantial memory
demands on the fuzzing platform, it scales to system sizes
found in practical applications.

V. DISCUSSION & OPEN RESEARCH QUESTIONS

FRET demonstrates that dynamic whole-system analysis
is feasible. While our evaluation confirms its efficacy and
practical utility, several aspects require further exploration:

A. Proving FRET on Other Platforms

FRET inherits MBTA’s independence from platform-specific
analysis models and the gray-box exploration style of fuzzing:
no pre-identification of test cases (i.e., worst-case inputs)
is required. FRET contributes a whole-system exploration
strategy and an STG-based abstraction that carries these
benefits into dynamic timing analysis. Porting FRET to new
platforms presents several challenges, including implementing
OS-specific bindings, enabling minimally intrusive tracing on
hardware, and injecting interrupts with precise timings.

FRET provides an abstraction layer for new RTOSes, with
lightweight bindings specifying which functions (e. g., system
calls) trigger callbacks and what data is relevant to the analy-
sis. Interpreting this data is OS-specific and occasionally non-
trivial (e.g., identifying the originating task during interrupt
handling) but remains a one-time engineering task requiring
familiarity with the RTOS’s data structures and ABI. More
broadly, all analysis methods entail setup, dynamic tools need
tracing and I/O harnesses; static tools need models and anno-
tations, and FRET’s OS/task instrumentation is of comparable
effort, after which it runs automatically.

The more significant challenge lies in enabling tracing with
minimal probe effect. This is a well-known real-time system
issue, and various solutions have been developed. Software-
based methods include logging minimal diffs of system state



and timestamps to memory for deferred analysis (e. g., Feather-
Trace [31]). On the hardware side, modern embedded plat-
forms often feature built-in tracing support. For example,
Intel’s Processor Trace is regularly used in fuzzing applica-
tions [32] and also embedded platforms such as Infineon’s
AURIX? provide on-chip tracing memory and off-chip transfer
capabilities [33] that exceed FRET’s requirements. Dedicated
hardware tracers, such as Lauterbach’s PowerTrace System3,
offer additional options for non-intrusive tracing. These tech-
nologies are widely used in industrial settings, demonstrating
that effective tracing solutions are readily available.

Implementing precise interrupt patterns is also feasible with
existing platforms. Many embedded systems offer complex
timer modules that can be programmed to trigger interrupts
at specific times. For instance, the Generic Timer Module
on Infineon AURIX platforms allows multiple predefined and
conditional triggers to be sent to the interrupt controller.

For hardware effects on the STG construction, we assume
that cache-related preemption delays will be the primary
cause of most variability. Paths through the STG seamlessly
encode preemptions, so we expect FRET’s feedback function
to adapt well, even without any changes. Some adaptations
may still be useful. One option would be to include parts of
the hardware in the state definition, which, however, would
massively increase the state space. Another option would be
to store path-dependent execution times in the edges.

In summary, no conceptual obstacles exist to adapting FRET
to other RTOSes and hardware platforms. In our evaluation, we
chose a QEMU setup not because of any intrinsic limitations
of FRET but primarily because the baseline techniques used
for comparison are only available in this setting.

B. Towards Multi-Core Analysis

While we implemented FRET for single-core analysis, it al-
ready applies to multi-core environments. Many safety-critical
real-time systems employ a partitioned architecture, where
tasks are statically assigned to cores, allowing each core to
be analyzed independently. Partitioning remains the dominant
practice, based on our experience with major industry partners.

Existing research efforts, such as ARA [34] and Multi-
SSE [35], provide a foundation for supporting whole-system
analysis of multi-core platforms. MultiSSE, in particular, in-
fers one STG per core and links cross-core nodes between
these graphs only at necessary synchronization points, which
aligns well with partitioned systems and limits the combina-
torial explosion of the state space. We plan to extend FRET
similarly by constructing per-core STGs and only tracking
synchronization edges where required.

