
Kapitel 16 - Ausnahmebehandlung

Kapitel 16 - Ausnahmebehandlung

Peter Ulbrich

AG Systemsoftware

Veranstaltungswebseite

🚀 by Decker

1

https://sys.cs.tu-dortmund.de/
https://sys.cs.tu-dortmund.de/de/lehre/ws25/eidp
https://github.com/decker-edu/decker/

Kapitel 16 - Ausnahmebehandlung

Einleitung

Bisher: Auftreten von Fehlern war nebensächlich

Im ersten Teil der Vorlesung: errno

Auẞerdem: Bestimmte Rückgabewerte von Funktionen deuten auf Fehler hin

Beispiel: open() (Posix-Funktion)

Aber: Fehlerbehandlung ist aber essentiell wichtig!

Ein gutes Programm …

1. verarbeitet unerwartete Ereignisse („Fehlerfall“) angemessen.

2. verursacht im Katastrophenfall einen möglichst geringen Schaden.

Beachtet

Berücksichtigen der möglichen Fehlerfälle ist die hohe Kunst!

Nehmt aus Faulheit keine Abkürzungen
2

Kapitel 16 - Ausnahmebehandlung

Rückblick – Fehlerbehandlung in C

Aus C sind bereits einige Arten der

Fehlerbehandlung bekannt

Die einfachste Methode: Programm beenden

Radikal: Zum Beispiel durch Aufruf exit()
(stdlib.h) oder vorzeitiges return in main()

Funktioniert prinzipiell einwandfrei, aber:

Nur für sehr kleine Programme sinnvoll

Sehr schlecht geeignet für den Dauerbetrieb (z.B. Webserver)

Nicht akzeptabel in sicherheitsrelevanten Anwendungen

bool func_call() { /*...*/ }1
2

int main() {3
 bool success = func_call();4
 if (!success) {5
 exit(1);6
 } else {7
 exit(0);8
 }9
}10

3

Kapitel 16 - Ausnahmebehandlung

Rückblick – Fehlerbehandlung in C

Besserer Ansatz: Kodierung über

Rückgabewert, z.B. int

Unmittelbare Vorteile

Kein Abbruch mehr notwendig

Fehlergrund kann an Ort und Stelle

erkannt und behandelt werden

Unmittelbarer Nachteil: Code wird komplexer

Fehlerfälle müssen nun einzeln kodiert bzw. dekodiert und behandelt werden

Das ist leider der Tradeoff 🙁

Ein weiteres Problem: Es ist nur ein Rückgabetyp möglich

// Beispiel aus Posix1
#include <fcntl.h>2

3
int main() {4
 // - 1, falls Fehler auftritt5
 int ret = open("file.txt", O_RDONLY);6
 if (ret < 0) {7
 // Fallunterscheidung für Fehlertyp8
 }9
}10

4

Kapitel 16 - Ausnahmebehandlung

Rückblick - Fehlerbehandlung in C

Zusätzlich zum Rückgabewert: errno
Kodiert den Fehlergrund

Globale Variable

Gilt für Funktionen der C-

Standardbibliothek

errno hat eine Reihe von Problemen

Globale Variable aus errno.h
Kodiert nur den jeweils letzten Fehlergrund (automatische Überschreibung)

→ Prüfung wird sehr leicht vergessen, Grund ist dann ggf. bei Folgefehlern nicht mehr nachvollziehbar

Wertekodierung ist abhängig von der Zielplattform

→ andere Fehlercodes unter Linux/UNIX als unter Windows

#include <fcntl.h>1
#include <errno.h>2

3
int main() {4
 int ret = open("file.txt", O_RDONLY);5
 if (ret < 0) {6
 if (errno == ENOENT) { /*...*/ }7
 }8
}9

5

Kapitel 16 - Ausnahmebehandlung

Ausnahmebehandlung in C++

errno und Rückgabewerte existieren in C++ natürlich weiterhin

Gerade bei Systemfunktionen führt oft kein Weg daran vorbei, wie open()

Es gibt allerdings noch weitere Wege

Fehlerbehandlung mithilfe von Ausnahmen (Exceptions)

Kombinierter Rückgabewert (Union von Wert + Fehler) mithilfe von std::expected – nicht Thema in

diesem Kapitel

6

Kapitel 16 - Ausnahmebehandlung

Exceptions

Ausnahmebehandlung ist tief in C++ verankert

Beispiel: new und delete können Ausnahmen werfen

Konzept hinter Exceptions ist relativ simpel

Bei Auftritt eines Fehlers, z.B. Datei existiert nicht, wird dieser zunächst nur erkannt

