
Kapitel 15 - Polymorphie

Kapitel 15 - Polymorphie

Peter Ulbrich

AG Systemsoftware

Veranstaltungswebseite

🚀 by Decker

1

https://sys.cs.tu-dortmund.de/
https://sys.cs.tu-dortmund.de/de/lehre/ws25/eidp
https://github.com/decker-edu/decker/

Kapitel 15 - Polymorphie

Einleitung

Bisher: Dank Vererbung akkurate Abbildung der Realität in Klassenhierarchie

Jetzt: Polymorphie 🤔

2

Kapitel 15 - Polymorphie

Vererbung: Status Quo

Zeiger einer Basisklasse wird Objekt von Kindklasse zugewiesen

Bisheriges Problem: Bindung der Methoden geschieht während des Übersetzens

→ „Methode do_stuff() aus Oberklasse Base wird aufgerufen”

Base * b = new Child(); // bzw. mit unique_ptr1
b->do_stuff();2

3

Kapitel 15 - Polymorphie

Vererbung: Status Quo

Bisheriges Problem: Bindung der

Methoden an Objekte geschieht

während des Übersetzens

Jetzt: Polymorphie/Polymorphismus

→ Vielgestaltigkeit

Technik zur Bindung von Methoden zur

Laufzeit (dynamische Bindung)

Erst zur Laufzeit steht fest, welche

Methode aufgerufen wird

Heißt daher auch Dynamic Dispatch

#include <iostream>
using std::cout, std::endl;

class Base {
public:
 void print() { cout << "Base" << endl; }
};

class Child: public Base {
public:
 void print() { cout << "Child" << endl; }
};

int main() {
 Base * b = new Child();
 b->print();
 delete b;
}

cpp Run ▶

4

Kapitel 15 - Polymorphie

Beispiel - Polymorphie

Ziel: dynamische Auswahl von

ausgabe()
Frucht

- name: string

+ ausgabe(): void

Hülsenfrucht

+ ausgabe(): void

Obst

+ ausgabe(): void

Südfrucht

+ ausgabe(): void

Polymorphismus bei Früchten

class Frucht {1
protected:2
 std::string name;3
public:4
 void ausgabe();5
};6

7
class Huelsenfrucht: public Frucht {8
public:9
 void ausgabe();10
};11
class Obst: public Frucht {12
public:13
 void ausgabe();14
};15
class Suedfrucht: public Obst {16
public:17
 void ausgabe();18
};19

5

So geht es natürlich noch nicht!

Kapitel 15 - Polymorphie

Virtuelle Methoden

Methoden können dynamisch
gebunden werden

→ Auswahl zur Laufzeit

Schlüsselwort virtual in C++

Virtuelle Methoden können
überschrieben werden

→ Die Auswahl erfolgt nun für diese
Methode dynamisch

class Frucht {1
protected:2
 std::string name;3
public:4
 virtual void ausgabe();5
};6

7
class Huelsenfrucht: public Frucht {8
public:9
 void ausgabe();10
};11
class Obst: public Frucht {12
public:13
 void ausgabe();14
};15
class Suedfrucht: public Obst {16
public:17
 void ausgabe();18
};19

6

Kapitel 15 - Polymorphie

Beispiel - Virtuelle Methode

#include <iostream>

using std::cout, std::endl;

class Frucht {
public:
 virtual void ausgabe() {
 cout << "F" << endl;
 };
 virtual ~Frucht() {};

};

class Obst: public Frucht {
public:
 void ausgabe() {

cpp Run ▶

7

Kapitel 15 - Polymorphie

Destruktor mit virtual

Konstruktoren können nicht virtuell sein

Destruktoren hingegen sollten virtuell sein

Ansonsten: statische Festlegung während des

Übersetzens

Resultat: Aufruf des Destruktors der Basisklasse (und

ggf. undefiniertes Verhalten)

Empfehlung: Markiert Destruktor von

Basisklassen immer als virtual

#include <iostream>
using std::cout, std::endl;

class Base {
public:
 virtual ~Base() {
 cout << "Base" << endl;
 }
};
class Child : public Base {
public:
 ~Child() {
 cout << "Child" << endl;
 }
};

int main() {
 Base * b = new Child();
 delete b;

cpp Run ▶

8

Kapitel 15 - Polymorphie

Explizites Überschreiben – override

Überschreiben einer virtuellen

Methode in Kindklasse mit override
explizit

Syntax: void print() override;

Erzeugt Compiler-Warnung, wenn nicht

überschrieben wird

Verwendung ist (leider) nicht zwingend

von C++ gefordert 🙁

Erhöht die Lesbarkeit aber ungemein.

