
Kapitel 14 - Vererbung

Kapitel 14 - Vererbung

Peter Ulbrich

AG Systemsoftware

Veranstaltungswebseite

🚀 by Decker

1

https://sys.cs.tu-dortmund.de/
https://sys.cs.tu-dortmund.de/de/lehre/ws25/eidp
https://github.com/decker-edu/decker/

Kapitel 14 - Vererbung

Einleitung

Bisher: Wichtigste Eigenschaften von OOP

Sichtbarkeit/Kapselung (→ private / public)

Darauf aufbauend: Abstraktion (Verstecken der Implementierungsdetails)

Für reale Anwendungsfälle fehlt aber noch etwas…

Vererbung (heute)

Polymorphismus

2

Kapitel 14 - Vererbung

Initialisierung von Member-Objekten

Im letzten Kapitel ausgeklammert:

Wie werden Objekte, die Member sind, korrekt initialisiert?

Objekte müssen als Member

natürlich auch konsistent

initialisiert werden

Zwei Möglichkeiten

Automatische Default-Initialisierung

(sofern möglich)

Expliziter Aufruf des Konstruktors in

der Initialisierungsliste

class Foo {1
 int i;2
public:3
 Foo() : i(0) {}4
 Foo(int num) : i(num) {}5
};6

7
class Bar {8
 Foo f;9
 double j;10
public:11
 Bar(double d) : j(d) {} // f() automatisch12
 Bar(int num, double d) : f(num), j(d) {}13
};14

(Die Destruktoren von Membern werden übrigens auch automatisch bei Aufruf des Destruktors aufgerufen)
3

Kapitel 14 - Vererbung

Beispiel - Initialisierung von Member-Objekten

#include <iostream>

using std::cout, std::endl;

class Foo {
 int i;

public:
 Foo() : i(0) { cout << "Foo default constructor called" << endl; }
 Foo(int num) : i(num) { cout << "Foo constructor called" << endl; }
 ~Foo() { cout << "Foo destructor called" << endl; }
 int value() { return i; }

};

class Bar {
 Foo f;
 double j;

public:
Bar(double d) : j(d) { cout << "Bar default constructor called" << endl; }

cpp Run ▶

4

Und nun zur Vererbung 🥳

Kapitel 14 - Vererbung

Einführungsbeispiel zur Vererbung

Beispiel: Tiere

Mit dem aktuellen Wissen wäre das bereits prinzipiell umsetzbar

class Dog {1
 std::string name;2
 std::string laut;3
};4

class Cat {1
 std::string name;2
 std::string laut;3
};4

class Mouse {1
 std::string name;2
 std::string laut;3
};4

Probleme

Sehr aufwendig, starke Duplizierung von Code

Fehleranfällig: Member vergessen beim Kopieren, falsche Initialisierung

…und sehr stupide Arbeit

5

Kapitel 14 - Vererbung

Vererbung

Bessere Lösung: Vererbung

Tiere haben gemeinsame Eigenschaften

Zusammenfassen in einer Oberklasse (häufig auch Elternklasse bzw. Basisklasse)

Oberklasse Animal

Unterklassen Dog und Cat erben von Animal
Methoden und Member der Oberklasse stehen zur Verfügung

Hinzufügen weiterer Member in den Unterklassen möglich

Ebenso: Überschreiben von existierenden Methoden

Wichtige Eigenschaft: Jede Instanz einer Unterklasse ist gleichzeitig Instanz der
Oberklasse

Beispiel: „Jeder Hund ist gleichzeitig ein Tier“
6

Kapitel 14 - Vererbung

Vererbung in UML

Animal

+ name: string

+ laut: string

KatzeHund Maus

Beispiel für eine Vererbung in UML

Besondere Kennzeichnung: Weiße Pfeilspitze, zeigt auf Basisklasse

Wird in UML auch Generalisierung genannt

7

Kapitel 14 - Vererbung

Grundlagen der Vererbung

Vererbung findet in C++ bei der

Klassendeklaration statt

Auflistung Basisklassen hinter

Klassennamen

Initialiserung der Basisklasse im Konstruktor

Parameter werden entsprechend

weitergeleitet

using std::string;1
using std::cout;2
class Animal {3
private:4
 string name;5
 string laut;6
public:7
 Animal() = delete;8
 Animal(string n, string l):9
 name(n), laut(l) {}10
};11

