o

technische universitat
dortmund

Kapitel 15 - Polymorphie

Peter Ulbrich
AG Systemsoftware

Veranstaltungswebseite

Kapitel 15 - Polymorphie

% by Decker

&

Arbeitsgruppe
Systemsoftware


https://sys.cs.tu-dortmund.de/
https://sys.cs.tu-dortmund.de/de/lehre/ws25/eidp
https://github.com/decker-edu/decker/

Einleitung

o Dank Vererbung akkurate Abbildung der Realitat in Klassenhierarchie

o Polymorphie &

Kapitel 15 - Polymorphie 2



Vererbung: Status Quo

o Zeiger einer Basisklasse wird Objekt von Kindklasse zugewiesen

Base * b = new Child(); // bzw. mit unique ptr
b->do stuff();

° der Methoden geschieht

— ,Methode do_stuff() aus Oberklasse Base wird aufgerufen”

Kapitel 15 - Polymorphie 3



Vererbung: Status Quo

der

Methoden an Objekte geschieht

using std::cout, std::endl;

class {
public:
void print() { cout << "Base" << endl; }
: Polymorphie/Polymorphismus }i
— V|e|geSta|t‘|gk6|t class : public Base {
public:
o Technik zur Bindung von Methoden zur void print() { cout << "Child" << endl; }
Laufzeit ( ) }i

Erst zur Laufzeit steht fest, welche
Methode aufgerufen wird

HeilRt daher auch

int main() {
Base * b = new Child();
b->print();
delete b;

Kapitel 15 - Polymorphie 4



Beispiel - Polymorphie

. dynamische Auswahl von
ausgabe()

Frucht

- hame: string

+ ausgabe(): void

NA

Hilsenfrucht Obst

11

+ ausgabe(): void + ausgabe(): void

12

Sidfrucht

+ ausgabe(): void

Polymorphismus bei Friichten

Kapitel 15 - Polymorphie

class Frucht {
protected:

std: :string name;
public:

void ausgabe();

rucht: public Frucht {

be();

}i
class Obst: public Frucht {
public:

void ausgabe();
}i
class Suedfrucht: public Obst {
public:

void ausgabe();



Virtuelle Methoden

e Methoden konnen

— Auswahl zur Laufzeit

e Schlisselwort virtual in C++

e Virtuelle Methoden konnen
Uberschrieben werden

— Die erfolgt nun fir diese
Methode

class Frucht {
protected:

std: :string name;
public:

virtual void ausgabe();

}i

class Huelsenfrucht: public Frucht {
public:
void ausgabe();

}i
class Obst: public Frucht {
public:
void ausgabe();
}i
class Suedfrucht: public Obst {
public:
void ausgabe();
}i

Kapitel 15 - Polymorphie 6



Beispiel - Virtuelle Methode

using std::cout, std::endl;

class {
public:
virtual void ausgabe() {
cout << "F" << endl;

}i

virtual ~Frucht() {};
}i
class : public Frucht {
public:

void ausgabe() {

Kapitel 15 - Polymorphie 7



Destruktor mit

e Konstruktoren konnen nicht virtuell sein

e Destruktoren hingegen sollten virtuell sein

O

statische Festlegung wahrend des

Ubersetzens

ggf.

Aufruf des Destruktors der Basisklasse (und

)

: Markiert Destruktor von

Basisklassen immer als virtual

Kapitel 15 - Polymorphie

using std::cout, std::endl;

class {
public:
virtual ~Base() {
cout << "Base" << endl;
}
}i
class : public Base {
public:
~Child() {
cout << "Child" << endl;
}
}i

int main() {
Base * b = new Child();
delete b;



Explizites Uberschreiben -

Uberschreiben einer virtuellen
Methode in Kindklasse mit override
explizit

void print() override;

Erzeugt Compiler-Warnung, wenn nicht
uberschrieben wird

Verwendung ist (leider) nicht zwingend
von C++ gefordert &

Erhoht die Lesbarkeit aber ungemein.

0O J o O & WD K

e e
U WN P OV

class Frucht {
protected:

std: :string name;
public:

virtual void ausgabe();

}i

class Obst: public Frucht {
public:
void ausgabe() override;

}i

class Suedfrucht: public Obst {
public:
void ausgabe() override;

}i

Kapitel 15 - Polymorphie 9



Das letzte Wort -

e Analog zu override: Schlisselwort class Frucht {
] protected:
final std::string name;
public:

virtual void ausgabe();

e Verhindert weiteres Uberschrieben .
einer Methode '

0O J o Ul & WD K

class Obst: public Frucht {
public:

O

e Erzeugt Compiler-Fehler bei Versuch zu

10 void ausgabe() final;
Uberschreiben 11 };

12

13 class Suedfrucht: public Obst {

14 public:

15 void ausgabe() override; // ERROR

16 };

Kapitel 15 - Polymorphie 10



Diamond-Shape-Problem

e Das

bezeichnet eine spezielle Konstellation der Vererbung

o Zwei Eltern erben von einer gemeinsamen Klasse und aus beiden Eltern wird eine Kindklasse abgeleitet

o Das Klassendiagramm sieht einer Raute bzw. Diamanten dhnlich (— Name)

Base

+ print(): void

N

Mother

Father

AN

Child

Base

Base

+ print(): void

+ print(): void

i

i

Mother

Father

AN

Child

J Beide Elternteile haben bei der regularen Mehrfachvererbung jeweils eine

eigene Instanz von Base
Kapitel 15 - Polymorphie 11



Diamond-Shape-Problem

. Bei Aufruf ist unklar,
welches print () verwendet
werden soll = Error

o Mother::print(); // Dies?
o Father::print(); // Oder dies?

