Kapitel 18 - Algorithmen und Datenstrukturen

Peter Ulbrich
AG Systemsoftware

Veranstaltungswebseite

che universita Arbeitsgruppe
technische universitat . .
@ dortmund Kapitel 18 - Algorlth/n:yeDZkgnd Datenstrukturen (’ SySte m SOftWé re

https://sys.cs.tu-dortmund.de/
https://sys.cs.tu-dortmund.de/de/lehre/ws25/eidp
https://github.com/decker-edu/decker/

Einleitung

e |n EidP ging es bisher vor allem um: , : :

9

o Vom ,Code schreiben® zum ,Problem l6sen®

e Dazu brauchen wir zwei Bausteine:

o : Wie speichern/organisieren wir Daten?

o - Wie arbeiten wir effizient mit diesen Daten?

e Fokus heute: typische Datenstrukturen kennenlernen und praktisch einsetzen

o Nicht ,alles selbst implementieren®, sondern: passende Werkzeuge auswahlen (STL) und richtig
benutzen

° Anforderungen — passende Operationen — passende Datenstruktur

Kapitel 18 - Algorithmen und Datenstrukturen 2

e Wir bauen (konzeptionell) ein kleines Tool: z.B.

e Es kommen ,Ereignisse“/Aufgaben rein, werden verarbeitet und teilweise riickgiangig
gemacht

O

Neue Aufgaben in Ankunftsreihenfolge abarbeiten

o ,Letzte Aktion“ riickgangig machen / ggf. wiederherstellen

o Elemente vorn/hinten hinzufligen/entfernen (z.B. Priorisierung)

o Daten einfligen/l6schen, wahrend wir gerade ,mittendrin® sind (z.B. Verlauf/Historie)

o Optional: Werte schnell finden (z.B. nach ID/Name)

o Welche Datenstruktur unterstiitzt welche

Operationen naturlich und effizient?
Kapitel 18 - Algorithmen und Datenstrukturen 3

Stapel (Stack)

o Klassisches Beispiel fur lineare Datenstruktur:

e Funktionsweise zur Genlige bekannt (— Kapitel Zeiger)

— Hier nicht noch mal Thema

zugrundeliegenden Datenstruktur

@)

O

O

Typische Operationen der

Ui

legt Element oben auf den Stapel

entfernt oberstes Element vom Stapel

gibt das oberste Element vom Stapel zuriick
pruft, ob Stapel leer ist

gibt Anzahl der Elemente zurtick

Kapitel 18 - Algorithmen und Datenstrukturen

Beispiel - Stapel

e Glucklicherweise musst lhr den Stack nicht implementieren

o STL bietet bereits eine fertige Losung: std: :stack

using std::cout, std::endl;

int main() {
std::stack<int> int stack;
int stack.push(42);
int stack.push(4711);

cout << "Top: " << int stack.top() << endl;
int stack.pop();
cout << "New Top: " << int stack.top() << endl;

Kapitel 18 - Algorithmen und Datenstrukturen

Warteschlange (Queue)

e Weitere, verbreitete Datenstruktur:

e Typische Operationen front
. . O O O O O O
o . fugt Element hinten an
IV «— 0N G0N)
o . entfernt vorderstes Element
o : gibt vorderstes Element zurlick
0 . gibt letztes Element zuriick €nqueuc
o : pruft, ob Warteschlange leer ist
o . gibt Anzahl der Elemente zurtick
[

Kapitel 18 - Algorithmen und Datenstrukturen 6

Beispiel - Warteschlange

e Auch hier gibt es eine STL-Implementierung: std: :queue

using std::cout, std::endl;

int main() {
std::queue<int> int queue;
int queue.push(42);
int queue.push(4711);
int queue.push(5);
int queue.push(3);
cout << "Front: " << int queue.front() << endl;
cout << "Back: " << int queue.back() << endl;
int queue.pop();
cout << "New Front:

<< int queue.front() << endl;

Kapitel 18 - Algorithmen und Datenstrukturen 7

Warteschlange (Queue)

e Erweiterung der einfachen Warteschlange: Double-Ended Queue (Deque)

e Im Gegensatz zur einfachen Warteschlange ist hier auch das Hinzufligen am Anfang
erlaubt: push_front/push_back und analog pop_front/pop_back

using std::cout, std::endl;

int main() {

std: :deque<int> int deque;
int deque.push front(42);
int deque.push back(4711);
int deque.push front(5);
int deque.push back(3);

~oant << "Frant . "

<< 1nt+ AdAemie front+ ()l << oandl .

