Kapitel 16 - Ausnahmebehandlung

Peter Ulbrich
AG Systemsoftware

Veranstaltungswebseite

echnische universita Arberts ru e
@ gortgmung et Kapitel 16 - Ausnahmebehandlung (’ SySte m%Of'I?V?/ére

https://sys.cs.tu-dortmund.de/
https://sys.cs.tu-dortmund.de/de/lehre/ws25/eidp
https://github.com/decker-edu/decker/

Einleitung

o Auftreten von Fehlern war nebensachlich

o |m ersten Teil der Vorlesung: errno
o AufSerdem: Bestimmte Riickgabewerte von Funktionen deuten auf Fehler hin

o Beispiel: (Posix-Funktion)

e Ein gutes Programm ...

1. verarbeitet unerwartete Ereignisse (,Fehlerfall“) angemessen.

2. verursacht im Katastrophenfall einen moglichst geringen Schaden.

o Bertcksichtigen der méglichen Fehlerfalle ist die

O

Kapitel 16 - Ausnahmebehandlung 2

Riickblick - Fehlerbehandlung in C

o Aus C sind bereits einige Arten der
Fehlerbehandlung bekannt

e Die einfachste Methode:

o Radikal: Zum Beispiel durch Aufruf exit ()
(stdlib.h) oder vorzeitiges return inmain()

e Funktioniert prinzipiell einwandfrei, aber:

o Nur fur sehr kleine Programme sinnvoll
o Sehr schlecht geeignet fiir den Dauerbetrieb (z.B. Webserver)

o Nicht akzeptabel in sicherheitsrelevanten Anwendungen

Kapitel 16 - Ausnahmebehandlung

'_l

O VW O JOo L WDN KL

bool func call() { /*...%*/ }

int main() {
bool success = func call();
if (!success) {
exit(1l);
} else {
exit(0);
}

-

Riickblick - Fehlerbehandlung in C

® KOdierung uber 1 // Beispiel aus Posix
. . 2 #include <fcntl.h>
Rickgabewert, z.B. 1nt 3
4 int main() {
e Unmittelbare Vorteile 5 // - 1, falls Fehler auftritt
6 int ret = open(, O RDONLY) ;
o Kein Abbruch mehr notwendig 7 if (ret < 0) {
8 // Fallunterscheidung fiir Fehlertyp
o Fehlergrund kann an Ort und Stelle 9 }
erkannt und behandelt werden 10 }

e Unmittelbarer Nachteil:

o Fehlerfalle missen nun einzeln kodiert bzw. dekodiert und behandelt werden

o Das ist leider der Tradeoff &

Kapitel 16 - Ausnahmebehandlung 4

Riickblick - Fehlerbehandlung in C

° errno 1 #include <fcntl.h>

2 #include <errno.h>

o Kodiert den Fehlergrund 3

. 4 int main() {
o Globale Variable 5 int ret = open(;, O RDONLY);
o Gilt fir Funktionen der C- 6 if (ret < 0) {))
. 7 i f == ENOENT *, L%
Standardbibliothek s, e) }

9

e errno hat eine

o Globale Variable aus errno.h
o Kodiert nur den jeweils letzten Fehlergrund (automatische Uberschreibung)

— Prifung wird sehr leicht vergessen, Grund ist dann ggf. bei Folgefehlern nicht mehr nachvollziehbar

o Wertekodierung ist abhangig von der Zielplattform
— andere Fehlercodes unter Linux/UNIX als unter Windows

Kapitel 16 - Ausnahmebehandlung 5

Ausnahmebehandlung in C++

e errno und Rickgabewerte existieren in C++ natirlich weiterhin

e Gerade bei Systemfunktionen fuhrt oft kein Weg daran vorbei, wie

e Es gibt allerdings noch weitere Wege

o Fehlerbehandlung mithilfe von

o Kombinierter Riickgabewert (Union von Wert + Fehler) mithilfe von std: :expected - nicht Thema in
diesem Kapitel

Kapitel 16 - Ausnahmebehandlung 6

e Ausnahmebehandlung ist tief in C++ verankert

el new und delete konnen Ausnahmen werfen

e Konzept hinter Exceptions ist relativ simpel

o Bei Auftritt eines Fehlers, z.B. Datei existiert nicht, wird dieser zunachst nur erkannt

o Behandlung des Fehlers erfolgt nicht unmittelbar, keine lokale Fehlerbehandlung wie bisher

o an aufrufende Funktion

)
)