C. Soundness

The aspect of soundness has two dimensions in the context
of FRET: First, FRET, like any measurement-based technique,
is inherently unsound and does not claim safe upper bounds
on WCETs. Instead, it targets practically relevant WORTsS

2Infineon AURIX TC3xx Family: https://www.infineon.com
3Lauterbach PowerTrace 1I: https://www.lauterbach.com
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by identifying critical input and system-state combinations
through guided exploration. The execution time per STG
node is derived from empirical measurements, and FRET
is agnostic to how these are obtained; we consider this a
strength, not a weakness, of FRET. We acknowledge that max-
imizing task-local WCET and modeling interference patterns
(e.g., shared caches, pipelining) is essential for measuring
timing accurately, especially in multi-core settings. While
this paper focuses on whole-system control and data flow,
future versions of FRET may incorporate refined mutators
for local execution time maximization based on architectural
features. Our current implementation uses a simplified fixed-
cost-per-instruction model to maintain a ground truth (actual
WCET) for evaluation. This simplification enabled the manual
derivation of WCRT by identifying critical input/overlap cases.
Introducing a more realistic hardware model would have
hindered this reference point, and static analysis would only
yield upper bounds with unknown pessimism. Consequently,
a direct comparison on real hardware was not possible. Future
work could resolve this dilemma using generated benchmarks
with known WCET and WCRT properties, which we will
discuss in a moment.

Second, FRET’s dynamically constructed STG is likely to
be unsound, as it under-approximates the whole system state
space. It only includes paths observed during execution and
thus may omit feasible but unobserved states. This contrasts
with static approaches, which are typically over-approximating
and include infeasible paths. We argue, however, that STG
soundness is a solvable problem. FRET can actively explore
and invalidate infeasible transitions from a statically inferred
STG (e.g., using ARA). Achieving this requires extending
FRET with classification techniques and probing strategies to
target statically identified but dynamically unconfirmed paths.
Should the two representations match, we would have obtained
a sound and complete STG for the system under analysis.
To reiterate, FRET is not a substitute for sound analysis but
complements it. It helps developers explore system behavior
efficiently and identify meaningful timing scenarios. This
supports downstream use cases such as further verification,
mixed-criticality scheduling, and runtime monitoring based on
observed worst-case states and inputs.

D. Synthesis of Benchmark Systems with Known WCRTs

We consider the aforementioned dilemma of determining
FRET’s accuracy a fundamental challenge [36], [37]: Com-
parable to WCET analysis of tasks in isolation, determining
this ground truth WCRT is inherently not possible based
on existing benchmarks [36]. An avenue for future work
is constructing benchmark systems with known worst-case
inputs, task interactions, OS overheads, and interrupt patterns
to serve as reliable ground truth. However, the design and
implementation of such a whole-system generator is a non-
trivial research and engineering challenge that requires further
investigation. In particular, one critical step is synthesizing
functional task code that exhibits specific execution times
while preserving the intended worst-case control-flow path
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under realistic hardware conditions. This includes ensuring
that, even in the presence of cache effects or cross-core
interference, the synthetically defined worst-case execution
path remains dominant.

VI. RELATED WORK

A huge body of related work exists for dynamic timing
analyses and response times. However, to our knowledge,
FRET advances the state-of-the-art with regard to its (1) use of
fuzzing techniques, (2) notion of systems states capturing the
interaction between tasks/OS, and (3) handling asynchronous
events. Subsequently, we outline relevant areas of related
work: genetic algorithms for WCET analysis (Section VI-A),
the timing analysis of combined application and operating-
system code (Section VI-B), and the trend towards hybrid
timing analysis (Section VI-C).

