
Kapitel 18 – Algorithmen und Datenstrukturen

Kapitel 18 – Algorithmen und Datenstrukturen

Peter Ulbrich

AG Systemsoftware

Veranstaltungswebseite

🚀 by Decker

1

https://sys.cs.tu-dortmund.de/
https://sys.cs.tu-dortmund.de/de/lehre/ws25/eidp
https://github.com/decker-edu/decker/

Kapitel 18 – Algorithmen und Datenstrukturen

Einleitung

In EidP ging es bisher vor allem um: Syntax, Datentypen, Kontrollstrukturen,

Funktionen, Zeiger

Jetzt der nächste Schritt: Vom „Code schreiben“ zum „Problem lösen“

Dazu brauchen wir zwei Bausteine:

Datenstrukturen: Wie speichern/organisieren wir Daten?

Algorithmen: Wie arbeiten wir effizient mit diesen Daten?

Fokus heute: typische Datenstrukturen kennenlernen und praktisch einsetzen

Nicht „alles selbst implementieren“, sondern: passende Werkzeuge auswählen (STL) und richtig

benutzen

Merksatz: Anforderungen → passende Operationen → passende Datenstruktur

2

Kapitel 18 – Algorithmen und Datenstrukturen

Problem

Wir bauen (konzeptionell) ein kleines Tool: z.B. digitaler Notizzettel

Es kommen „Ereignisse“/Aufgaben rein, werden verarbeitet und teilweise rückgängig
gemacht

Anforderungen (Operationen):

Neue Aufgaben in Ankunftsreihenfolge abarbeiten

„Letzte Aktion“ rückgängig machen / ggf. wiederherstellen

Elemente vorn/hinten hinzufügen/entfernen (z.B. Priorisierung)

Daten einfügen/löschen, während wir gerade „mittendrin“ sind (z.B. Verlauf/Historie)

Optional: Werte schnell finden (z.B. nach ID/Name)

Frage, die wir beantworten wollen: Welche Datenstruktur unterstützt welche

Operationen natürlich und effizient?
3

Kapitel 18 – Algorithmen und Datenstrukturen

Stapel (Stack)

Klassisches Beispiel für lineare Datenstruktur: (Keller-)Stapel

Funktionsweise zur Genüge bekannt (→ Kapitel Zeiger)

→ Hier nicht noch mal Thema

Stattdessen: Typische Operationen der

zugrundeliegenden Datenstruktur

push: legt Element oben auf den Stapel

pop: entfernt oberstes Element vom Stapel

top: gibt das oberste Element vom Stapel zurück

empty: prüft, ob Stapel leer ist

size: gibt Anzahl der Elemente zurück

Arbeitsprinzip: Last In, First Out (LIFO)
4

Kapitel 18 – Algorithmen und Datenstrukturen

Beispiel - Stapel

Glücklicherweise müsst Ihr den Stack nicht implementieren

STL bietet bereits eine fertige Lösung: std::stack
#include <stack>
#include <iostream>

using std::cout, std::endl;

int main() {
 std::stack<int> int_stack;
 int_stack.push(42);
 int_stack.push(4711);

 cout << "Top: " << int_stack.top() << endl; // Element wird *nicht* entfernt
 int_stack.pop(); // Wegwerfen. Rückgabe 'void' -> Zugriff nur mit top()
 cout << "New Top: " << int_stack.top() << endl;

}

cpp Run ▶

5

Kapitel 18 – Algorithmen und Datenstrukturen

Warteschlange (Queue)

Weitere, verbreitete Datenstruktur: Warteschlange (Queue)

Typische Operationen

enqueue: fügt Element hinten an

dequeue: entfernt vorderstes Element

front: gibt vorderstes Element zurück

back: gibt letztes Element zurück

empty: prüft, ob Warteschlange leer ist

size: gibt Anzahl der Elemente zurück

Arbeitsprinzip: First In, First Out (FIFO)