12
class Dog : public Animal {13
public:14
 Dog(string name, string laut):15
 Animal(name, laut) {}16
 void bellen() {17
 cout << this->laut;18
 }19

8

Kapitel 14 - Vererbung

Initialisierungsreihenfolge

Es gilt: Ober- vor Unterklasse

Erst Konstruktoren der Oberklasse(n)

aufrufen

Danach folgt Initialisierung der Kindklasse

Randbemerkung: Der Vorgang des Erbens
wird häufig auch Ableitung genannt

→ „Dog wird von Animal abgeleitet“

Auch hier gilt: Die Begriffe Erben und
Ableiten werden häufig synonym
verwendet

using std::string;1
using std::cout;2
class Animal {3
private:4
 string name;5
 string laut;6
public:7
 Animal() = delete;8
 Animal(string n, string l):9
 name(n), laut(l) {}10
};11

12
class Dog : public Animal {13
public:14
 Dog(string name, string laut):15
 Animal(name, laut) {}16
 void bellen() {17
 cout << this->laut;18
 }19

9

Kapitel 14 - Vererbung

Sichtbarkeit bei Vererbung

Ist jetzt alles geklärt? Leider nein 🙁

private bedeutet wirklich privat!

→ nur die Klasse kann zugreifen

Die Methode bellen() erzeugt
Compiler-Fehler

#include <string>
#include <iostream>
using std::cout;
using std::string;

class Animal {
private:
 string name;
 string laut;

public:
 Animal() = delete;
 Animal(string n, string l):
 name(n), laut(l) {}

};

class Dog : public Animal {
private:

bool lieb = true;

cpp Run ▶

10

Kapitel 14 - Vererbung

Selektive Vererbung

Problem: Nur ein Teil der Basisklasse vererben

Lösung: Schlüsselwort protected 🔒

Verwendung wie private und public

Member mit protected sind für Kindklassen

sichtbar

Der Bereich protected ist so etwas wie ein Familiengeheimnis

→ Die Kinder kennen es, aber außerhalb der Familie niemand

private entspricht hingegen einem persönlichen Geheimnis

→ Ist nur der Klasse selbst bekannt

class Animal {1
private: // Unsichtbar in Kind2
 bool secret = true;3
protected: // Ab hier: sichtbar4
 std::string name;5
 std::string laut;6
public:7
 Animal() = delete;8
 Animal(string n, string l):9
 name(n), laut(l) {}10
};11

11

Kapitel 14 - Vererbung

Vererbung

Jetzt funktioniert alles ✅
#include <iostream>

using namespace std;

class Animal {
private: // Unsichtbar in Kind
 bool secret = true;

protected: // Ab hier: sichtbar
 std::string name;
 std::string laut;

public:
 Animal() = delete;
 Animal(string n, string l):
 name(n), laut(l) {}

};

class Dog : public Animal {
public:

cpp Run ▶

12

Kapitel 14 - Vererbung

Selektive Vererbung

Eigenart von C++: Basisklassen automatisch

als private deklariert

Folge: Alle Member der Basisklasse werden

automatisch private
Kein Zugriff durch Kindklasse mehr erlaubt

Analog für protected (verbietet public)

Umgehung durch explizite Deklaration als

public

Achtung: Sehr beliebter Flüchtigkeitsfehler

class Animal {1
private: // Unsichtbar in Kind2
 int secret;3
protected: // Ab hier: sichtbar4
 string name;5
 string laut;6
public:7
 string get_name() {8
 return name;9
 }10
};11

