Kapitel 17 - Generische Programmierung

Peter Ulbrich
AG Systemsoftware

Veranstaltungswebseite

R % Arbeitsgruppe
technische universitat . . .
@ s (apitel 17 Genefioche Programmicrune (Systemsoftware

https://sys.cs.tu-dortmund.de/
https://sys.cs.tu-dortmund.de/de/lehre/ws25/eidp
https://github.com/decker-edu/decker/

Einleitung

o Konzept der zielt auf Wiederverwendbarkeit ab

e Umsetzung in C++ mit (= Schablonen)

e |hr kennt sie schon!
o std::vector,

o std::unique_ptr,

° nur die Anwendersicht — ,gewilinschten Typ in Klammern angeben®

o std::vector<int> vec; // Enthalt nur int

° ,Offnen der Motorhaube® und Erstellen eigener Templates

Kapitel 17 - Generische Programmierung 2

Problemstellung

Zwei Integer addieren // Zwei verschiedene Funktionen
// notwendig:
Zwei FlieBkommazahlen NG Brelelaie Suly s GEA) o
return (suml + sum2);
addieren }
6

. . I ST TS B L 7/ double add(double suml, double sum2) {

Aufgabe: Zwei 64-bit W (suml + sum2);
Kopie ful

o Aufwendig
o Fehleranfallig
o Wird unubersichtlich

Kapitel 17 - Generische Programmierung 3

Templates

e Schlisselwort template kundlgt 1 // Deklaration von Template-Funktionen
2 template <typename T>
Schablone an 3 T add(T suml, T sum2) {
4 return (suml + sum2);
e Abschnitt <typename T> beschreibt 2 }
Schablonenparameter 7 // Mehrere verschiedene Typen auch ok
8 template <typename T, typename U>
e T als Platzhalter fur einen Datentyp e A S
10 return (suml + sum2);
11}

o Platzhalter ersetzt ein Datentyp bei Deklaration: T eine _variable

° Erster Buchstabe von Platzhaltern wird grof3 geschrieben

Kapitel 17 - Generische Programmierung 4

Beispiel - Template-Funktionen

using std::cout, std::endl;

template <typename T>
T add(T suml, T sum2) {
return (suml + sum2);

template <typename T, typename U>
T add mixed(T suml, U sum2) {
return (suml + sum2);

}

int main() {
cout << "Add double: " << add<double>(2.5, 1.3) << endl;
cout << "Add int: " << add<int>(4, 3) << endl;

Kapitel 17 - Generische Programmierung 5

Terminologie

e Automatische Umwandlung in C++ —

e Umwandlung eines generischen Typs in einen Konkreten
— (Monomorphization)

e Generische Funktionen / Klassen kdnnen neuen Programmcode erzeugen

— Meta-Funktionen / Meta-Klassen

— Metaprogrammierung

© Template Metaprogramming (synonyme Verwendung)

o Sehr beliebt, ein groRer Teil der Sprache wird damit implementiert

Kapitel 17 - Generische Programmierung

Klassenschablonen

o AUCh K|assen kbnnen eine // Einfaches Paaren zweiler Klassen

. template <typename T, typename U>
Schablone sein N

public:

o Datentyp Pair T first;
6 U second;
® Zwel Templateparamefpr 7 void setFirst(T val) { first = val; }

d(U val) { second = val; }
— Angabe zweier Dat

: . 11 // Verwendung:
0 Gibt es auch in der 17 olass Foo 1:
STL class Bar {};
— std: :pair verfligbar Pair<Foo, Bar> pair;

e |hr kennt Klassenschablonen schon! Aber woher? &

Kapitel 17 - Generische Programmierung 7

Beispiel - Klassenschablonen

using namespace std;

template <typename T, int NUM>
class {

T data[NUM];

int pos;
public:

Storage() : pos(0) {}

void put(T val) {

data[pos] = val;

pos = (pos + 1) % NUM;
}
void print() {

for (int i = 0; i < NUM; i++) {
cout << dataf[i] << ",";
1

Kapitel 17

- Generische Programmierung

Templates

° Compiler ersetzt Platzhalter

e Compiler findet ,unbekannten” Funktionsaufruf

o ,unbekannt” = Neuer Templateparameter
o Kopieren des Template-Codes und Ersetzen der Platzhalter

o Alle nachfolgenden Aufrufe verwenden dann die erstellte Kopie
o Wichtig: Es wird fur jeden Datentyp eine eigene Kopie erstellt