Kapitel 16 - Ausnahmebehandlung 7

Terminologie

e Bei der Signalisierung wird die Ausnahme
e Aufrufende Funktion (

e Umsetzung
o try:Beginn eines Code-Blocks, in dem eine Ausnahme
ausgelost werden konnte
o throw: Werfen einer Ausnahme

o catch: Code-Block, der potenziell die Ausnahme
behandeln kann

(an exception)

an exception)

1 try {

2 bool error = may error();
3 if (error) {

4 throw MyException;

5 }

6 }

7 catch (MyException ex) {

8 // Behandlung der Ausnahme
9 // Zum Beispiel: Ausgabe
10 cout << ex.what();
11 }

Kapitel 16 - Ausnahmebehandlung 8

Fangen einer Ausnahme

e Betreten des catch -Blocks, wenn die Signatur 1 try {
d A h t 2 if (error) {
€r Ausnanme pass 3 throw MyException;
. . 4 }
o An den Nachsten weiterwerfen 5}
6 catch (MyException ex) {
— rethrow 7 // Behandlung der Ausnahme
8 // Zum Beispiel: Ausgabe
e Achtung: Beim Werfen wird die bisherige 12 } SAE SF EoMIEE]) F
Funktion verlassen 11 // ...
12 catch (OtherException ex) {
o Nach der Behandlung der Ausnahme erfolgt keine 13 /) ..
Riickkehr an die urspriingliche Stelle des Kontrollflusses 12 i/
o Daraus resultierende Folgen werden gleich beleuchtet 16 catch (int i) {
17 /) e
18 }
19 // ... und so weiter

Kapitel 16 - Ausnahmebehandlung 9

Ablauf einer Ausnahmebehandlung

1. catch -Handler ablaufen
2. Falls ein Ausnahmetyp auf einen Handler passt, wird er verwendet
— Nachfolgende Handler werden ignoriert
3. Kein passender Handler?
— zu daruberliegenden Funktionen

4. Falls auf der Ebene ein try -Block existiert = Schritt 1, sonst Schritt 3

e Ende der Ausnahmekette erreicht? = Aufruf von std::terminate()

o Sofortiger Abbruch des Programms ohne Riickkehr zur main()

o Gleiches geschieht Ubrigens, wenn eine neue Ausnahme wahrend der Ausnahmebehandlung entsteht

Kapitel 16 - Ausnahmebehandlung 10

Das Wurfobjekt

o Beliebiger Datentyp mittels throw
geworfen werden

e Es sollte ein entsprechendes catch
vorhanden sein

o Kann aber leicht vergessen werden

o Die sogenannte (

throw 1;

throw s+ // const char *
throw SpecialErrorClass() ;
try {

throw int i;
}
catch (MyException ex) {}
catch (const char * msg) {}
catch (...) { // Catch-All
cout << ;

}

o Eigentliche Verwendung: Akzeptieren beliebiger Parameter bei Funktionsaufruf (siehe printf)

o Akzeptieren beliebiger Ausnahmetypen (Catch All)

Kapitel 16 - Ausnahmebehandlung 11

Beispiel - Exceptions

using std::cout, std::endl;

class {
std::string msg;
public:

Error(std::string s) : msg(s) {}
const char* message() { return msg.c str(); }

}i

void throws char ptr() {

try {
throw "pointer error";

}
catch(int 1) {

ANt << 1 << eandl .

Kapitel 16 - Ausnahmebehandlung 12

Eigenschaften von Ausnahmeklassen

e Wie bei anderen Klassen auch

@)

Erstellung wie bisher gewohnt

o Dynamische Allokierung mit new und delete ebenfalls erlaubt (problematisch)

o Referenzen ebenfalls erlaubt

o Klassen durfen Vererbung und Polymorphie verwenden

e Achtung: Fallstricke und Untiefen! &

Aufraumen in jedem catch-Block

erforderlich

Kapitel 16 - Ausnahmebehandlung

0O o O s W DN R

try {
throw new MyException;

}
catch(MyException * me) {
delete me; // Ok...

}
VAETY

catch(...) {} // ...und hier?