6

Kapitel 18 – Algorithmen und Datenstrukturen

Beispiel - Warteschlange

Auch hier gibt es eine STL-Implementierung: std::queue
#include <queue>
#include <iostream>

using std::cout, std::endl;

int main() {
 std::queue<int> int_queue;
 int_queue.push(42);
 int_queue.push(4711);
 int_queue.push(5);
 int_queue.push(3);

 cout << "Front: " << int_queue.front() << endl; // Analog zu Stack: Kein Entfernen
 cout << "Back: " << int_queue.back() << endl; // Analog zu Stack: Kein Entfernen
 int_queue.pop(); // Entfernen ohne Verwenden
 cout << "New Front: " << int_queue.front() << endl;

}

cpp Run ▶

7

Kapitel 18 – Algorithmen und Datenstrukturen

Warteschlange (Queue)

Erweiterung der einfachen Warteschlange: Double-Ended Queue (Deque)

Im Gegensatz zur einfachen Warteschlange ist hier auch das Hinzufügen am Anfang

erlaubt: push_front/push_back und analog pop_front/pop_back
#include <deque>
#include <iostream>

using std::cout, std::endl;

int main() {
 std::deque<int> int_deque;
 int_deque.push_front(42);
 int_deque.push_back(4711);
 int_deque.push_front(5);
 int_deque.push_back(3);

cout << "Front: " << int deque front() << endl;

cpp Run ▶

8

Kapitel 18 – Algorithmen und Datenstrukturen

Verkettete Listen (Linked Lists)

Einfache Grundidee: Aneinanderreihung von Daten

Jedes Element kennt Inhalt

Jedes Element kennt Nachfolger

→ Kettenglieder bzw. Knoten(Nodes)

Zwei Varianten

Einfach verkettet: Nur Verweis auf den Nachfolger

Doppelt verkettet: Verweis auf Nachfolger und Vorgänger

Einfachste Umsetzung in C++: Mittels Zeigern

Erstellen eines Startelements , dann sukzessives Hinzufügen

// Singly Linked1
template <typename T>2
struct SNode {3
 SNode * next;4
 T data;5
};6

7
// Doubly Linked8
template <typename T>9
struct DNode {10
 DNode * next;11
 DNode * previous;12
 T data;13
};14

15
// malloc/free16
// Hantieren mit Zeigern17
void add_node(Node *) {}18
void del_node(Node *) {}19

9

Kapitel 18 – Algorithmen und Datenstrukturen

Verkettete Listen (Linked Lists)

Einfach verkettete Listen sind unkompliziert, aber in der Praxis eher unhandlich

Falls einmal der Vorgänger benötigt werden sollte, muss im schlechtesten Fall die

gesamte Liste erneut vom Start aus traversiert werden

Doppelt verkettete Listen sind hier deutlich handlicher:

Bei Bedarf kann einfach ein Element an Ort und Stelle eingefügt werden

Daraus ergeben sich einige interessante Anwendungsbereiche:

Beispiele: Verlaufshistorie im Browser, Textbearbeitung (Strg-Z, Strg-Y)

Bei Änderungen kann einfach ab einem beliebigen Punkt alles Nachfolgende entfernt und neues

Element angehängt werden

10

Kapitel 18 – Algorithmen und Datenstrukturen

Beispiel - Verkettete Listen

C++ bietet bereits doppel-verkettete Liste: std::list

Ähnliche Signatur wie Deque

Wesentlicher Unterschied

insert: fügt Element an Position X ein

erase: entfernt vorderstes Element

#include <list>
#include <iostream>
using std::cout, std::endl;

int main() {
 std::list<int> l;
 l.push_front(5);
 l.push_front(10);
 l.push_back(20);
 auto pos = l.end();
 l.insert(pos, 42);

 cout << "Back: " << l.back() << endl;
 l.pop_back();
 cout << "Back: " << l.back() << endl;

cpp Run ▶

11

Kapitel 18 – Algorithmen und Datenstrukturen

Bäume

Häufig verwendete Datenstruktur

Zahlreiche Anwendungen

Suchen von Elementen

→ B-Trees (Datenbanken), Rot-Schwarz-
Bäume

Aufteilen von Raum

→ Binary Space Partitioning (z.B. in
Videospielen)

