o

technische universitat
dortmund

Kapitel 14 - Vererbung

Peter Ulbrich
AG Systemsoftware

Veranstaltungswebseite

Kapitel 14 - Vererbung

% by Decker

&

Arbeitsgruppe
Systemsoftware

https://sys.cs.tu-dortmund.de/
https://sys.cs.tu-dortmund.de/de/lehre/ws25/eidp
https://github.com/decker-edu/decker/

Einleitung

o Wichtigste Eigenschaften von OOP
o (— private/public)
o Darauf aufbauend: (Verstecken der Implementierungsdetails)

e Fur reale Anwendungsfalle fehlt aber noch etwas...
o ()

©)

Kapitel 14 - Vererbung 2

Initialisierung von Member-Objekten

e Im letzten Kapitel ausgeklammert:

e Objekte mussen als Member class Foo {
N . int 1i;
naturlich auch konsistent St
Foo() : i(0) {}

initialisiert werden O T
T . ti
o /wei Moglichkeiten

. class Bar {
o Automatische

Foo £f;
(sofern moglich) double j;
public:
o IN Bar (double d) : j(d) {} // f() automatisch
der Initialisierungsliste Bar (int num, double d) : f(num), j(d) {}

}i

(Die Destruktoren von Membern werden Gbrigens auch automatisch bei Aufruf des Destruktors aufgerufen)
Kapitel 14 - Vererbung 3

Beispiel - Initialisierung von Member-Objekten

using std::cout, std::endl;

class {
int i;

public:
Foo() : 1(0) { cout << ° » « 3ndl; }
Foo(int num) : i(num) { {E; endl; }

~Foo() { cout << "Foo d&
int value() { return i; }

}i

class {
Foo f£f;
double j;

public:

Rar/dmihle AY ¢ a9/(AY [it << "Rar AdAefanlt+t crancet+riictar ~alled" << andl e 1

Kapitel 14 - Vererbung 4

EinfUhrungsbeispiel zur Vererbung

o Tiere

e Mit dem aktuellen Wissen ware das bereits prinzipiell umsetzbar

1 class Dog { 1 class Cat { 1 class Mouse {
2 std: :string name; 2 std: :string name; 2 std: :string name;
3 std: :string laut; 3 std: :string laut; 3 std::string laut;
4} 4} 4}

e Probleme

o Sehr aufwendig, starke Duplizierung von Code
o Fehleranfallig: Member vergessen beim Kopieren, falsche Initialisierung

o ...und sehr stupide Arbeit

Kapitel 14 - Vererbung 5

° Vererbung

e T[iere haben gemeinsame Eigenschaften

o Zusammenfassen in einer (haufig auch Elternklasse bzw. Basisklasse)
Oberklasse

(©)

o und von

o Methoden und Member der Oberklasse stehen zur Verfligung
o in den Unterklassen moglich

o Ebenso: von existierenden Methoden

e Wichtige Eigenschaft: Jede Instanz einer Unterklasse ist gleichzeitig Instanz der
Oberklasse

o Beispiel: ,Jeder Hund ist gleichzeitig ein Tier"
Kapitel 14 - Vererbung 6

Vererbung in UML

Animal

+ name: string

+ laut: string

A\

Hund Katze Maus

Beispiel flir eine Vererbung in UML

o Weil3e Pfeilspitze, zeigt auf Basisklasse

e Wird in UML auch Generalisierung genannt

Kapitel 14 - Vererbung 7

Grundlagen der Vererbung

Vererbung findet in C++ bei der
Klassendeklaration statt

Auflistung Basisklassen hinter
Klassennamen

Initialiserung der Basisklasse im Konstruktor

Parameter werden entsprechend
weitergeleitet

Kapitel 14 - Vererbung

using std::string;
using std::cout;
class Animal {
private:
string name;
string laut;
public:
Animal () = delete;
Animal(string n, string 1):
name(n), laut(l) {}
}i

class Dog :
public:
Dog(string name, string laut):
Animal (name, laut) {}
void bellen() {
cout << this->laut;

public Animal {

}

Initialisierungsreihenfolge

o Ober- vor Unterklasse

o Konstruktoren der Oberklasse(n)
aufrufen

° folgt Initialisierung der Kindklasse

o Der Vorgang des Erbens
wird haufig auch genannt

— ,Dog wird von Animal abgeleitet”

o Die Begriffe Erben und
Ableiten werden haufig synonym
verwendet

Kapitel 14 - Vererbung

using std::string;
using std::cout;
class Animal {
private:
string name;
string laut;
public:
Animal () = delete;
Animal(string n, string 1):
name(n), laut(l) {}
}i

class Dog : public Animal {
public:
Dog(string name, string laut):
Animal (name, laut) {}
void bellen() {
cout << this->laut;

}

Sichtbarkeit bei Vererbung

st jetzt alles geklart? Leider nein &

using std::cout;
using std::string;

private bedeutet wirklich privat!

— nur die Klasse kann zugreifen

class {
. private:
Die Methode bellen() erzeugt string name;
Compiler-Fehler string laut;
public:

Animal() = delete;
Animal(string n, string 1l):
name(n), laut(l) {}
}i

class : public Animal {
private:

hnnl T1iah = +viiae.