Behandlung des Fehlers erfolgt nicht unmittelbar, keine lokale Fehlerbehandlung wie bisher

Stattdessen: Signalisierung eines Fehlerfalls an aufrufende Funktion

→ „Heißes Eisen wird weggeschoben und ist das Problem des Vorgesetzten”

7

Kapitel 16 - Ausnahmebehandlung

Terminologie

Bei der Signalisierung wird die Ausnahme geworfen (throw an exception)

Aufrufende Funktion fängt die Ausnahme (catch an exception)

Umsetzung

try : Beginn eines Code-Blocks, in dem eine Ausnahme

ausgelöst werden könnte

throw : Werfen einer Ausnahme

catch : Code-Block, der potenziell die Ausnahme

behandeln kann

try {1
 bool error = may_error();2
 if (error) {3
 throw MyException;4
 }5
}6
catch (MyException ex) {7
 // Behandlung der Ausnahme8
 // Zum Beispiel: Ausgabe9
 cout << ex.what();10
}11

8

Kapitel 16 - Ausnahmebehandlung

Fangen einer Ausnahme

Betreten des catch -Blocks, wenn die Signatur
der Ausnahme passt

Ansonsten: An den Nächsten weiterwerfen

→ rethrow

Achtung: Beim Werfen wird die bisherige
Funktion verlassen

Nach der Behandlung der Ausnahme erfolgt keine

Rückkehr an die ursprüngliche Stelle des Kontrollflusses

Daraus resultierende Folgen werden gleich beleuchtet

try {1
 if (error) {2
 throw MyException;3
 }4
}5
catch (MyException ex) {6
 // Behandlung der Ausnahme7
 // Zum Beispiel: Ausgabe8
 cout << ex.what();9
}10
// ...11
catch (OtherException ex) {12
 // ...13
}14
// ...15
catch (int i) {16
 // ...17
}18
// ... und so weiter19

9

Kapitel 16 - Ausnahmebehandlung

Ablauf einer Ausnahmebehandlung

1. Der Reihe nach catch -Handler ablaufen

2. Falls ein Ausnahmetyp auf einen Handler passt, wird er verwendet

→ Nachfolgende Handler werden ignoriert

3. Kein passender Handler?

→ Aufwärtstraversierung der Aufrufkette zu darüberliegenden Funktionen

4. Falls auf der Ebene ein try -Block existiert → Schritt 1, sonst Schritt 3

Ende der Ausnahmekette erreicht? → Aufruf von std::terminate()
Sofortiger Abbruch des Programms ohne Rückkehr zur main()

Gleiches geschieht übrigens, wenn eine neue Ausnahme während der Ausnahmebehandlung entsteht

10

Kapitel 16 - Ausnahmebehandlung

Das Wurfobjekt

Beliebiger Datentyp mittels throw
geworfen werden

Es sollte ein entsprechendes catch
vorhanden sein

Kann aber leicht vergessen werden

Alternative: Die sogenannte Ellipse (...)

Eigentliche Verwendung: Akzeptieren beliebiger Parameter bei Funktionsaufruf (siehe printf)

Bei Ausnahmen: Akzeptieren beliebiger Ausnahmetypen (Catch All)

throw 1;1
throw "Error"; // const char *2
throw SpecialErrorClass("Error");3

try {1
 throw int i;2
}3
catch (MyException ex) {}4
catch (const char * msg) {}5
catch (...) { // Catch-All6
 cout << "Caught unhandled exception";7
}8

11

Kapitel 16 - Ausnahmebehandlung

Beispiel – Exceptions

#include <iostream>
#include <string>

using std::cout, std::endl;

class Error {
 std::string msg;

public:
 Error(std::string s) : msg(s) {}
 const char* message() { return msg.c_str(); }

};

void throws_char_ptr() {
 try {
 throw "pointer error";
 }
 catch(int i) { // Kein Matching gegen geworfenen Datentyp -> weiterreichen

cout << i << endl;

cpp Run ▶

12

Kapitel 16 - Ausnahmebehandlung

Eigenschaften von Ausnahmeklassen

Wie bei anderen Klassen auch

Erstellung wie bisher gewohnt

Dynamische Allokierung mit new und delete ebenfalls erlaubt (problematisch)

Referenzen ebenfalls erlaubt

Klassen dürfen Vererbung und Polymorphie verwenden

Achtung: Fallstricke und Untiefen! 😱

Beispiel: Aufräumen in jedem catch-Block

erforderlich

try {1
 throw new MyException;2
}3
catch(MyException * me) {4
 delete me; // Ok...5
}6
// ...7
catch(...) {} // ...und hier?8