Min-/Max-Heaps

→ Grundlage von Prioritätswarteschlangen

Hier und heute: Binärbaum - einfachste Form eines Baums

12

Kapitel 18 – Algorithmen und Datenstrukturen

Binärbäume

Besteht aus Knoten (Nodes)

Startknoten → Wurzel des Baums (Root)

Endknoten → Blätter des Baums (Leafs)

Vorgängerknoten → Elternteil (Parent)

Nachfolgeknoten → Kind (Child)

Jedem Knoten wird ein Wert

zugewiesen

Jeder Knoten hat höchstens zwei Kindknoten → binär

Suchbaumeigenschaft

Linkes Kind ist kleiner

Rechtes Kinds ist größer
13

Kapitel 18 – Algorithmen und Datenstrukturen

Eigenschaften von Binärbäumen

Wurzel hat keine Vorfahren

Blätter hingegen haben keine Kinder

→ Linkes und rechtes Kind

Darf aber auch nur einen/keinen Kindknoten
besitzen

Pfad: Folge von zusammenhängenden Eltern-
Kind-Knoten

Definition erfolgt rekursiv

14

Kapitel 18 – Algorithmen und Datenstrukturen

Höhe eines Baumes

Höhe eines Baums ist die Anzahl der Knoten auf

dem längsten Pfad im gesamten Baum

Betrachung von Wurzel zu Blatt

Höhe eines leeren Baums: 0, da keine Knoten

vorhanden

Beispiel:

15

Kapitel 18 – Algorithmen und Datenstrukturen

Größe eines Baumes

Ebene : Knoten mit Abstand

zur Wurzel

Auf Ebene können jeweils zwischen

 und Elemente liegen

Max. Anzahl Elemente bei Höhe :

16

Kapitel 18 – Algorithmen und Datenstrukturen

Eigenschaften von Binärbäumen

vollständiger Baum der Höhe besitzt

Knoten

Sei : Dann braucht man höchstens nur

 Schritte, um ein Element zu suchen!

Beispiel:

Degenerierter Baum

Aus Baum wird eine Liste

Bei Knoten wären dann wieder Vergleiche notwendig (statt

))

Ein extremes Gegenbeispiel (Worst Case) → entspricht Liste

17

Kapitel 18 – Algorithmen und Datenstrukturen

Vorteile von Binärsuchbäumen

Erlaubt schnelle Suche

Ablauf

Falls gleich → Ende der Suche, alle sind glücklich

Ansonsten

Gesuchtes Element ist kleiner → nach Links

Gesuchtes Element ist größer → nach rechts

Großartige Eigenschaft: Bei Auswahl des nächsten Teilbaums fallen alle anderen

Teilbäume weg

Bei (balancierten) Binärbäumen halbiert sich der verbleibende Suchraum im besten

Fall automatisch

18

Kapitel 18 – Algorithmen und Datenstrukturen

Stolpersteine

Nur ein Baum mit gefüllten Ebenen benötigt wenig Schritte für die Traversierung

Ziel: gleichmäßig befüllen oder nachträglich balancieren

Nur bei balancierten Bäumen liegt die Suchzeit bei

Zur Balancierung gibt es eine Reihe von verschiedenen Algorithmen

Klassisches Beispiel: Rot-Schwarz-Bäume

Abwechselnde Einfärbung der Ebenen mit rot und schwarz

Anschließend Balancieren basierend auf der Farbe

19

Kapitel 18 – Algorithmen und Datenstrukturen

Durchlaufstrategien

Zwei Arten der Traversierung

Breitensuche (Breadth-First Search)

Tiefensuche (Depth-First Search)

Preorder: Zuerst ganz nach links, dann schrittweise nach rechts

Inorder: Reihenfolge der Knotenwerte (aufsteigend)