Kapitel 14 - Vererbung

10

Selektive Vererbung

. : Nur ein Teil der Basisklasse vererben 1 class Animal {
2 private: // Unsichtbar in Kind
- al 3 bool secret = true;
o ° B r
: Schlusselwort prOteCted 4 protected: // Ab hier: sichtbar
o Verwendung wie private und public 5 std::string name;
6 std::string laut;
o Member mit protected sind fur Kindklassen 7 public:
sichtbar 8 An%mal() =.delete; |
9 Animal(string n, string 1):
10 name(n), laut(l) {}
11 };

e Der Bereich protected ist so etwas wie ein
— Die Kinder kennen es, aber auf3erhalb der Familie niemand
e private entspricht hingegen einem Geheimnis

— |st nur der Klasse selbst bekannt

Kapitel 14 - Vererbung 11

Vererbung

Jetzt funktioniert alles

using namespace std;

class {
private:

bool secret = true;
protected:

std::string name;
std::string laut;
public:
Animal() = delete;
Animal (string n, string 1):
name(n), laut(l) {}
}i

class : public Animal {

nithlime

Kapitel 14 - Vererbung 12

Selektive Vererbung

o Basisklassen automatisch
als private deklariert

o Folge: Alle Member der Basisklasse werden
automatisch private

o Kein Zugriff durch Kindklasse mehr erlaubt
o Analog fir protected (verbietet public)

e Umgehung durch als
public

o Achtung: Sehr beliebter Fliichtigkeitsfehler

Kapitel 14 - Vererbung

R O O 00 ~J o Ul & W IDN -

=

00 o O s WD BRP

class Animal {
private: // Unsichtbar in Kind
int secret;
protected: // Ab hier: sichtbar
string name;
string laut;
public:
string get name() {
return name;

}
}i:

// Alles aus Animal wird private
class Dog : Animal {};

// Andert public zu protected
class Dog : protected Animal {};

// Keine Veridnderungen
class Dog : public Animal {};

13

Mehrfachvererbung

Ableitung von
Prinzipiell genau gleich wie bisher

Reihenfolge
der Konstruktoraufrufe der
Basisklassen hangt von der Auflistung
wahrend der Deklaration ab (

)

class Pet {
protected:

bool is pet; // Haustier-Check
}i

class Animal {
private: // Unsichtbar in Kind
int secret;
protected: // Ab hier: sichtbar
string name;
string laut;
public:
string get name() {
return name;

}
}i

// Erst Init. von Pet, dann Animal

class Dog : public Pet, public Animal {};

Kapitel 14 - Vererbung

14

Mehrfachvererbung

Animal

o Klassen konnen beliebig oft abgeleitet

+ name: string

+ laut: string

werden
e Das wird auch so gemacht! / j& V\

Hund Katze Maus

o Darstellung aller Vererbungen tber %

sogenannte Pudel

+ father: Vater

(typischerweise UML-Grafik)

+ mother: Mutter

T

Vater Mutter

Kapitel 14 - Vererbung 15

Mehrfachvererbung

o Praktische Umsetzung in C++ dieser Klassenhierarchie nicht moéglich

e Bei Deklaration von sind die Klassen und noch gar nicht
deklariert

e Hier hilft // Forward Declaration

e Aus C kennen wir etwas Verwandtes: extern

Kapitel 14 - Vererbung

0O o O s WD R

class Father;
class Mother;

class Poodle {

Father vater;
Mother mutter;

16

Grof3es Beispiel

e Praktisch umgesetzt sieht diese Hierarchie folgendermal3en aus

using std::string;
using std::cout;

class {
protected:
std::string name;
std::string laut;
public:
Animal() = delete;
Animal (string n, string 1):
name(n), laut(l) {}
}i

class : public Animal {

Nnithlime

Kapitel 14 - vererbung

17

Umgang mit verschiedenen Kindklassen

. Abspeichern von Objekten verschiedener Kindklassen

o Zum Beispiel: Array aller Katzen und Hunde

o Mit klassischen Arrays geht das nicht = zwei verschiedene Typen

® Beide Sind ObJEkte vom Typ Animal anim array[10]; // Default-Init.
— Array vom Typ anim array[0] = new Dog(] 5
J Methoden von Kindklassen sind nicht unmittelbar zugreifbar
o Diese Eigenschaft wird als bezeichnet = mehr im nachsten Kapitel

o Umweg Uber Type Casting moglich

e Das Gleiche gilt nattrlich Animal* a = new Dog(: ¥

auch fur Zeiger! unique ptr<Animal> = make unique<Dog>(’)i

Kapitel 14 - Vererbung 18

Ausblick: Abstrakte Klassen

e Die bisherigen Beispielklassen sind alle noch instanziierbar gewesen

o Basisklassen als

o Konnen nicht mehr direkt instanziiert werden

o Stattdessen miissen Kindklassen abgeleitet

1
2
3
4
5
werden 6
7
8

e Das Schliisselwort virtual hilft hierbei —

Kapitel 14 - Vererbung

class Form {

virtual void get area() = 0;

}i

class Rechteck :

class Quadrat
class Kreis

7l o

public Form {/*...
: public Form {/*...
: public Form {/*...

*/}i
*/};
e

19

Zusammenfassung

e Vererbung erlaubt akkurate Modellierung der Realitat

e |nitialisierungsreihenfolge der Konstruktoren

e Sichtbarkeitsmodifikatoren entscheiden tGiber Weitergabe von Informationen
o public — firalle zugreifbar
o protected — nur fir die Klasse und Unterklassen

o private — nurfir die Klasse selbst

Kapitel 14 - Vererbung 20

Kapitel 14 - Vererbung

