
Kapitel 17 - Generische Programmierung

Kapitel 17 - Generische Programmierung

Peter Ulbrich

AG Systemsoftware

Veranstaltungswebseite

🚀 by Decker

1

https://sys.cs.tu-dortmund.de/
https://sys.cs.tu-dortmund.de/de/lehre/ws25/eidp
https://github.com/decker-edu/decker/

Kapitel 17 - Generische Programmierung

Einleitung

Konzept der generischen Programmierung zielt auf Wiederverwendbarkeit ab

Umsetzung in C++ mit Templates (= Schablonen)

Ihr kennt sie schon!

std::vector ,

std::unique_ptr ,

Bisher: nur die Anwendersicht → „gewünschten Typ in Klammern angeben“

std::vector<int> vec; // Enthält nur int

Heute: „Öffnen der Motorhaube“ und Erstellen eigener Templates

2

Kapitel 17 - Generische Programmierung

Problemstellung

Aufgabe: Zwei Integer addieren

Aufgabe: Zwei Fließkommazahlen

addieren

Aufgabe: Zwei 64-bit Werte addieren

Beobachtung: Kopie für jeden Datentyp

Problem

Aufwendig

Fehleranfällig

Wird unübersichtlich

// Zwei verschiedene Funktionen1
// notwendig:2
int add(int sum1, int sum2) {3
 return (sum1 + sum2);4
}5

6
double add(double sum1, double sum2) {7
 return (sum1 + sum2);8
}9

3

Die Lösung: Templates! 😀

Kapitel 17 - Generische Programmierung

Templates

Schlüsselwort template kündigt

Schablone an

Abschnitt <typename T> beschreibt

Schablonenparameter

T als Platzhalter für einen Datentyp

Platzhalter ersetzt ein Datentyp bei Deklaration: T eine_variable

Konvention: Erster Buchstabe von Platzhaltern wird groß geschrieben

// Deklaration von Template-Funktionen1
template <typename T>2
T add(T sum1, T sum2) {3
 return (sum1 + sum2);4
}5

6
// Mehrere verschiedene Typen auch ok7
template <typename T, typename U>8
T add_mixed(T sum1, U sum2) {9
 return (sum1 + sum2);10
}11

4

Kapitel 17 - Generische Programmierung

Beispiel - Template-Funktionen

#include <iostream>
using std::cout, std::endl;

// Deklaration von Template-Funktionen
template <typename T>
T add(T sum1, T sum2) {
 return (sum1 + sum2);

}
// Mehrere verschiedene Typen auch ok
template <typename T, typename U>
T add_mixed(T sum1, U sum2) {
 return (sum1 + sum2);

}

int main() {
 cout << "Add double: " << add<double>(2.5, 1.3) << endl;
 cout << "Add int: " << add<int>(4, 3) << endl;

// Ggf Rundungsfehler in Implementierung abhängig von erstem Typ T

cpp Run ▶

5

Kapitel 17 - Generische Programmierung

Terminologie

Automatische Umwandlung in C++ → implizite Template-Instanziierung

Umwandlung eines generischen Typs in einen Konkreten

→ Monomorphisierung (Monomorphization)

Generische Funktionen / Klassen können neuen Programmcode erzeugen

→ Meta-Funktionen / Meta-Klassen

→ Metaprogrammierung

Häufiger Begriff: Template Metaprogramming (synonyme Verwendung)

Sehr beliebt, ein großer Teil der Sprache wird damit implementiert

6

Kapitel 17 - Generische Programmierung

Klassenschablonen

Auch Klassen können eine
Schablone sein

Hier: Datentyp Pair

Zwei Templateparameter

→ Angabe zweier Datentypen

Randbemerkung: Gibt es auch in der
STL

→ std::pair verfügbar

// Einfaches Paaren zweier Klassen1
template <typename T, typename U>2
class Pair<T, U> {3
public:4
 T first;5
 U second;6
 void setFirst(T val) { first = val; }7
 void setSecond(U val) { second = val; }8
};9

10
// Verwendung:11
class Foo {};12
class Bar {};13

14
Pair<Foo, Bar> pair;15

Ihr kennt Klassenschablonen schon! Aber woher? 🤔

7

Bspw. std::vector<int>

Kapitel 17 - Generische Programmierung

Beispiel - Klassenschablonen

#include <iostream>

using namespace std;

template <typename T, int NUM>
class Storage {
 T data[NUM];
 int pos;

public:
 Storage() : pos(0) {}
 void put(T val) {
 data[pos] = val;
 pos = (pos + 1) % NUM;
 }
 void print() {
 for (int i = 0; i < NUM; i++) {
 cout << data[i] << ",";