Postorder: Erst alle Kinder, dann den aktuellen Knoten

Unterschiedliche Suchmuster können bei der Ausgabe/Darstellung des Baums

hilfreich sein

20

Kapitel 18 – Algorithmen und Datenstrukturen

Beispiel - Durchlaufstrategien

Für Tiefensuche (DFS): Rekursion verwenden

Breitensuche (BFS) verwendet hingegen eine

Warteschlange (hier nicht dargelegt)

void preorder(Node * node) {1
 cout << node->value;2
 preorder(node->left);3
 preorder(node->right);4
}5
preorder(root); // != NULL6

void inorder(Node * node) {1
 inorder(node->left);2
 cout << node->value;3
 inorder(node->right);4
}5
inorder(root); // != NULL6

void postorder(Node * node) {1
 postorder(node->left);2
 postorder(node->right);3
 cout << node->value;4
}5
postorder(root); // != NULL6

21

Kapitel 18 – Algorithmen und Datenstrukturen

Beispiel - Durchlaufstrategien

Je nach Strategie andere Ausgabe:

Preorder:

Inorder:

Postorder:

void preorder(Node * node) {1
 cout << node->value;2
 preorder(node->left);3
 preorder(node->right);4
}5
preorder(root); // != NULL6

void inorder(Node * node) {1
 inorder(node->left);2
 cout << node->value;3
 inorder(node->right);4
}5
inorder(root); // != NULL6

void postorder(Node * node) {1
 postorder(node->left);2
 postorder(node->right);3
 cout << node->value;4
}5
postorder(root); // != NULL6

22

Kapitel 18 – Algorithmen und Datenstrukturen

Beispiel - Durchlaufstrategien

Praktische Anwendung:

Erstellen einer Kopie (Preorder)

Ausgabe des Baums (Inorder)

Löschen des Baums (Postorder)

void preorder(Node * node) {1
 cout << node->value;2
 preorder(node->left);3
 preorder(node->right);4
}5
preorder(root); // != NULL6

void inorder(Node * node) {1
 inorder(node->left);2
 cout << node->value;3
 inorder(node->right);4
}5
inorder(root); // != NULL6

void postorder(Node * node) {1
 postorder(node->left);2
 postorder(node->right);3
 cout << node->value;4
}5
postorder(root); // != NULL6

23

Kapitel 18 – Algorithmen und Datenstrukturen

Hashing

Hashing ist ebenso wie Binärbäume weit verbreitet

Ziel: Erstellen einer eindeutigen Kennung, um Daten identifizieren zu können

Abstraktes Beispiel: Postleitzahl schränkt Zustellungsort ein

44227 → Dortmund (Eichlinghofen)

Abbildung von Daten erfolgt mit Hashfunktionen

Mathematische Abbildung, erzeugt aus Daten einen sogenannten Hashwert

→ eindeutiger Indentifizierer

Nützliche Eigenschaften von Hashwerten

In der Regel deutlich kleiner als die Daten

Rückschluss auf zugrundeliegende Daten im Allgemeinen nicht möglich

24

Kapitel 18 – Algorithmen und Datenstrukturen

Hashing

Großer Zahlenraum der Hashwerte notwendig

Erlaubt eindeutige Zuordnung zwischen Hashwert und Daten

Ansonsten: Mehrere Daten haben den gleichen Hashwert (→ Hashkollision)

Beispiel: → schlechte Hashfunktion

Sehr einfach, aber maximal 10 mögliche Hashwerte (0 - 9) → viele Kollisionen

Zahlenraum der möglichen Werte der Hashfunktion sollte deutlich größer sein als die Zahl der

tatsächlichen Hashwerte

Eigenschaften einer guten Hashfunktion

Vermeidet Kollisionen oder macht sie zumindest sehr unwahrscheinlich

Voraussetzung: Möglichst „zufällig“, damit der Hashwert möglichst gleichverteilt im Zahlenraum liegt

Einfach zu berechnen!