o Bei der Klassendeklaration
der Eltern von Base ableiten

o Erzeugt eine geteilte Basisklasse anstatt
zwei separaten Instanzen

using std::cout, std::endl;

class {
public:
virtual void print() {
cout << "Base'" << endl;

}
}i
class : virtual public Base {};
class : virtual public Base {};
class : public Mother, public Father {};

int main() {
Child c;
c.print();

Kapitel 15 - Polymorphie 12



Rein virtuelle Methoden

o rein virtuelle Methoden zu deklarieren (pure virtual)

o InC++: virtual void print() = 0; // = 0 deklariert Funktion als pure

° Implementierung in dieser Klasse nicht vorhanden

o Erzeugen einer Instanz der Basisklasse nicht moglich

o Methode muss in allen abgeleiteten Klassen implementiert werden

e Klassen mit rein virtuellen Methoden heil3en
o Haufige Abkirzung: Abstract Base Class (ABC)

o Alternative Bezeichung: (wird oft synonym genutzt)

Kapitel 15 - Polymorphie 13



Beispiel - rein virtuelle Methoden

. . .
Unterschiede zu regularen using std::cout, std::endl;

Klassen
class {
o Abstrakte Klassen konnen nicht public:
iniﬁalisiert Werden virtual void print_area( ) = 0;
: : }i
o Dienen als Vorlage zur Konstruktion
anderer Klassen class : public Form {
) ) double x_;
o Definiert Set von Methoden, das in double y_;
allen abgeleiteten Klassen verfugbar public:
und implementiert ist Quadrat (double x, double y) : x (x), v (y) {}

void print area() override {
cout << x * y << endl;
}
}i

Kapitel 15 - Polymorphie 14



Vtables - Ein Blick hinter die Kulissen

e Die wichtigsten Punkte der Polymorphie sind damit abgeschlossen

e Abschliel3end ein Blick hinter die Kulissen:
o steht fur

e Jede Klasse mit virtuellen Funktionen bekommt eine zusatzliche Member-Variable

— Zeiger auf Tabelle mit Funktionen

e Achtung: Vtables sind streng genommen nicht im C++-Standard definiert

o Snd ein Implementierungsdetail

o Allerdings sehr weit verbreitet (De-Facto-Standard)

Kapitel 15 - Polymorphie 15



() Base
T__vptr, » Base vTable
o Compiler erstellt Vtable % virtual function ()= function ()
o Fulgt automatisch neuen Zeiger auf Vtable ein - hier: virtual function 2= runetion2()
__vptr
D1: public Base
. Nachschlagen in der Tabelle P e T e
wirtual function (), - function1()
o Zeiger in Tabelle verweist auf konkrete funetion2() §—
. o DZ: public Base
Implementierung in Klasse o
*_wptr, (inherited} »= D2%Table
o o . wirtual function2(); - function1() —
J Einige Dereferenzierungen von S
Zeigern
— Ziemlich schnell ©

Kapitel 15 - Polymorphie 16


https://www.learncpp.com/cpp-tutorial/the-virtual-table/

Beispiel - Vtables im Clang-Compiler

e Code und Analyse-Ausgabe des Clang-Compilers
o Erzeugt mit: ++ —Xclang —-fdump-vtable-layouts vtable.cpp

. . Vtable for 'Frucht' (3 entries).
#include <iostream> 5 | e e o ()
using std::cout, std::endl; 1 | Frucht RTTI
—-- (Frucht, 0) vtable address --
2 | void Frucht::ausgabe()
class Frucht {
VTable indices for 'Frucht' (1 entries).

public: :
) ) 0 | void Frucht::ausgabe()
virtual void ausgabe() { cout << << endl; }
}. Vtable for 'Obst' (3 entries).
! 0 | offset to top (0)
1 | Obst RTTI
class Obst : public Frucht { -- (Frucht, 0) vtable address --
. -- (Obst, 0) vtable address --
PUbllC : 2 | void Obst::ausgabe()
void ausgabe() override { cout << << endl; }
VTable indices for 'Obst' (1 entries).
}; 0 | void Obst::ausgabe()
q Vtable for 'Suedfrucht' (3 entries).
class Suedfrucht : public Obst { 0 | offset to top (0)
public: 1 | Suedfrucht RTTI
71 A annoc~ahal/ N Axvravvaida f o ~And oo coc aoanAl. 1 -— (Frucht, 0) vtable address —-

Kapitel 15 - Polymorphie 17



Ausblick - Statische Reflexion

o Reflexion

e FEigenschaft vieler OOP-fahigen
Programmiersprachen, z. B. Java

e Bezeichnet Fahigkeit, Informationen tber
sich selbst abzurufen

— z.B. eigener Typ oder Member inkl.
Namen

e |n C++ geht das leider (noch) nicht &

= =

R O O 00 o U s W IDN -

// In Java moéglich:

public class Person {
private String name;

7d 6o

Object p = new ();
if (p. () == Person. ) {
// Weitere Verarbeitung von Person

}

e Kommender Standard (C++26 oder 29) wird statische Reflexion erlauben; genauer

Zeitplan fehlt aber

Kapitel 15 - Polymorphie

18



Zusammenfassung

e Modellierung der Realitat mittels Klassenhierarchie - siehe Frucht-Beispiel

e Vorteile von Polymorphie

o Verwaltung von Objekten einer Basisklasse

o Dennoch Zugriff auf Verhalten der Unterklasse

e Realisierung von Polymorphie mit Schliisselword virtual

e Erzwingen der Implementierung mittels abstrakter Klassen

— Methoden als pure virtual definieren

e Implementierung mittels vtables

Kapitel 15 - Polymorphie 19



Kapitel 15 - Polymorphie