// Alles aus Animal wird private1
class Dog : Animal {};2

3
// Ändert public zu protected4
class Dog : protected Animal {};5

6
// Keine Veränderungen7
class Dog : public Animal {};8

13

Kapitel 14 - Vererbung

Mehrfachvererbung

Ableitung von mehreren Basisklassen

Prinzipiell genau gleich wie bisher

Einzige Besonderheit: Reihenfolge

der Konstruktoraufrufe der

Basisklassen hängt von der Auflistung

während der Deklaration ab (von

links nach rechts)

class Pet {1
protected:2
 bool is_pet; // Haustier-Check3
};4

5
class Animal {6
private: // Unsichtbar in Kind7
 int secret;8
protected: // Ab hier: sichtbar9
 string name;10
 string laut;11
public:12
 string get_name() {13
 return name;14
 }15
};16

17
// Erst Init. von Pet, dann Animal18
class Dog : public Pet, public Animal {};19

14

Kapitel 14 - Vererbung

Mehrfachvererbung

Klassen können beliebig oft abgeleitet

werden

Das wird auch so gemacht!

Darstellung aller Vererbungen über

sogenannte Klassenhierarchie

(typischerweise UML-Grafik)

Animal

+ name: string

+ laut: string

KatzeHund Maus

Pudel

+ father: Vater

+ mother: Mutter

Vater Mutter

15

Kapitel 14 - Vererbung

Mehrfachvererbung

Problem: Praktische Umsetzung in C++ dieser Klassenhierarchie nicht möglich

Bei Deklaration von Poodle sind die Klassen Mother und Father noch gar nicht

deklariert

Hier hilft Forward Declaration

Aus C kennen wir etwas Verwandtes: extern

// Forward Declaration1
class Father;2
class Mother;3

4
class Poodle {5
 Father vater;6
 Mother mutter;7
}8

16

Kapitel 14 - Vererbung

Großes Beispiel

Praktisch umgesetzt sieht diese Hierarchie folgendermaßen aus

#include <string>
#include <iostream>

using std::string;
using std::cout;

class Animal {
protected: // Ab hier: sichtbar
 std::string name;
 std::string laut;

public:
 Animal() = delete;
 Animal(string n, string l):
 name(n), laut(l) {}

};

class Dog : public Animal {
public:

cpp Run ▶

17

Kapitel 14 - Vererbung

Umgang mit verschiedenen Kindklassen

Szenario: Abspeichern von Objekten verschiedener Kindklassen

Zum Beispiel: Array aller Katzen und Hunde

Mit klassischen Arrays geht das nicht → zwei verschiedene Typen

Lösung: Beide sind Objekte vom Typ

Animal → Array vom Typ Animal

Wichtig: Methoden von Kindklassen sind nicht unmittelbar zugreifbar

Diese Eigenschaft wird als Slicing bezeichnet → mehr im nächsten Kapitel

Umweg über Type Casting möglich

Animal anim_array[10]; // Default-Init.1
2

anim_array[0] = new Dog("Paul", "Wuff");3

Das Gleiche gilt natürlich

auch für Zeiger!

Animal* a = new Dog("Paul", "Wuff");1
2

unique_ptr<Animal> = make_unique<Dog>("Paul", "Wuff");3

18

Kapitel 14 - Vererbung

Ausblick: Abstrakte Klassen

Die bisherigen Beispielklassen sind alle noch instanziierbar gewesen

Jetzt: Basisklassen als Schablonen

Können nicht mehr direkt instanziiert werden

Stattdessen müssen Kindklassen abgeleitet

werden

Das Schlüsselwort virtual hilft hierbei → mehr im nächsten Kapitel

class Form {1
 virtual void get_area() = 0;2
};3

4
class Rechteck : public Form {/*...*/};5
class Quadrat : public Form {/*...*/};6
class Kreis : public Form {/*...*/};7
// ...8

19

Kapitel 14 - Vererbung

Zusammenfassung

Vererbung erlaubt akkurate Modellierung der Realität

Initialisierungsreihenfolge der Konstruktoren

Sichtbarkeitsmodifikatoren entscheiden über Weitergabe von Informationen

public → für alle zugreifbar

protected → nur für die Klasse und Unterklassen

private → nur für die Klasse selbst

20

Kapitel 14 - Vererbung