25

Kapitel 18 – Algorithmen und Datenstrukturen

Hashing

Es existieren zahlreiche Hashfunktionen mit unterschiedlichen Einsatzgebieten

Einige Anwendungen

Indexierung: unter anderem Datenbanken, Caches, Dictionaries

Kryptographie: z.B. Hashwert aus Passwort berechnen, Abspeichern des Hashes (bcrypt)

[Dateivergleich: Prüfen der Integrität von großen Dateien durch separaten Hashwert (SHA1, MD5)

Bloom-Filter: unter anderem Spam-Filter, schnelles Nachschauen von Symbolen

→ Linker des GCC-Compilers bei dynamischen Bibliotheken

Blockchain: Bei Bitcoins wird fortwährend SHA-256 (kryptographische Hashfunktion) berechnet

26

Kapitel 18 – Algorithmen und Datenstrukturen

Dictionary

Dictionary (Wörterbuch) ist eine spezielle Datenstruktur

Speichert Schlüssel zusammen mit Wert (Key-Value-Pairs)

Drei Kernoperationen:

Insert

Delete

Search

Gute Umsetzung: Mittels Hashtabelle

27

Kapitel 18 – Algorithmen und Datenstrukturen

Dictionary

Speichern für jeden Hash assoziierte Daten

Hashkollisionen: Erstellen einer Linked-List für
diesen Hashwert

Gute Hashfunktion → wenig/keine Kollisionen

Unwahrscheinliche Kollision

→ i.d.R. wenige Schritte für Nachschlagen

→ konstante Zeit

Dictionaries sind gut für schnelles und
zuverlässiges Nachschauen geeignet

keys

John Smith

Lisa Smith

Sam Doe

Sandra Dee

Ted Baker

buckets
000

001 Lisa Smith 521-8976

002

: : :
151

152 John Smith 521-1234

153 Sandra Dee 521-9655

154 Ted Baker 418-4165

155

: : :
253

254 Sam Doe 521-5030

255

© Jorge Stolfi CC BY-SA 3.0

28

Kapitel 18 – Algorithmen und Datenstrukturen

Dictionary in Programmiersprachen

Dictionaries existieren in zahlreichen Programmiersprachen

Java: HashMap<K,V>

C#: Dictionary<K,V>

Python: dict() bzw. {} (sehr starke Verwendung)

… und noch vielen weiteren mehr

C++: STL-Container namens std::unordered_map

Achtung Verwechslungsgefahr: In C++ gibt es außerdem std::map
std::map ist allerdings mit Red-Black-Bäumen umgesetzt (→ keine Hashtabelle)

29

Kapitel 18 – Algorithmen und Datenstrukturen

Beispiel - std::unordered_map
#include <iostream>
#include <string>
#include <unordered_map>

using std::cout, std::endl;

int main() {
 std::unordered_map<int, std::string> int_str_dict = {
 {1, "Eins"}, // Key und Value
 {2, "Zwei"},
 };

 // Insert
 int_str_dict.insert({42, "Zweiundvierzig"});
 int_str_dict.insert({4711, "Siebenvierzigelf"});

cpp Run ▶

30

Dictionaries werden Euch noch
oft begegnen. Es lohnt sich, sie zu
kennen!

Kapitel 18 – Algorithmen und Datenstrukturen

Exkurs: Graphen

Weiteres großes Gebiet der Mathematik und

Informatik: die Graphentheorie

Ein Graph ist eine abstrakte Struktur, die verschiedene

Objekte (Knoten) miteinander über Kanten verbindet

Einfache Anwendungsbeispiele

Navigation → Straßenbahn und Verkehr

Netzwerke → Computernetzwerke/Internet, aber auch Funkverbindungen (z.B. überlappendes

Mobilfunknetz)

Soziale Netzwerke → Abbildungen von Interaktionen und Gruppen (Social Media Bubbles)

Layout-Fragen bei elektronischen Schaltungen

Bahnnetz Dortmund (© R. Schwandl –
UrbanRail.net)