A. Dynamic WCET Analysis & Profiling

The use of genetic algorithms for WCET analysis was
introduced in the late 1990s by Wegener et al. [17], [27],
being a specific conceptual strategy of the overarching topic
of fuzzing. Outside of the real-time domain, software testing
approaches such as GA-Prof [38] utilize genetic algorithms for
input-sensitive application profiling. They also aim to identify
input values that maximize execution times and thus uncover
performance bottlenecks. The prominence of machine learning
techniques besides genetic algorithms also extends into the
field of timing analysis. For example, a recent report by the
FAA presents a machine learning approach, which first trains
a model to predict execution times and then uses it to generate
inputs that are predicted to maximize the execution times [39].
In contrast to these works for the domain of WCET analysis
of single tasks, FRET addresses the more complex problem of
WCRT analysis in real-time applications with multiple tasks.
Additionally, the handling of interrupts, inherent to cyber-
physical systems, is a further unique characteristic of FRET
in the domain of worst-case timing analysis.

B. Integrated Analysis of Applications & Operating Systems

Schneider’s static-analysis methodology [40], [41] kicked
off OS-aware WCRT analysis. SysWCET [11], proposed by
Dietrich et al., was the first to systematically leverage OS-
state transition graphs for fixed-priority, statically configured
real-time systems. Schuster et al. [12] generalized this idea
for generic RTOSes. This work employs annotations [13]
in the application and operating system kernel to infer the
calling context of system calls. Other researchers use WCET
techniques for analyzing operating systems [42]-[44], where
we refer to the survey from Lv et al. [45] for details. In contrast
to these works, FRET employs a fuzzing-based approach for
hardware platforms for which the development of accurate
models is unrealistic.

On the side of hardware-agnostic program-path analysis,
companies start to integrate the operating-system semantics
when finding bugs in safety-critical applications [46], [47].
Sharing this goal, FRET uses a notion of system states along
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with possible interrupt occurrences in order to analyze the
WCRT of applications running on top of an RTOS. High-level
context information on global control flow (i. e., flow facts) can
be inferred [11] from and annotated [12] to STGs, supporting
analyses downstream in the real-time systems’ development
process.

C. Hybrid Timing Analysis

With the problem of WCET tools being limited by their
hardware model, hybrid timing analysis is one possible di-
rection to yield timing estimates for non-statically-predictable
platforms. The TimeWeaver tool [2] is one commercially
available example of such types of analyses. The tool uses
information from measurement traces and the gathered infor-
mation on timing costs for basic blocks for static program-path
analysis. Having such a combination of measurement-based
and static analysis is one direction of future work on FRET.
In contrast to TimeWeaver, FRET can handle asynchronous
interrupts as part of its notion of system states. Thus, this
advantage enables us to find more accurate timing estimates
in a shorter period of analysis time, which in turn may benefit
the accuracy of hybrid timing analysis.

VII. CONCLUSION

We introduced FRET, the first dynamic fuzzing-based
whole-system analysis framework for estimating worst-case
response times. Unlike traditional static or compositional
WCRT analysis, FRET explores system-wide behavior, includ-
ing task interactions, OS effects, and asynchronous events,
without requiring prior knowledge or manual configuration.

FRET uses feedback-guided fuzzing and system-state mod-
eling to uncover critical timing scenarios that static methods
may over-approximate. Its dynamic state-transition graph cap-
tures feasible global control flows and guides input mutation
and interrupt scheduling to maximize response times. More
than just timing estimates, FRET provides execution traces,
triggering worst-case inputs, interrupt patterns, and the STG,
a semantic model of observed system behavior. These arti-
facts support empirical validation, runtime monitoring, mixed-
criticality scheduling, and can support analyses downstream in
the development process. Evaluation showed that FRET outper-
formed state-of-the-art fuzzers in WORT discovery and con-
vergence. Released as an open-source prototype atop LibAFL
and FreeRTOS, FRET invites further research on dynamic
whole-system timing analysis.

In short, FRET complements sound analysis by offering
practical insights, making it a valuable tool for the design of
real-time systems.

The source code and the artifact evaluation of FRET are
publicly available:
https://git.cs.tu-dortmund.de/SYS-OSS/FRET
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