. Automatisch erzeugter Programmschnipsel

o |Ist auch nachher in Binardatei so vorhanden

o Fur jeden Datentyp wird separater Code erzeugt

Kapitel 17 - Generische Programmierung 9

Fallstricke

o in Header- und Source-Datei

— Schablonen im Header definieren
e Kann sehr unubersichtlich sein

e Uber Tricks ist die Trennung dennoch moglich

o Deklarierung des Templates im Header, Definition des Template-Codes in separater Datei (wie gehabt)

o Am Ende des Headers #include -Anweisung: Fligt Quellcode in den Header ein

Lacal — Soch 7,\
____7 nheup L/ CyL?(\
e e

w S{a""c’
Aebug T

Kapitel 17 - Generische Programmierung S} a\lx(10

Automatische Ableitung von Parametern

e Compilter muss Templateparameter

kennen using namespace std;
° Eh1e|1eLK3Instanz template <typename T, typename U>
struct {
erzeugen? T first;
U second;
J Compiler-Fehler, wenn Pair(T £, U u) : first(f), second(u) {}
}i

Doppeldeutigkeiten vorhanden

int main() {

e Compiler kann Parameter
. . Pair<> pl = {1, 2};
automatisch ableiten cout << pl.first << endl;

Pair<int, int> p2 = {1, 2};

ANt << Nn? fFirvaetr << oandl.

o : Typen immer explizit angeben

Kapitel 17 - Generische Programmierung 11

Beispiel - Ableiten von Templateparametern

using std::cout, std::endl;

template <typename T>
T add(T suml, T sum2) {
return (suml + sum2);

}

int main() {
cout << "Add double: " << add(2.5, 1.3) << endl;
cout << "Add int: " << add(4, 3) << endl;

Kapitel 17 - Generische Programmierung 12

Standardwerte flir Schablonenparameter

haben

e Instanziierung erfolgt mit diesen, ohne explizite

Angabe

kbnnen 1 template <typename T = int,
2 typename U = double>
3 struct Pair {
4 T first;
5 U second;
6 };
7
8 int main() {
9 Pair pl; // <int, double>
10 }

Kapitel 17 - Generische Programmierung 13

Herausforderungen mit Schablonen

e Sind

o Wichtig: Beachtet einige Punkte

O

O

O

Viele Templates = erhéhte Ubersetzungszeit (Instanziierung)
Kann auch unndétiger Code generiert werden — groél3eres Binary
Fehler in (geschachtelter) Templateprogrammierung sind anspruchsvoll

— Kryptische Fehlermeldungen beim Kompilieren

Eher kleiner Nachteil fur flexiblen Programmcode

Kapitel 17 - Generische Programmierung

14

Typbeschrankung

° Vorgaben an Schablonenparameter

0 Addieren zweier Objekte Foo und Bar mithilfe von add ()

— wenig sinnvoll, sollte nicht erlaubt sein

o Umsetzung mittels Constraints // add() soll nur Integer bzw.

// float/double akzeptieren
#include <type traits>

moglich

o (— Name) fr einen
Platzhalter

template <typename T>
// T entweder Integer ODER Float
requires std::is_integral v<T> ||
std::1is_ floating point v<T>
T add(T suml, T sum2) {
return suml + sum2;

o Abbruch wahrend des Kompilierens

R O O 00 o6 U1 b LW IN B

e requires markiert Einschrankung

= =

}

Kapitel 17 - Generische Programmierung 15

Aufbau von Typbeschrankungen

e Verknupfung mehrerer Eigenschaften mit

(logisches UND) bzw.

alle Eigenschaften oder eine oder mehr der
Eigenschaften erfillt werden

e Pruffunktionen geben dabei nur true oder

false zurick

// add() soll nur Integer bzw.
) // float/double akzeptieren
(logisches ODER) #include <type traits>
template <typename T>
// T entweder Integer ODER Float
requires std::is_integral v<T> ||
std::1is_floating point v<T>
T add(T suml, T sum2) {
return suml + sum2;

Wird kompiliert, wenn

R O O 00~ o U s WIDN -

_ =

}

Kapitel 17 - Generische Programmierung 16

Beispiel - Constraints

using std::cout, std::endl;
template <typename T>

requires std::is integral v<T> || std::is floating point v<T>
T add(T suml, T sum2) {
return suml + sum2;

class {};
int main() {

cout << add<int>(3,4) << endl;
~N11t+ << adA<cfFTna+>r2 R T 2Y << onAdl .