31

Übrigens: Ein Binärbaum ist auch
nur ein spezieller Graph 😊

https://www.urbanrail.net/eu/de/do/dortmund.htm
https://www.urbanrail.net/eu/de/do/dortmund.htm

Kapitel 18 – Algorithmen und Datenstrukturen

Beispiele für Graphen

Einfaches Beispiel: Nord-

Campus als Graph

Kreuzungen sind Knoten,

Straßen sind Kanten

32

Kapitel 18 – Algorithmen und Datenstrukturen

Beispiele für Graphen

Graphen sind sehr vielseitig: Chemische Verbindungen als Graph darstellbar

Beispiel: Koffein als Graph dargestellt

Atome → Knoten, Bindungen → Kanten

© NEUROtiker (Wikipedia.org, Public Domain)

33

https://commons.wikimedia.org/wiki/File:Koffein_-_Caffeine.svg

Kapitel 18 – Algorithmen und Datenstrukturen

Definition von Graphen

Graph besteht aus

einer Menge von Knoten (Vertex bzw. Plural Vertices) und

einer Menge Kanten (Edges) mit (→ „jedes E wird aus zwei V gebildet”)

Grad (degree) eines Knotens ist die Anzahl an adjazenten Knoten

Mit anderen Worten: Alle zu durch eine Kante verbundenen Knoten sind adjazent

Beispiel: → „5 hat vier Nachbarn”
34

Kapitel 18 – Algorithmen und Datenstrukturen

Speicherung von Graphen

Abschließend: Exemplarische Speicherung von Graphen

Zwei Möglichkeiten: Adjazenzliste oder Adjazenzmatrix

In der Praxis: Adjazenzliste, weil Matrix Speicher und Zeit braucht

Außerdem: Viele Graphen haben Lücken (sparse) → viele 0 in Matrix

Adjazenzmatrix: Setze in 2D-Array bei

Kante 1, sonst 0
Adjazenzliste: Erstelle für jeden Knoten

Liste mit Nachbarn

35

Kapitel 18 – Algorithmen und Datenstrukturen

Weitere Algorithmen der STL

STL besteht hauptsächlich aus von Containern, Algorithmen und Iteratoren

Container: Die Wichtigsten wurden vorgestellt ✅

Iteratoren: Bereits kurz vorgestellt ✅

Algorithmen: Implementierung besonders häufig verwendeter Funktionen (noch nicht betrachtet)

Zum Abschluss noch einige interessante Teile des Algorithmen-Teils

Algorithmen arbeiten meist mit Iteratoren (oder wandeln Eingabe automatisch in einen Iterator um)

Sind in Headern <algorithm> , numeric und memory zu finden ()

Unbedingt reinschauen! Sehr viele Funktionen, die einem das Leben erleichtern!

Link

36

https://en.cppreference.com/w/cpp/algorithm.html

Kapitel 18 – Algorithmen und Datenstrukturen

Beispiel - std::accumulate

std::accumulate : Addiert die Zahlenwerte in einem STL-Container automatisch

#include <iostream>
#include <vector>
#include <numeric>

using std::cout, std::endl;

int main() {
 std::vector<int> vec = {1, 3, 5, 10};
 // Parameter 3: 0 ist der Startwert der Summe
 int result = std::accumulate(vec.begin(), vec.end(), 0);
 cout << "Sum of vector: " << result << endl;

}

cpp Run ▶

37

Kapitel 18 – Algorithmen und Datenstrukturen

Beispiel - std::count

Zählt die Anzahl der Elemente, die einen vorgegebenen Werten haben

#include <iostream>
#include <vector>
#include <algorithm>

using std::cout, std::endl;

int main() {
 std::vector<int> vec = {1,2,3, 3, 5, 10, 14, 17, 3, 18, 22, 42};
 int count_3 = std::count(vec.begin(), vec.end(), 3);
 cout << "Number of 3: " << count_3 << endl;

}

cpp Run ▶

38

Kapitel 18 – Algorithmen und Datenstrukturen

Beispiel - std::sort

Sortiert vorgegebene Elemente in aufsteigender Reihenfolge

Absteigende Reihenfolge: std::greater() und ggf. Operator operator< implementieren