Nutzt es!

class Frucht {1
protected:2
 std::string name;3
public:4
 virtual void ausgabe();5
};6

7
class Obst: public Frucht {8
public:9
 void ausgabe() override;10
};11

12
class Suedfrucht: public Obst {13
public:14
 void ausgabe() override;15
};16

9

Kapitel 15 - Polymorphie

Das letzte Wort – final

Analog zu override : Schlüsselwort

final

Verhindert weiteres Überschrieben

einer Methode

Erzeugt Compiler-Fehler bei Versuch zu

überschreiben

class Frucht {1
protected:2
 std::string name;3
public:4
 virtual void ausgabe();5
};6

7
class Obst: public Frucht {8
public:9
 void ausgabe() final;10
};11

12
class Suedfrucht: public Obst {13
public:14
 void ausgabe() override; // ERROR15
};16

10

Kapitel 15 - Polymorphie

Diamond-Shape-Problem

Das Diamond-Shape-Problem bezeichnet eine spezielle Konstellation der Vererbung

Zwei Eltern erben von einer gemeinsamen Klasse und aus beiden Eltern wird eine Kindklasse abgeleitet

Das Klassendiagramm sieht einer Raute bzw. Diamanten ähnlich (→ Name)

Diamond-Shape
Base

+ print(): void

Mother Father

Child

Tatsächliche Vererbungshierarchie
Base

+ print(): void

Mother Father

Child

Base

+ print(): void

Problem: Beide Elternteile haben bei der regulären Mehrfachvererbung jeweils eine

eigene Instanz von Base
11

Kapitel 15 - Polymorphie

Diamond-Shape-Problem

Problem: Bei Aufruf ist unklar,

welches print() verwendet

werden soll → Error

Mother::print(); // Dies?

Father::print(); // Oder dies?

Lösung: Bei der Klassendeklaration

der Eltern virtuell von Base ableiten

Erzeugt eine geteilte Basisklasse anstatt

zwei separaten Instanzen

include <iostream>
using std::cout, std::endl;

class Base {
public:
 virtual void print() {
 cout << "Base" << endl;
 }
};

class Mother: virtual public Base {};
class Father: virtual public Base {};
class Child : public Mother, public Father {};

int main() {
 Child c;
 c.print(); // Ok mit virtueller Ableitung
}

cpp Run ▶

12

Kapitel 15 - Polymorphie

Rein virtuelle Methoden

Ebenfalls möglich: rein virtuelle Methoden zu deklarieren (pure virtual)

In C++: virtual void print() = 0; // = 0 deklariert Funktion als pure

Bedeutung: Implementierung in dieser Klasse nicht vorhanden

Folgen

Erzeugen einer Instanz der Basisklasse nicht möglich

Methode muss in allen abgeleiteten Klassen implementiert werden

Klassen mit rein virtuellen Methoden heißen abstrakte Klassen

Häufige Abkürzung: Abstract Base Class (ABC)

Alternative Bezeichung: Interface (wird oft synonym genutzt)