Kapitel 18 - Algorithmen und Datenstrukturen

Verkettete Listen (Linked Lists)

° Aneinanderreihung von Daten

o Jedes Element kennt Inhalt

o Jedes Element kennt Nachfolger

— Kettenglieder bzw. M
<) ﬁff;ééiz?_%SEb T

o Einfach verkettet: Nur Verweis auf den Nachfolger

o Doppelt verkettet: Verweis auf Nachfolger und Vorganger

° Mittels Zeigern

o Erstellen eines Startelements , dann sukzessives Hinzufligen

Kapitel 18 - Algorithmen und Datenstrukturen

00O O Ul & WDN B

e R R e e M e
O 00 J o Ul » W NN K- O L

// Singly Linked
template <typename T>
struct SNode {

SNode * next;

T data;

}i

// Doubly Linked
template <typename T>
struct DNode {
DNode * next;
DNode * previous;
T data;

}i

// malloc/free

// Hantieren mit Zeigern
void add node(Node *) {}
void del node(Node *) {}

Verkettete Listen (Linked Lists)

e FEinfach verkettete Listen sind unkompliziert, aber in der Praxis eher unhandlich

e Falls einmal der Vorganger benotigt werden sollte, muss im schlechtesten Fall die
gesamte Liste erneut vom Start aus traversiert werden

e Doppelt verkettete Listen sind hier deutlich handlicher:

o Bei Bedarf kann einfach ein Element an Ort und Stelle eingefligt werden

e Daraus ergeben sich einige interessante Anwendungsbereiche:

o Beispiele: Verlaufshistorie im Browser, Textbearbeitung (Strg-Z, Strg-Y)

o Bei Anderungen kann einfach ab einem beliebigen Punkt alles Nachfolgende entfernt und neues
Element angehangt werden

Kapitel 18 - Algorithmen und Datenstrukturen 10

Beispiel - Verkettete Listen

e C++ bietet bereits doppel-verkettete Liste: std:: list
e Ahnliche Signatur wie Deque

e Wesentlicher Unterschied

o . fugt Element an Position X ein using std::cout, std::endl;
o : entfernt vorderstes Element int main() {
| [— std::list<int> 1;
s R X ;
;% Lﬂ)] /T- — l.push front(5);

\L, \/ \ /\ l.push front(10);
[é£:32;:7i::::%,;§7i:§;é%>i ?L~l 1.push back(20);
auto pos = l.end();

l.insert(pos, 42);

cout << "Back: " << l.back() << endl;
l.pop back();
cout << "Back: " << l.back() << endl;

Kapitel 18 - Algorithmen und Datenstrukturen 11

ENE

e Haufig verwendete Datenstruktur

e Zahlreiche Anwendungen

O

— B-Trees (Datenbanken), Rot-Schwarz-
Baume

— Binary Space Partitioning (z.B. in
Videospielen)

— Grundlage von Prioritatswarteschlangen

° - einfachste Form eines Baums

Kapitel 18 - Algorithmen und Datenstrukturen 12

Binarbaume

(root)
(node)

e Besteht aus

o Startknoten —
o Endknoten —

o Vorgangerknoten —

o Nachfolgeknoten —

e Jedem Knoten wird ein Wert \\ //

zugewiesen

e Jeder Knoten hat hochstens zwei Kindknoten — binar

o Linkes Kind ist kleiner

o Rechtes Kinds ist grof3er
Kapitel 18 - Algorithmen und Datenstrukturen 13

Eigenschaften von Binarbaumen

e Waurzel hat keine Vorfahren y ist (parent) von x

e Blitter hingegen haben keine Kinder X Ist (child) von'y

— Linkes und rechtes Kind

e Darf aber auch nur einen/keinen Kindknoten

besitzen
. : Folge von zusammenhangenden Eltern-
Kind-Knoten)
Linker Rechter
e Definition erfolgt rekursiv Teilbaum Teilbaum