}

cpp Run ▶

8

Kapitel 17 - Generische Programmierung

Templates

Während der Übersetzung: Compiler ersetzt Platzhalter

Compiler findet „unbekannten” Funktionsaufruf

„unbekannt” = Neuer Templateparameter

Kopieren des Template-Codes und Ersetzen der Platzhalter

Alle nachfolgenden Aufrufe verwenden dann die erstellte Kopie

Wichtig: Es wird für jeden Datentyp eine eigene Kopie erstellt

Ergebnis: Automatisch erzeugter Programmschnipsel

Ist auch nachher in Binärdatei so vorhanden

Für jeden Datentyp wird separater Code erzeugt

9

Kapitel 17 - Generische Programmierung

Fallstricke

Trennung von Programmcode in Header- und Source-Datei nicht möglich

→ Schablonen im Header definieren

Kann sehr unübersichtlich sein

Über Tricks ist die Trennung dennoch möglich

Deklarierung des Templates im Header, Definition des Template-Codes in separater Datei (wie gehabt)

Am Ende des Headers #include -Anweisung: Fügt Quellcode in den Header ein

10

Kapitel 17 - Generische Programmierung

Automatische Ableitung von Parametern

Compilter muss Templateparameter

kennen

Problem: Eine neue Instanz

erzeugen?

Folge: Compiler-Fehler, wenn

Doppeldeutigkeiten vorhanden

Compiler kann Parameter

automatisch ableiten

#include <iostream>

using namespace std;

template <typename T, typename U>
struct Pair {
 T first;
 U second;
 Pair(T f, U u) : first(f), second(u) {}
};

int main() {
 // 0 Typen angegeben. ERROR
 Pair<> p1 = {1, 2};
 cout << p1.first << endl;

 Pair<int, int> p2 = {1, 2}; // Ok
cout << p2 first << endl;

cpp

Empfehlung: Typen immer explizit angeben

Run ▶

11

Kapitel 17 - Generische Programmierung

Beispiel - Ableiten von Templateparametern

#include <iostream>
using std::cout, std::endl;

template <typename T>
T add(T sum1, T sum2) {
 return (sum1 + sum2);

}

int main() {
 cout << "Add double: " << add(2.5, 1.3) << endl;
 cout << "Add int: " << add(4, 3) << endl;

}

cpp Run ▶

12

Kapitel 17 - Generische Programmierung

Standardwerte für Schablonenparameter

Schablonenparameter können Standardwerte

haben

Instanziierung erfolgt mit diesen, ohne explizite

Angabe

template <typename T = int,1
 typename U = double>2
struct Pair {3
 T first;4
 U second;5
};6

7
int main() {8
 Pair p1; // <int, double>9
}10

13

Kapitel 17 - Generische Programmierung

Herausforderungen mit Schablonen

Sind nützlicher Teil von C++

Wichtig: Beachtet einige Punkte

Viele Templates → erhöhte Übersetzungszeit (Instanziierung)

Kann auch unnötiger Code generiert werden → größeres Binary

Fehler in (geschachtelter) Templateprogrammierung sind anspruchsvoll

→ Kryptische Fehlermeldungen beim Kompilieren

Aber: Eher kleiner Nachteil für flexiblen Programmcode

14

Kapitel 17 - Generische Programmierung

Typbeschränkung

Wunsch: Vorgaben an Schablonenparameter

Beispiel: Addieren zweier Objekte Foo und Bar mithilfe von add()

→ wenig sinnvoll, sollte nicht erlaubt sein

Dank C++20: Umsetzung mittels Constraints

möglich

Definieren Beschränkungen (→ Name) für einen

Platzhalter

Ansonsten: Abbruch während des Kompilierens

requires markiert Einschränkung

// add() soll nur Integer bzw.1
// float/double akzeptieren2
#include <type_traits>3

4
template <typename T>5
// T entweder Integer ODER Float6
requires std::is_integral_v<T> ||7
 std::is_floating_point_v<T>8
T add(T sum1, T sum2) {9
 return sum1 + sum2;10
}11

15

Kapitel 17 - Generische Programmierung

Aufbau von Typbeschränkungen

Verknüpfung mehrerer Eigenschaften mit &&
(logisches UND) bzw. || (logisches ODER)

Wie bei Mengenlehre: Wird kompiliert, wenn

alle Eigenschaften oder eine oder mehr der

Eigenschaften erfüllt werden

Prüffunktionen geben dabei nur true oder

false zurück

// add() soll nur Integer bzw.1
// float/double akzeptieren2
#include <type_traits>3

4
template <typename T>5
// T entweder Integer ODER Float6
requires std::is_integral_v<T> ||7
 std::is_floating_point_v<T>8
T add(T sum1, T sum2) {9
 return sum1 + sum2;10
}11

16

Kapitel 17 - Generische Programmierung

Beispiel - Constraints

// add() soll nur Integer bzw.
// float/double akzeptieren
#include <iostream>
#include <type_traits> // für is_integral_v bzw. is_floating_point_v

using std::cout, std::endl;

template <typename T>
// Entweder Integer ODER Float
requires std::is_integral_v<T> || std::is_floating_point_v<T>
T add(T sum1, T sum2) {
 return sum1 + sum2;