13

Kapitel 16 - Ausnahmebehandlung

Throw by value, catch by reference

Allgemeine Herangehensweise bei Ausnahmen:

Throw by value, catch by reference

Der Hintergrund ist simpel

Throw by value stellt sicher, dass keine Speicherlecks entstehen

catch by reference erlaubt Zugriff auf Methoden der Kinder einer
gefangenen Klasse

(Polymorphie statt versehentlicher Typkonvertierung)

class Base {};1
class MyException :2
 public Base {}3
try {4
 throw MyException();5
}6
catch(Base& e) {7
 // So ist es korrekt8
}9
// ...10
catch(...) {}11

14

Kapitel 16 - Ausnahmebehandlung

Verwendung von std::exception

Beliebige Datentypen als Ausnahme

erlaubt

Besser: verarbeitbare Datentypen

verwenden

Dafür bietet C++ eine eigene Klasse:

std::exception
Hat eine virtuelle Methode what()

Beschreibt den Fehler, muss entsprechend in

Kindklasse überschrieben werden

const char* what() const noexcept
override;

#include <exception>1
2

using std::exception;3
4

class MyException: public exception {5
public:6
 const char* what()7
 const noexcept override {8
 return "MyException :)";9
 }10
};11

12
class IntError: public exception {13
public:14
 const char* what()15
 const noexcept override {16
 return "IntError";17
 }18
};19

15

Kapitel 16 - Ausnahmebehandlung

Beispiel – std::exception
#include <iostream>
#include <string>
#include <exception>

using std::cout, std::endl;
using std::exception;

class MyException: public exception {
public:
 const char* what() const noexcept override {
 return "MyException :)";
 }

};

class IntError: public exception {
public:
 const char* what() const noexcept override {

return "IntError";

cpp Run ▶

16

Ermöglicht deutlich bessere und
übersichtlichere catch -Blöcke
als generische Ellipse

Kapitel 16 - Ausnahmebehandlung

Rethrowing

Eine besondere Eigenschaft ist

das sogenannte Rethrowing

Nach dem Fangen und erneuten

Abarbeiten kann eine Ausnahme

erneut mit throw geworfen

werden

Grund: Andere Teile des Systems

könnten auch am Auftreten der

Ausnahme interessiert sein

#include <iostream>
#include <string>
#include <exception>

using std::cout, std::endl;
using std::exception;

class MyException: public exception {
public:
 const char* what() const noexcept override {
 return "MyException :)";
 }
};

void foo() {
 try {
 throw MyException();

} catch (MyException& me) {

cpp Run ▶

17

Kapitel 16 - Ausnahmebehandlung

Reihenfolge der Exceptions

Empfehlenswert: erst Spezialfälle

behandlen

Je weiter unten die Ausnahme behandelt

wird, desto generischer sollte der

gefangene Typ sein

int divide(int dividend, int divisor) {
 try {
 if (divisor == 0) {
 throw DivByZeroException();
 }
 }
}

catch (DivByZeroException e) { /*... */ }
// ..
catch (MathException e) { /*... */ }
// ..
catch (std::exception e) { /*... */ }
// ..
catch (...) { /*... */ }

18

Kapitel 16 - Ausnahmebehandlung

Einschub: finally in anderen Programmiersprachen

Ausnahmebehandlung in vielen populären
Programmiersprachen ebenfalls üblich

z.B. Java, Python oder Javascript

Unterschied: Nach den catch -Blöcken ein Block
mit Schlüsselwort finally

Funktional wie ein Destruktor für die Ausnahmebehandlung

→ Wird in jedem Fall ausgeführt, unabhängig vom catch -Block

Existiert in C++ nicht, wird aber garantiert einmal an anderer Stelle auftauchen

// Datenbank-Interaktion1
try {2
 db_connection.open();3
}4
catch(Exception e) {5
 // Print6
}7
finally {8
 db_connection.close();9
}10

19

Kapitel 16 - Ausnahmebehandlung

Ausnahmen im Konstruktor

Exceptions auch in Konstruktoren /

Destruktoren möglich

🚨 Gefährlich: Aufnahmebehandlung sorgt

eigentlich für Aufruf der Destruktoren

Bei einem Konstruktoraufruf geschieht dies nicht

Objekt gilt erst nach Konstruktoraufruf als

vollständig angelegt

Möglichst keine Nebeneffekte im Konstruktor,

wenn throw auftreten könnte

#include <iostream>
using std::cout, std:: endl;
class Member {
public:
 Member() { cout << "MC" << endl; }
 ~Member() { cout << "MD" << endl; }
};

class Class {
 Member member;
public:
 Class() {
 cout << "CC" << endl;
 throw 4711;
 }
 ~Class() { cout << "CD" << endl; }
};

cpp Run ▶

20

Kapitel 16 - Ausnahmebehandlung

Ausnahmen im Destruktor

Kritisch wird es erst bei den Destruktoren

try -Block auch hier erlaubt, aber…

Es gilt: Destruktoren werden am Ende eines
Scopes aufgerufen, beim Stack Unwinding