... von Knoten x

Kapitel 18 - Algorithmen und Datenstrukturen 14

Hohe eines Baumes

° ist die Anzahl der Knoten auf
dem langsten Pfad im gesamten Baum

e Betrachung von Wurzel zu Blatt

e Hohe eines : @, da keine Knoten
vorhanden

. 20, 40, 42, 55

Kapitel 18 - Algorithmen und Datenstrukturen

15

Grof3e eines Baumes

o : Knoten mit Abstand £k — 1 1
Ebene
zur Wurzel ,
o Auf Ebene k kdnnen jeweils zwischen 3
1 und 25~1 Elemente liegen
4

e Max. Anzahl Elemente bei Hohe h: ZZ=1 |

Kapitel 18 - Algorithmen und Datenstrukturen 16

Eigenschaften von Binarbaumen

o der Hohe h besitzt 2" — 1
Knoten

o Sein = 2" — 1: Dann braucht man héchstens nur

[loga(m)]| Schritte, um ein Element zu suchen!
o Beispiel: n = 100 = [log2(100)] = [6.64] =7

o Aus Baum wird eine Liste / @

o Bei n Knoten wiren dann wieder n Vergleiche notwendig (O(n) statt @
O(log n))
o Ein extremes Gegenbeispiel (Worst Case) = entspricht Liste @

Kapitel 18 - Algorithmen und Datenstrukturen 17

Vorteile von Binarsuchbaumen

e Erlaubt schnelle Suche

o Ablauf

o Falls gleich = Ende der Suche, alle sind gliicklich

o Ansonsten

o Gesuchtes Element ist kleiner = nach Links

o Gesuchtes Element ist groBer — nach rechts

o Bei Auswahl des nachsten Teilbaums fallen alle anderen
Teilbaume weg

e Bei (balancierten) Binarbaumen sich der im besten
Fall automatisch

Kapitel 18 - Algorithmen und Datenstrukturen 18

Stolpersteine

e Nur ein Baum mit gefillten Ebenen bendtigt wenig Schritte fir die Traversierung

° gleichmallig beflillen oder nachtraglich balancieren
e Nur bei balancierten Bidumen liegt die Suchzeit bei O(log n)
e Zur Balancierung gibt es eine Reihe von verschiedenen Algorithmen

o Rot-Schwarz-Baume

o Abwechselnde Einfarbung der Ebenen mit rot und schwarz

o AnschlieBend Balancieren basierend auf der Farbe

Kapitel 18 - Algorithmen und Datenstrukturen 19

Durchlaufstrategien

o /wei Arten der Traversierung

o Preorder: Zuerst ganz nach links, dann schrittweise nach rechts
o [norder: Reihenfolge der Knotenwerte (aufsteigend)

o Postorder: Erst alle Kinder, dann den aktuellen Knoten

e Unterschiedliche Suchmuster kénnen bei der Ausgabe/Darstellung des Baums
hilfreich sein

Kapitel 18 - Algorithmen und Datenstrukturen 20

Beispiel - Durchlaufstrategien

e Fir Tiefensuche (DFS): Rekursion verwenden

e Breitensuche (BFS) verwendet hingegen eine
Warteschlange (hier nicht dargelegt)

Kapitel 18 - Algorithmen und Datenstruk... ..

void preorder (Node * node) {
cout << node->value;
preorder (node->left);
preorder (node->right);

}
preorder (root); // != NULL

void inorder (Node * node) {
inorder (node->left);
cout << node->value;
inorder (node->right);

}
inorder(root); // != NULL

void postorder (Node * node) {
postorder (node->left);
postorder (node->right);
cout << node->value;

}

postorder(root); // != NULL
21

Beispiel - Durchlaufstrategien

void preorder (Node * node) {
cout << node->value;
preorder (node->left);
preorder (node->right);

}
preorder (root); // != NULL

void inorder (Node * node) {
inorder (node->left);
cout << node->value;
inorder (node->right);

. }
e Je nach Strategie andere Ausgabe: inorder (root); // != NULL
o Preorder: 20,11,8,5,9,18,19,40,25,42,55 _
volid postorder (Node * node) {
o Inorder: 5,8,9,11, 18,19, 20, 25,40,42, 55 postorder (node->left);
d de->right);
o Postorder: 5,9,8,19,18,11, 25, 55, 42, 40, 20 e o oY)
}
postorder(root); // != NULL

Kapitel 18 - Algorithmen und Datenstruk... .. 22

Beispiel - Durchlaufstrategien

void preorder (Node * node) {
cout << node->value;
preorder (node->left);
preorder (node->right);

}
preorder (root); // != NULL

void inorder (Node * node) {
inorder (node->left);
cout << node->value;
inorder (node->right);