13

Kapitel 15 - Polymorphie

Beispiel - rein virtuelle Methoden

Unterschiede zu regulären

Klassen

Abstrakte Klassen können nicht

initialisiert werden

Dienen als Vorlage zur Konstruktion

anderer Klassen

Definiert Set von Methoden, das in

allen abgeleiteten Klassen verfügbar

und implementiert ist

include <iostream>
using std::cout, std::endl;

class Form {
public:
 virtual void print_area() = 0;
};

class Quadrat : public Form {
 double x_;
 double y_;
public:
 Quadrat(double x, double y) : x_(x), y_(y) {}
 void print_area() override {
 cout << x_ * y_ << endl;
 }
};

cpp Run ▶

14

Kapitel 15 - Polymorphie

Vtables - Ein Blick hinter die Kulissen

Die wichtigsten Punkte der Polymorphie sind damit abgeschlossen ✅

Abschließend ein Blick hinter die Kulissen: Vtables

Vtables steht für Virtuelle Tabellen

Jede Klasse mit virtuellen Funktionen bekommt eine zusätzliche Member-Variable

→ Zeiger auf Tabelle mit Funktionen

Achtung: Vtables sind streng genommen nicht im C++-Standard definiert

Snd ein Implementierungsdetail

Allerdings sehr weit verbreitet (De-Facto-Standard)

15

Kapitel 15 - Polymorphie

Vtables

Einfache Umsetzung

Compiler erstellt Vtable

Fügt automatisch neuen Zeiger auf Vtable ein – hier:

__vptr

Zur Laufzeit: Nachschlagen in der Tabelle

Zeiger in Tabelle verweist auf konkrete
Implementierung in Klasse

Mehrkosten: Einige Dereferenzierungen von
Zeigern

→ Ziemlich schnell © Alex Pomeranz (learncpp.com)

16

https://www.learncpp.com/cpp-tutorial/the-virtual-table/

Kapitel 15 - Polymorphie

Beispiel - Vtables im Clang-Compiler

Code und Analyse-Ausgabe des Clang-Compilers

Erzeugt mit: clang++ -Xclang -fdump-vtable-layouts vtable.cpp

#include <iostream>1
using std::cout, std::endl;2

3
class Frucht {4
 public:5
 virtual void ausgabe() { cout << "F" << endl; }6
};7

8
class Obst : public Frucht {9
 public:10
 void ausgabe() override { cout << "O" << endl; }11
};12

13
class Suedfrucht : public Obst {14
 public:15

void ausgabe() override { cout << "SF" << endl; }16

Vtable for 'Frucht' (3 entries).
 0 | offset_to_top (0)
 1 | Frucht RTTI
 -- (Frucht, 0) vtable address --
 2 | void Frucht::ausgabe()

VTable indices for 'Frucht' (1 entries).
 0 | void Frucht::ausgabe()

Vtable for 'Obst' (3 entries).
 0 | offset_to_top (0)
 1 | Obst RTTI
 -- (Frucht, 0) vtable address --
 -- (Obst, 0) vtable address --
 2 | void Obst::ausgabe()

VTable indices for 'Obst' (1 entries).
 0 | void Obst::ausgabe()

Vtable for 'Suedfrucht' (3 entries).
 0 | offset_to_top (0)
 1 | Suedfrucht RTTI
 -- (Frucht, 0) vtable address --

b 0 bl dd

17

Kapitel 15 - Polymorphie

Ausblick - Statische Reflexion

Bisher nicht besprochen: Reflexion

Eigenschaft vieler OOP-fähigen
Programmiersprachen, z. B. Java

Bezeichnet Fähigkeit, Informationen über
sich selbst abzurufen

→ z.B. eigener Typ oder Member inkl.
Namen

// In Java möglich:1
2

public class Person {3
 private String name;4
}5
// ...6

7
Object p = new Person();8
if (p.getClass() == Person.class) {9
// Weitere Verarbeitung von Person10
}11

In C++ geht das leider (noch) nicht 🙁

Kommender Standard (C++26 oder 29) wird statische Reflexion erlauben; genauer

Zeitplan fehlt aber

18

Kapitel 15 - Polymorphie

Zusammenfassung

Modellierung der Realität mittels Klassenhierarchie – siehe Frucht-Beispiel

Vorteile von Polymorphie

Verwaltung von Objekten einer Basisklasse

Dennoch Zugriff auf Verhalten der Unterklasse

Realisierung von Polymorphie mit Schlüsselword virtual

Erzwingen der Implementierung mittels abstrakter Klassen

→ Methoden als pure virtual definieren

Implementierung mittels vtables

19

Kapitel 15 - Polymorphie