13

Throw by value, catch by reference

e Allgemeine Herangehensweise bei Ausnahmen: 1 class Base {};
2 class MyException :
3 public Base {}
4 try {
e Der Hintergrund ist simpel 2 } throw MyException();
o stellt sicher, dass keine Speicherlecks entstehen /. catch(Base& e) {
8 // So ist es korrekt
o erlaubt Zugriff auf Methoden der Kinder einer 9 }
gefangenen Klasse 10 /7 «..
11 catch(...) {}

(Polymorphie statt versehentlicher Typkonvertierung)

Kapitel 16 - Ausnahmebehandlung 14

Verwendung von exception

o Beliebige Datentypen als Ausnahme 1 #include <exception>
2
erlaubt 3 using std::exception;
4
° verarbeitbare Datentypen 5 class MyException: public exception ({
6 public:
verwenden 7 const char* what()
8 const noexcept override {
o Daflr bietet C++ eine eigene Klasse: 1(9) } return ?
std::exception 11 };
12
o Hat eine virtuelle Methode what () 13 class IntError: public exception {
14 ublic:
o Beschreibt den Fehler, muss entsprechend in 15 i el e e
Kindklasse tUberschrieben werden 16 const noexcept override {
17 return ;
o const charx what() const noexcept 13 }
override; 19 };

Kapitel 16 - Ausnahmebehandlung 15

exception

using std::cout, std::endl;
using std::exception;

| Ermoglicht deutlich bessere und
class MyException: pull o . . o
public: tibersichtlichere -Blocke

const char* what()

eaeegunere. als generische Ellipse

}
}i
class IntError: public exception {
public:
const char* what() const noexcept override {

ratiirn "Tn+Rrrar" .

Kapitel 16 - Ausnahmebehandlung 16

Rethrowing

e Eine besondere Eigenschaft ist

das sogenannte Rethrowing

using std::cout, std::endl;
using std::exception;

e Nach dem Fangen und erneuten
Abarbeiten kann eine Ausnahme

class : public exception {

erneut mit throw geworfen public:
werden

return "MyException

e Grund: Andere Teile des Systems y, }

konnten auch am Auftreten der ,
void foo() {

Ausnahme interessiert sein try {
throw MyException();

1\ ~rat+te~rh (MuRvcantinng me))

Kapitel 16 - Ausnahmebehandlung

i

const char* what() const noexcept

:)"

°
4

override {

17

Reihenfolge der Exceptions

° erst Spe2|a|fal|e int divide(int dividend, int divisor) {
try {
behandlen if (divisor == 0) {
throw DivByZeroException();
e Je weiter unten die Ausnahme behandelt }
| | }
wird, desto generischer sollte der }
gefangene Typ sein catch (DivByZeroException e) { /#... */ }
// ..
catch (MathException e) { /*... #*/ }
// ..
catch (std::exception e) { /*... */ }
/) ..
catch (...) { /*... */ }

Kapitel 16 - Ausnahmebehandlung

18

Einschub: in anderen Programmiersprachen

mit Schlisselwort finally

db_connection. ()7

e Ausnahmebehandlung in vielen popularen 1 // Datenbank-Interaktion
. T 2 try {
Programmiersprachen ebenfalls tGblich ; db_connection. e
. 4 }
z.B. Java, Python oder Javascript 5 catch(Exception e) {
. . 6 // Print
o Nach den catch -Blocken ein Block 7 3
8 finally {
9
0

[

}
e Funktional wie ein Destruktor fiur die Ausnahmebehandlung

— Wird in jedem Fall ausgefiihrt, unabhangig vom catch -Block

e Existiert in C++ nicht, wird aber garantiert einmal an anderer Stelle auftauchen

Kapitel 16 - Ausnahmebehandlung 19

Ausnahmen im Konstruktor

e Exceptions auch in Konstruktoren /
Destruktoren moglich

e & Gefihrlich: Aufnahmebehandlung sorgt

eigentlich fur Aufruf der Destruktoren

o Bei einem Konstruktoraufruf geschieht dies nicht

o Objekt gilt erst

als

o Moglichst keine Nebeneffekte im Konstruktor,

wenn throw auftreten konnte

using std::cout, std:: endl;
class {
public:
Member () { cout << "MC" << endl; }

~Member () { cout << "MD" << endl; }
}i
class {
Member member;
public:
Class() {
cout << "CC" << endl;
throw 4711;
}
~Class() { cout << "CD" << endl; }
}i