. }
e Praktische Anwendung: inorder(root); // != NULL
o (Preorder) _
volid postorder (Node * node) {
0 (Inorder) postorder (node->left);
postorder (node->right);
© (Posundeﬂ cout << node->value;
}
postorder(root); // != NULL

Kapitel 18 - Algorithmen und Datenstruk... .. 23

o ist ebenso wie Binarbaume weit verbreitet

o Erstellen einer eindeutigen Kennung, um Daten identifizieren zu konnen

o Abstraktes Beispiel: Postleitzahl schrankt Zustellungsort ein
o 44227 — Dortmund (Eichlinghofen)

e Abbildung von Daten erfolgt mit

o Mathematische Abbildung, erzeugt aus Daten einen sogenannten

— eindeutiger Indentifizierer

e Nutzliche Eigenschaften von Hashwerten

o |In der Regel deutlich kleiner als die Daten

o auf zugrundeliegende Daten im Allgemeinen

Kapitel 18 - Algorithmen und Datenstrukturen 24

o der Hashwerte

o Erlaubt eindeutige Zuordnung zwischen Hashwert und Daten

o Ansonsten: Mehrere Daten haben den gleichen Hashwert (—)

o h(z) =x mod 10 — schlechte Hashfunktion

o Sehr einfach, aber maximal 10 mogliche Hashwerte (O - 9) — viele Kollisionen

o Zahlenraum der moglichen Werte der Hashfunktion sollte deutlich grof3er sein als die Zahl der
tatsdchlichen Hashwerte

. einer guten Hashfunktion

o Vermeidet Kollisionen oder macht sie zumindest sehr unwahrscheinlich

o Voraussetzung: Maoglichst ,zufallig®, damit der Hashwert moglichst gleichverteilt im Zahlenraum liegt

o Einfach zu berechnen!

Kapitel 18 - Algorithmen und Datenstrukturen

25

o Es existieren mit unterschiedlichen Einsatzgebieten
o

o unter anderem Datenbanken, Caches, Dictionaries

o z.B. Hashwert aus Passwort berechnen, Abspeichern des Hashes (bcrypt)

o [Dateivergleich: Priifen der Integritat von groRen Dateien durch separaten Hashwert (SHA1, MD5)

o unter anderem Spam-Filter, schnelles Nachschauen von Symbolen

— Linker des GCC-Compilers bei dynamischen Bibliotheken
o Bei Bitcoins wird fortwahrend SHA-256 (kryptographische Hashfunktion) berechnet

Kapitel 18 - Algorithmen und Datenstrukturen 26

o (W6rterbuch) ist eine spezielle Datenstruktur
e Speichert zusammen mit
]
o Insert
o Delete
o Search
o Mittels

Kapitel 18 - Algorithmen und Datenstrukturen 27

e Speichern fur jeden Hash assoziierte Daten

Erstellen einer Linked-List fur

diesen Hashwert

— wenig/keine Kollisionen

Unwahrscheinliche Kollision

— i.d.R. wenige Schritte fir Nachschlagen

— konstante Zeit

Dictionaries sind gut fur

geeignet

keys

John Smith

Lisa Smith

Sam Doe

Sandra Dee

Ted Baker

Kapitel 18 - Algorithmen und Datenstrukturen

000
001
002

151
152
153

154

155

253
254
255

buckets
Lisa Smith 521-8976
John Smith 521-1234
Sandra Dee 521-9655
Ted Baker 418-4165
Sam Doe 521-5030

© Jorge Stolfi CC BY-SA 3.0

28

Dictionary in Programmiersprachen

e Dictionaries existieren in zahlreichen Programmiersprachen

o HashMap<K, V>
o Dictionary<K, V>
o dict() bzw. {} (sehr starke Verwendung)

o ...und noch vielen weiteren mehr

. STL-Container namens std: :unordered_map

e Achtung Verwechslungsgefahr: In C++ gibt es auRerdem std: :map

o std: :map ist allerdings mit Red-Black-Biaumen umgesetzt (— keine Hashtabelle)

Kapitel 18 - Algorithmen und Datenstrukturen 29

unordered _map

using std::cout, std::endl;

int main() {

Dictionaries werden Euch noch
std: :unordered map . .
tHEERY oft begegnen. Es lohnt sich, sie zu

{2, "zZwei},

}; kennen!