Tritt hier eine Ausnahme auf

→ C++-Runtime beendet das Programm
ohne zu zögern

Konsequenz: Niemals throw im
Destruktor propagieren

catch muss an Ort und Stelle geschehen

#include <iostream>
using std::cout, std:: endl;
class Member {
public:
 Member() { cout << "MC" << endl; }
 ~Member() { cout << "MD" << endl; }
};

class Class {
 Member member;
public:
 Class() { cout << "CC" << endl; }
 ~Class() {
 cout << "CD" << endl;
 try { throw 4711; }
 catch (int i) {} // So ok
 }
};

cpp Run ▶

21

Exceptions im Destruktor am
besten vermeiden

Kapitel 16 - Ausnahmebehandlung

Exkurs: noexcept

Es ist möglich, einzelne Funktionen als noexcept zu markieren

Beispiel: void foo() noexcept { /* ... */ };

Versprechen an Compiler, dass hier keine Exception erzeugt wird

Warum ist das wichtig?

Manche Teile der STL haben sogenannte Strong Exception Guarantee

Dürfen unter keinen Umständen Ausnahmen erzeugen

Betrifft auch STL-Container (z.B. std::vector):

Bei interner Reallokierung (→ mehr Kapazität) wird aus Effizienzgründen Move-Konstruktor verwendet

Ohne noexcept → bei Move-Konstruktor: Rückfall auf Copy-Konstruktor 🙁 (deutlich langsamer)

Grund: Wenn bei Move eine Exception auftritt, dann könnte theoretisch der alte Vector-Speicher noch

nicht auf nullptr gesetzt sein (→ ggf. doppeltes free(), darf niemals passieren)

22

Kapitel 16 - Ausnahmebehandlung

Beispiel - noexcept
#include <iostream>
#include <vector>
#include <utility>

using std::cout, std::endl;

class Foo {
 int id_;

public:
 Foo(int id) : id_(id) { }
 Foo(const Foo & other) : id_(other.id_){
 cout << "Copy Foo" << id_ << endl;
 }
 Foo(Foo && other) noexcept : id_(other.id_) {
 cout << "Move Foo" << id_ << endl;
 }

};

cpp Run ▶

23

Long story short: Annotiert
ungefährliche Move-
Konstruktoren mit noexcept

Kapitel 16 - Ausnahmebehandlung

Probleme mit Exceptions

Sind leider nicht völlig unumstritten

In der Praxis teilweise sogar per Coding-Guideline verboten, z.B. bei Google

Ein Teil der Probleme wurde bereits dargelegt

Beispiel: Probleme mit Zeigern und delete

Auch im Bereich Embedded problematisch

Nehmen relativ viel Speicher ein

Bei 512 Kilobyte Gesamtspeicher können nicht mehrere hundert Kilobytes für Exceptions verwendet

werden

Für Interessierte hier ein interessanter Vortrag zu Problemen und Lösungen ()Youtube, Englisch

24

https://www.youtube.com/watch?v=bY2FlayomlE

Kapitel 16 - Ausnahmebehandlung

Fazit zu Ausnahmen

Sind Exceptions deswegen schlecht? Nein

Ausnahmen sind nützlich, wenn etwas Performanceverlust im Tausch für schnellere

Entwicklungszeit akzeptabel ist

Klassische Beispiele

Web-Programmierung

GUI-Programmierung, z.B. Qt-Framework

Aber: Seid Euch der Schwächen bewusst und berücksichtigt dies

Außerdem: Andere Programmiersprachen verfügen auch über Ausnahmen

Beispiele: Javascript, Python, Java, C#

Problembereiche nicht so präsent, weil diese sich eher an die Desktopprogrammierung richten

25

Kapitel 16 - Ausnahmebehandlung

Zusammenfassung

Wiederholung: Klassische Fehlerbehandlung in C – inkl. der Schwächen

Jetzt: Ausnamen in C++

Drei neue Schlüsselwörter

try

catch

throw

Beliebige Datentypen dürfen geworfen werden

Reihenfolge der catch -Anweisungen ist wichtig

🚨 keine Ausnahmen im Destruktor werfen

26

Kapitel 16 - Ausnahmebehandlung