#include <iostream>
#include <vector>
#include <algorithm>

using std::cout, std::endl;

int main() {
 std::vector<int> vec = {5, 2, 1, 10, 4, 42};
 cout << "Original: \t";
 for (const int& i: vec) {
 cout << i << ", ";
 }

 std::sort(vec.begin(), vec.end());
 cout << "\nSorted: \t";

cpp Run ▶

39

Kapitel 18 – Algorithmen und Datenstrukturen

Beispiel - std::transform

Wendet eine Operation schrittweise auf jedes Element eines Containers an

#include <iostream>
#include <vector>
#include <algorithm>

using std::cout, std::endl;

template <typename T>
T double_val(T value) {
 return value * 2;

}

int main() {
 std::vector<int> vec = {5, 2, 1, 10, 4, 42};
 cout << "Original: \t";
 for (const int& i: vec) {

cpp Run ▶

40

Kapitel 18 – Algorithmen und Datenstrukturen

Ausblick

Ein sehr kleiner Einblick in die Welt der Algorithmen und Datenstrukturen

Für ein gutes Programm ist auch ein Verständnis dieses Bereichs notwendig

Anders ausgedrückt: Gute Entwickler:innen müssen neben dem Programmieren auch
verstehen, was entwickelt werden muss und wie dies effizient möglich ist

→ Mischung aus gutem Verständnis der Programmiersprache und der Algorithmen

41

Kapitel 18 – Algorithmen und Datenstrukturen

Ausblick

Wir waren hiermit gestartet …

Entwurf/Planung
Konkrete Umsetzung

#include<stdio.h>

int main() {
 printf("Hello World");
 return 0;
}

Design, Analyse,Design, Analyse,

Korrektheits- undKorrektheits- und

Laufzeitbeweis,Laufzeitbeweis,

PseudocodePseudocode

ProgrammierungProgrammierung

 (EIDP) (EIDP)

Testen, Fehler-Testen, Fehler-

beseitigungbeseitigung

Wartung/PflegeWartung/Pflege

Programmierung als Bindeglied

zur echten Welt und

praktische Umsetzung von theoretischen

Problemen

TODO Abschließende weise Worte

42

Kapitel 18 – Algorithmen und Datenstrukturen

Ausblick: Wo geht die Reise weiter?

Für diejenigen, die nach EidP noch weiter programmieren wollen

1. Modul Datenstrukturen, Algorithmen und Programmierung 2 (DAP2)

Pflichtmodul für Informatiker:innen, im Sommersemester

Die Inhalte, die in diesem Kapitel angesprochen wurden, in detaillierter Form und noch einiges mehr!

Viele Algorithmen und Datenstrukturen mit praktischer Umsetzung. Macht Spaß 😊

2. Modul Betriebssysteme (BS)

Pflichtmodul für Informatiker:innen, ebenfalls im Sommersemester

Wichtige, weiterführende Konzepte: nebenläufige Programmierung, Speicher/Caches, …

Sehr wichtig zum Verständnis des Embedded-Bereichs!

43

Kapitel 18 – Algorithmen und Datenstrukturen

Abschlussarbeiten

Ihr schreibt bestimmt irgendwann einmal eine Abschlussarbeit 😀

Wenn Euch Hardware-nahe und/oder Betriebssystem-nahe Themen interessieren,
denkt gerne an uns! 😀

Wir interessieren uns auch für Themen aus der E-Technik.

Meldet Euch dann gerne bei uns: https://sys.cs.tu-dortmund.de/

44

https://sys.cs.tu-dortmund.de/

Kapitel 18 – Algorithmen und Datenstrukturen

Tschüss!

🤞 Viel Erfolg 🤞
und vielen Dank für die Aufmerksamkeit! 🙏

Am Donnerstag gibt es eine Fragestunde!

Bitte bereitet Fragen zum Stoff vor.

45

Kapitel 18 – Algorithmen und Datenstrukturen