Kapitel 17 - Generische Programmierung

17

e /usammenfassen von Constraints

—

e Bildung eines ~der
alle Eigenschaften erfullt

e Erspart Schreibarbeit und erlaubt
einfache Wiederverwendung

00O O Ul i WDN B

O

10
11
12
13

#include <type traits>

// Jetzt als abstrakter Typ

template <typename T>

concept FloatOrInt = std::is_integral v<T>
|| std::is floating point v<T>;

template <typename T>
// Benutzung identisch
requires FloatOrInt<T>
T add(T suml, T sum2) {
return suml + sum2;

}

e Analog zur objektorientierten Programmierung werden jetzt verschiedene

Eigenschaften zu einem gemeinsamen Typ zusammengefasst

Kapitel 17 - Generische Programmierung 18

Beispiel - Concepts

using std::cout, std::endl;

template <typename T>
concept FloatOrInt = std::is integral v<T> || std::is floating point v<T>;

template <typename T>

requires FloatOrInt<T>

T add(T suml, T sum2) {
return suml + sum2;

class {};

int main() {
ANt << adA<c i n+S>S(2 A << eandl .

Kapitel 17 - Generische Programmierung 19

Typeinschrankung in der STL

e Standardbibliothek bietet eine Reihe von vordefinierten Constraints und Concepts

o ,Klasse X ist abgeleitet von Y*

o std::derived_from<X,Y>; // Teil des Headers <concepts>

e Fur vollstandige Liste vordefinierter Constraints und Concepts siehe Dokumentation

(©)
©)

©)

Kapitel 17 - Generische Programmierung 20

https://en.cppreference.com/w/cpp/language/constraints.html
https://en.cppreference.com/w/cpp/concepts.html
https://en.cppreference.com/w/cpp/meta.html

Resiimee Typeneinschrankung

° Template-Metaprogramming ist ein zweischneidiges Schwert

e Auf der einen Seite:
e Auf der anderen Seite: Wird

e Art und Umfang der Templateprogrammierung hangt vom Projekt ab. Es ist auf jeden
Fall sehr nutzlich, sie zu kennen.

. Fangt klein an! Nehmt kleine Beispiele

Kapitel 17 - Generische Programmierung 21

Exkurs: Embedded Template Library

° STL auf eingeschrankten Geraten haufig nicht lauffahig
° Keine dynamische Speicherallokierung erlaubt

o Betrifft zum Beispiel bereits kennengelernte SpeichervergrofRerung bei
std::vector (Verdoppelung des alten Werts)

1. Erstellen einer eigenen Allokator-Funktion

2. Verwenden einer externen Bibliothek:

e Nicht Teil des C++-Standards, reimplementiert aber die Algorithmen und
Datenstrukturen mit statischem Speicher

e Sehr nutzlich, diese zu kennen! &

Kapitel 17 - Generische Programmierung 22

https://www.etlcpp.com/

Exkurs: Statische Polymorphie

e Problem: Virtuelle Methoden

werden dynamisch gebunden template <typename T>
struct {
o vtab le kostet Speicher, Rechenzeit void draw() const {
o Auf Eingebetteten Systemen ggf. nicht static cast<const T&>(*this).drawImpl();
' }
erwunscht }:
o Basisklasse struct : Shape<Circle> {

void drawImpl() const {
std::cout << "Circle\n";

als Template

o Ruft abgeleitete Klasse auf \ }
o static_cast wahlt statisch die Kind-
Implementierung struct : Shape<Square> {
)) . void drawImpl() const {
o Keine vtable und kein dynamisches ctAe emmnt << "QAamaraln' .

Binden mehr

Kapitel 17 - Generische Programmierung 23

Zusammenfassung

e Schablonen flr Funktionen und Klassen

o Erlauben wiederverwendbaren Code

o Einmal schreiben
o Fur verschiedene Datentypen nutzen

o Reduziert Fehleranfalligkeit

e Aber: Schablonen werden schnell komplex

o Fehlermeldung teils schwer zu verstehen

Kapitel 17 - Generische Programmierung 24

Kapitel 17 - Generische Programmierung