// Insert
int_str_dict.insert({42, "Zweiundvierzig"});
int _str dict.insert({4711, "Siebenvierzigelf"});

Kapitel 18 - Algorithmen und Datenstrukturen 30

Exkurs: Graphen

e Weiteres grol3es Gebiet der Mathematik und
Informatik: die Graphentheorie — | b

e Ein Graph ist eine abstrakte Struktur, die verschiedene
Objekte (Knoten)

mmmmmmmmmmmmmmmmm

;;;;;;;;;;

nnnnnnnn

hhhhhhh
DOestoride Do
nnnnnnnnnnnn

nnnnnnnnnn
DOk -

nnnnn

mmmmmmm

Ubrigens: Ein Bindrbaum ist auch 2 Sl
nur ein spezieller Graph ® etz Dortmund (© R. Schwand -

UrbanRail.net)

e Einfache Anwendungsbeispiele

O

@)

Navigation — StralBenbahn und Verkehr

Netzwerke = Computernetzwerke/Internet, aber auch Funkverbindungen (z.B. Giberlappendes
Mobilfunknetz)

Soziale Netzwerke — Abbildungen von Interaktionen und Gruppen (Social Media Bubbles)

Layout-Fragen bei elektronlsﬁg%ﬂe§59§|£%gﬁt rr]nen und Datenstrukturen 31

https://www.urbanrail.net/eu/de/do/dortmund.htm
https://www.urbanrail.net/eu/de/do/dortmund.htm

Beispiele fur Graphen

o Nord- o —

Campus als Graph

e Kreuzungen sind Knoten, O
Straf3en sind Kanten ®

Technische

= Universitat .
= Dortmund

Fakultét far
Chemie und
Chemische
Jgchnische . .
-iTe
.,'tmmd .

Biologie

Ot Fakultét 16 -
Max Planck Institut far
Institut fdr Sport und
International Molekulare Sportwissenschaft .
School of Physiologie -

Management

Kapitel 18 - Algorithmen und Datenstrukturen 32

Beispiele fur Graphen

° Chemische Verbindungen als Graph darstellbar

° Koffein als Graph dargestellt

o Atome — Knoten, Bindungen — Kanten

Q Cchs
HSC\ N/
N
A N
O N

)
CHs

Kapitel 18 - Algorithmen und Datenstrukturen 33

https://commons.wikimedia.org/wiki/File:Koffein_-_Caffeine.svg

Definition von Graphen

e Graph G = (V, E) besteht aus

o einer Menge (Vertex bzw. Plural Vertices) und

o einer Menge mit £ C V x V (= ,jedes E wird aus zwei V gebildet”)
e V={1,2,3,4,5}
o F

=1{(1,2),(1,5),(2,3),(2,5),(3,3),(3,4), (3,5), (4,5)}

o (degree) eines Knotens v € V ist die Anzahl an
o Alle zu v durch eine Kante verbundenen Knoten sind adjazent
o deg(5) = 4 — ,5 hat vier Nachbarn”

Kapitel 18 - Algorithmen und Datenstrukturen 34

Speicherung von Graphen

. Exemplarische Speicherung von Graphen
° oder
0 Adjazenzliste, weil Matrix O(n?) Speicher und Zeit braucht

o AuBerdem: Viele Graphen haben Liicken (sparse) — viele @ in Matrix

. Setze in 2D-Array bei o Erstelle fur jeden Knoten
Kante 1, sonst 0 Liste mit Nachbarn
1 2 | 3 | 4 1 2 o 4
1 0o | 1 0 | 1 2 1 " 3 4
2 | 1 0 | 1 1 3 2 1 4
3 ol 1] o0 | 1 4 1 12 3
4 | 1 1 1 0

Kapitel 18 - Algorithmen und Datenstrukturen 35

Weitere Algorithmen der STL

e STL besteht hauptsachlich aus von , und
o Die Wichtigsten wurden vorgestellt
o Bereits kurz vorgestellt
o Implementierung besonders haufig verwendeter Funktionen (noch nicht betrachtet)

e Zum Abschluss noch einige interessante Teile des Algorithmen-Teils

o Algorithmen arbeiten meist mit lteratoren (oder wandeln Eingabe automatisch in einen Iterator um)
o Sind in Headern <algorithm>, numeric und memory zu finden (Link)

o Unbedingt reinschauen! Sehr viele Funktionen, die einem das Leben erleichtern!