Kapitel 16 - Ausnahmebehandlung 20

Ausnahmen im Destruktor

Kritisch wird es erst bei den Destruktoren using std::cout, std:: endl:

class Member {

try -Block auch hier erlaubt, aber...

public:
) . Member () { cout << "MC" << endl; }
Es gilt: Destruktoren werden am Ende eines ~Member cout << "MD" << endl; }

Scopes aufgerufe : :
Exceptions im Destruktor am

Tritt hier eine Aus .
besten vermeiden

— C++-Runtime b
Class() { cout << "CC" << endl; }

ohne zu zoégern ~Class() {
i] cout << "CD" << endl;
Konsequenz: Niemals throw im try { throw 4711; }

Destruktor propagieren catch (int i) {} // So ok

o catch muss an Ort und Stelle geschehen

Kapitel 16 - Ausnahmebehandlung 21

e Esist moglich, einzelne Funktionen als noexcept zu markieren

o void foo() noexcept { /* ... x/ };

o Versprechen an Compiler, dass hier keine Exception erzeugt wird

e Warum ist das wichtig?

o Manche Teile der STL haben sogenannte Strong Exception Guarantee

o Diurfen unter keinen Umstanden Ausnahmen erzeugen

e Betrifft auch STL-Container (z.B. std: :vector):

o Bei interner Reallokierung (— mehr Kapazitat) wird aus Effizienzgriinden Move-Konstruktor verwendet
o Ohne noexcept — bei Move-Konstruktor: & (deutlich langsamer)

o Wenn bei Move eine Exception auftritt, dann konnte theoretisch der alte Vector-Speicher noch
nicht auf nullptr gesetzt sein (— ggf. doppeltes free(), darf niemals passieren)

Kapitel 16 - Ausnahmebehandlung 22

using std::cout, std::endl;

class Foo {

Long story short: Annotiert

int id ; - .
public: ungefdhrliche Move-
Foo(int id) : id (

Foo(const Foo & ot KonStrUktoren mit

cout << "Copy
}
Foo(Foo && other) noexcept : id (other.id) {
cout << "Move Foo" << id_ << endl;

}
}:

Kapitel 16 - Ausnahmebehandlung

23

Probleme mit Exceptions

e Sind leider nicht vollig unumstritten

e In der Praxis teilweise sogar per Coding-Guideline verboten, z.B. bei Google

e Ein Teil der Probleme wurde bereits dargelegt

o Beispiel: Probleme mit Zeigern und delete

e Auch im Bereich Embedded problematisch

o Nehmen relativ viel Speicher ein

o Bei 512 Kilobyte Gesamtspeicher kdnnen nicht mehrere hundert Kilobytes flir Exceptions verwendet
werden

o Fir Interessierte hier ein interessanter Vortrag zu Problemen und Losungen ()

Kapitel 16 - Ausnahmebehandlung 24

https://www.youtube.com/watch?v=bY2FlayomlE

Fazit zu Ausnahmen

Sind Exceptions deswegen schlecht?

Ausnahmen sind nutzlich, wenn etwas Performanceverlust im Tausch fur schnellere
Entwicklungszeit akzeptabel ist

Klassische Beispiele

o Web-Programmierung

o GUI-Programmierung, z.B. Qt-Framework

Seid Euch der Schwachen bewusst und beriicksichtigt dies

Andere Programmiersprachen verfiigen auch tber Ausnahmen
o Beispiele: Javascript, Python, Java, C#

o Problembereiche nicht so prasent, weil diese sich eher an die Desktopprogrammierung richten

Kapitel 16 - Ausnahmebehandlung

25

Zusammenfassung

° Klassische Fehlerbehandlung in C - inkl. der Schwachen

o Ausnamen in C++

e Drei neue Schliisselworter
o Try
o catch

o throw
e Beliebige Datentypen dirfen geworfen werden
e Reihenfolge der catch -Anweisungen ist wichtig

e @ keine Ausnahmen im Destruktor werfen

Kapitel 16 - Ausnahmebehandlung 26

Kapitel 16 - Ausnahmebehandlung