}

class Foo {};
int main() {
 cout << add<int>(3,4) << endl;

cout << add<float>(2 5 1 3) << endl;

cpp Run ▶

17

Kapitel 17 - Generische Programmierung

Concepts

Zusammenfassen von Constraints

→ Concept

Bildung eines abstrakten Typen, der
alle Eigenschaften erfüllt

Erspart Schreibarbeit und erlaubt
einfache Wiederverwendung

Analog zur objektorientierten Programmierung werden jetzt verschiedene

Eigenschaften zu einem gemeinsamen Typ zusammengefasst

#include <type_traits>1
2

// Jetzt als abstrakter Typ3
template <typename T>4
concept FloatOrInt = std::is_integral_v<T>5
 || std::is_floating_point_v<T>;6

7
template <typename T>8
// Benutzung identisch9
requires FloatOrInt<T>10
T add(T sum1, T sum2) {11
 return sum1 + sum2;12
}13

18

Kapitel 17 - Generische Programmierung

Beispiel - Concepts

#include <iostream>
#include <type_traits>

using std::cout, std::endl;

// Jetzt als abstrakter Typ
template <typename T>
concept FloatOrInt = std::is_integral_v<T> || std::is_floating_point_v<T>;

template <typename T>
requires FloatOrInt<T> // Benutzung identisch
T add(T sum1, T sum2) {
 return sum1 + sum2;

}

class Foo {};
int main() {

cout << add<int>(3 4) << endl;

cpp Run ▶

19

Kapitel 17 - Generische Programmierung

Typeinschränkung in der STL

Standardbibliothek bietet eine Reihe von vordefinierten Constraints und Concepts

Beispiel: „Klasse X ist abgeleitet von Y“

std::derived_from<X,Y>; // Teil des Headers <concepts>

Für vollständige Liste vordefinierter Constraints und Concepts siehe Dokumentation

Constraints

Concepts-Bibliothek

Metaprogramming-Bibliothek

20

https://en.cppreference.com/w/cpp/language/constraints.html
https://en.cppreference.com/w/cpp/concepts.html
https://en.cppreference.com/w/cpp/meta.html

Kapitel 17 - Generische Programmierung

Resümee Typeneinschränkung

Fazit: Template-Metaprogramming ist ein zweischneidiges Schwert

Auf der einen Seite: Sehr mächtiger Werkzeugkasten

Auf der anderen Seite: Wird sehr schnell sehr komplex

Art und Umfang der Templateprogrammierung hängt vom Projekt ab. Es ist auf jeden

Fall sehr nützlich, sie zu kennen.

Empfehlung: Fangt klein an! Nehmt kleine Beispiele

21

Kapitel 17 - Generische Programmierung

Exkurs: Embedded Template Library

Großes Problem: STL auf eingeschränkten Geräten häufig nicht lauffähig

Simpler Grund: Keine dynamische Speicherallokierung erlaubt

Betrifft zum Beispiel bereits kennengelernte Speichervergrößerung bei

std::vector (Verdoppelung des alten Werts)

Zwei Auswege

1. Erstellen einer eigenen Allokator-Funktion

2. Verwenden einer externen Bibliothek:

Nicht Teil des C++-Standards, reimplementiert aber die Algorithmen und

Datenstrukturen mit statischem Speicher

Sehr nützlich, diese zu kennen! 😀

Embedded Template Library (ETL)

22

https://www.etlcpp.com/

Kapitel 17 - Generische Programmierung

Exkurs: Statische Polymorphie

Problem: Virtuelle Methoden

werden dynamisch gebunden

vtable kostet Speicher, Rechenzeit

Auf Eingebetteten Systemen ggf. nicht

erwünscht

Statische Polymorphie: Basisklasse

als Template

Ruft abgeleitete Klasse auf

static_cast wählt statisch die Kind-

Implementierung

Keine vtable und kein dynamisches

Binden mehr

#include <iostream>

template <typename T>
struct Shape {
 void draw() const {
 static_cast<const T&>(*this).drawImpl();
 }
};

struct Circle : Shape<Circle> {
 void drawImpl() const {
 std::cout << "Circle\n";
 }
};

struct Square : Shape<Square> {
 void drawImpl() const {

std::cout << "Square\n";

cpp Run ▶

23

Kapitel 17 - Generische Programmierung

Zusammenfassung

Schablonen für Funktionen und Klassen

Gut: Erlauben wiederverwendbaren Code

Einmal schreiben

Für verschiedene Datentypen nutzen

Reduziert Fehleranfälligkeit

Aber: Schablonen werden schnell komplex

Fehlermeldung teils schwer zu verstehen

24

Kapitel 17 - Generische Programmierung