Kapitel 18 - Algorithmen und Datenstrukturen 36

https://en.cppreference.com/w/cpp/algorithm.html

accumulate

e std::accumulate:Addiert die Zahlenwerte in einem STL-Container automatisch

using std::cout, std::endl;

int main() {
std::vector<int> vec = {1, 3, 5, 10};

int result = std::accumulate(vec.begin(), vec.end(), 0);
cout << "Sum of vector: " << result << endl;

Kapitel 18 - Algorithmen und Datenstrukturen 37

o Zahlt die Anzahl der Elemente, die einen vorgegebenen Werten haben

using std::cout, std::endl;

int main() {

std: :vector<int> vec = {1,2,3, 3, 5, 10, 14, 17, 3, 18, 22, 42};
int count 3 = std::count(vec.begin(), vec.end(), 3);
cout << "Number of 3: " << count 3 << endl;

Kapitel 18 - Algorithmen und Datenstrukturen

38

e Sortiert vorgegebene Elemente in aufsteigender Reihenfolge

o Absteigende Reihenfolge: std::greater() und ggf. Operator operator< implementieren

using std::cout, std::endl;

int main() {
std::vector<int> vec = {5, 2, 1, 10, 4, 42};
cout << "Original: \t";
for (const int& i: vec) {
cout << i << ", ";

4 4

}

std::sort(vec.begin(), vec.end());
cout << "\nSorted: \t":

Kapitel 18 - Algorithmen und Datenstrukturen

39

transform

e Wendet eine Operation schrittweise auf jedes Element eines Containers an

using std::cout, std::endl;

template <typename T>
T double val(T value) {
return value * 2;

}

int main() {
std::vector<int> vec = {5, 2, 1, 10, 4, 42};
cout << "Original: \t";
for (const inté& i: vec) {

Kapitel 18 - Algorithmen und Datenstrukturen 40

Ausblick

e Ein sehr in die Welt der
e FUr ein gutes Programm ist auch ein Verstandnis dieses Bereichs notwendig

. Gute Entwickler:innen missen neben dem Programmieren auch
verstehen, was entwickelt werden muss und wie dies effizient moglich ist

— Mischung aus gutem Verstandnis der Programmiersprache und der Algorithmen

Kapitel 18 - Algorithmen und Datenstrukturen 41

Ausblick

Wir waren hiermit gestartet ...

e Programmierung als L
Problem
o zur echten Welt und emit

Design, Analyse,
Korrektheits- und
Laufzeitbeweis,

A 4

: Pseudocode
Algorithmus
o praktische Umsetzung von theoretischen o
2 o | GBS programmierung
Problemen (EIDP)

#include<stdio.h>

e TODO Abschlief3ende weise Worte G.F Testen, Feher-
—'

Compiler — beseitigung

g E } Wartung/Pflege

Y 3

Maschine Programm

Kapitel 18 - Algorithmen und Datenstrukturen 42

Ausblick: Wo geht die Reise weiter?

e Fir diejenigen, die nach EidP noch weiter programmieren wollen

1. Modul (DAP2)

o Pflichtmodul fir Informatiker:innen, im Sommersemester
o Die Inhalte, die in diesem Kapitel angesprochen wurden, in detaillierter Form und noch einiges mehr!

o Viele Algorithmen und Datenstrukturen mit praktischer Umsetzung. Macht Spal3 &

2. Modul (BS)

o Pflichtmodul fur Informatiker:innen, ebenfalls im Sommersemester
o Wichtige, weiterfihrende Konzepte: nebenldufige Programmierung, Speicher/Caches, ...

o Sehr wichtig zum Verstindnis des Embedded-Bereichs!

Kapitel 18 - Algorithmen und Datenstrukturen 43

Abschlussarbeiten

e |hr schreibt bestimmt irgendwann einmal eine Abschlussarbeit &

e Wenn Euch Hardware-nahe und/oder Betriebssystem-nahe Themen interessieren,
denkt gerne an uns! &

e Wir interessieren uns auch fur Themen aus der E-Technik.

e Meldet Euch dann gerne bei uns:

Kapitel 18 - Algorithmen und Datenstrukturen 44

https://sys.cs.tu-dortmund.de/

© Viel Erfolg =
und vielen Dank fur die Aufmerksamkeit! Jw

Am Donnerstag gibt es eine Fragestunde!

Bitte bereitet Fragen zum Stoff vor.

Kapitel 18 - Algorithmen und Datenstrukturen 45

Kapitel 18 - Algorithmen und Datenstrukturen

