
Kapitel 13 - Objektorientierte Programmierung

Kapitel 13 - Objektorientierte Programmierung

Peter Ulbrich

AG Systemsoftware

Veranstaltungswebseite

🚀 by Decker

1

https://sys.cs.tu-dortmund.de/
https://sys.cs.tu-dortmund.de/de/lehre/ws25/eidp
https://github.com/decker-edu/decker/

Kapitel 13 - Objektorientierte Programmierung

Lehrevaluation

2

Kapitel 13 - Objektorientierte Programmierung

Einleitung

Bisher: prozedurale bzw. imperative Programmierung

Geprägt durch hierarchisches Aufrufen von Funktionen

Variablen (z.B. int , char), Datenstrukturen (struct) und Funktionen sind getrennt

Jetzt: Neue Sichtweise auf die Programmierung

→ Objektorientierte Programmierung (OOP)

OOP hat einige interessante Eigenschaften:

Bündelt logisch zusammengehörige Funktionen und Daten in einer Datenstruktur → Objekt

Sauber definierte Schnittstellen für Interaktion mit Daten

Verstecken von internen Funktionen bzw. Variablen → information hiding

3

Keine Sorge! OOP ist „nur“ eine
Erweiterung des Bekannten.

Kapitel 13 - Objektorientierte Programmierung

Einleitung

Modellierung

Anwendungsproblem Modellierung Reduzieren auf das „Wesentliche“

„Wesentlich“ im Sinne unserer Sicht auf die Dinge bei diesem Problem

→ Es existieren verschiedene Sichten auf dasselbe Problem!

Objektorientierte Programmierung

Formulierung eines Modells in Konzepten und Begriffen der realen Welt

Nicht in computertechnischen Konstrukten (Hauptprogramm, Unterprogramm, Funktionen, …)

Stattdessen: Klassen (Objekte) mit Attributen und Methoden

Interaktion untereinander

Achtung: Programmiersprache ist hier nur ein Implementierungsdetail

4

Kapitel 13 - Objektorientierte Programmierung

UML-Klassendiagramme

Pläne zur Beschreibung von abstrakten Objekt-Relationen

© Draw-IO

5

https://www.drawio.com/blog/uml-class-diagrams

Kapitel 13 - Objektorientierte Programmierung

Objektorientierte Programmierung

Programmierung bis jetzt

#include <iostream>1
2

struct Punkt {3
 double x;4
 double y;5
};6

7
void print_punkt(Punkt p) {8
 std::cout << "X: " << p.x <<9
 " Y: " << p.y << std::endl;10
}11

Objektorientierte Programmierung

#include <iostream>1
2

class Punkt {3
 double x;4
 double y;5
public:6
 void print_punkt() {7
 std::cout << "X: " << x <<8
 " Y: " << y << std::endl;9
 }10
};11

Auffällige Unterschiede: Neue Schlüsselwörter class und public , sonst gleich

6

Kapitel 13 - Objektorientierte Programmierung

Nomenklatur

Als Teil einer Klasse heißen …

Funktionen → Methoden

Variablen → Attribute

Achtung: C++ kennt diese Begriffe offiziell nicht

Stattdessen: Member einer Klasse

Attribut bzw. Methode werden aber trotzdem häufig synonym verwendet

Bauplan eines Objekts → Klasse

Mit Werten gefüllte Klasse → Instanz

Auch hier: Instanz und Objekt werden oft synonym verwendet. Aufpassen!

// Definition des Bauplans1
class Punkt {2
 double x;3
 double y;4
};5

6
// Instanz: Initialisierung7
Punkt p;8

7

Kapitel 13 - Objektorientierte Programmierung

Sichtbarkeit

Abkapselung von Informationen mit Schlüsselwörtern public und private

Ziele:

Sauberer Zugriff auf Variablen

Verstecken von Informationen, die nicht öffentlich zugänglich sein sollen

Compiler hilft bei der Durchsetzung

(Bei struct ist alles öffentlich) (Bei class ist alles privat)

struct Punkt {1
 double x;2
 double y;3
};4
// Bisher erlaubt5
Punkt p;6
p.x = 2.0;7

class Punkt {1
 double x;2
 double y;3
};4
// Compiler-Fehler5
Punkt p;6
p.x = 2.0;7

8

Kapitel 13 - Objektorientierte Programmierung

Alles unsichtbar

Grund für Compiler-Fehler: private wird bei Klassen automatisch gesetzt

class Punkt {1
// private: implizit gesetzt2
 double x;3
 double y;4
};5

class Punkt {1
private: // Äquivalent2
 double x;3
 double y;4
};5

Für Strukturen ist implizit public → Zugriff erlaubt

Einzige Unterschied zwischen Klassen und Strukturen

Ansonsten sind sie vollständig identisch

struct Punkt {1
// public: implizit gesetzt2
 double x;3
 double y;4
};5

struct Punkt {1
public: // Äquivalent2
 double x;3
 double y;4
};5

9

Kapitel 13 - Objektorientierte Programmierung

Zugriff auf Attribute

Externer Zugriff auf private Attribute nur

über Umwege

Grund: Werte der Attribute sollen stets

wohldefiniert sein

Lösung

Verwendung öffentlicher Funktionen für Zugriff

get() → Abrufen

set() → Setzen

Heißen deswegen auch Getter bzw. Setter

Ermöglicht Überprüfung bzw. Konvertierung der

Werte

class Punkt {1
 double x;2
 double y;3
public: // Ab hier alles öffentlich4
 void set_x(double new_x) {5
 if (new_x != 0.0) {6
 x = new_x;7
 }8
 }9
 void set_y(double new_y) {10
 if (new_y != 0.0) {11
 y = new_y;12
 }13
 }14
 double get_x() { return x; }15
 double get_y() { return y; }16
};17

10

Kapitel 13 - Objektorientierte Programmierung

Sichtbarkeitsmodifikation

Beliebiges Mischen von private und public ist
prinzipiell möglich

Aber: Schlecht lesbar und unübersichtlich

→ Möglichst vermeiden!

Bei großen Projekten oft erst öffentlicher Teil

→ Weniger Sucharbeit bei sehr großen Klassen

class VeryBigClass {1
public:2
 /* Viele Funktionen */3
private:4
 /* Noch mehr private Details */5
};6

// Schlecht lesbar1
class Punkt {2
private:3
 double x;4
public:5
 double get_x() {6
 return x;7
 }8
private:9
 double y;10
public:11
 double get_y() {12
 return y;13
 }14
};15

16

11

Kapitel 13 - Objektorientierte Programmierung

Information Hiding

Ziel: Trennung von Klassendefinition und

Implementierung

Umsetzung über Header- und Source-Datei

Definition im Header und Implementierung in der Source-

Datei

Häufige Konvention:

Eine Klasse pro Header-/Source-Datei

Name von Header-/Source-Datei entspricht dem

Klassennamen

Achtung: Die Methoden benötigen hier zusätzlich

das Namespace-Präfix der Klasse!

// punkt.h1
#pragma once2

3
class Punkt {4
 double x;5
 double y;6
public:7
 void print_punkt();8
};9

// punkt.cpp1
#include "punkt.h"2
#include <iostream>3

4
using std::cout, std::endl;5
void Punkt::print_punkt() {6
 cout << "X: " << p.x7
 << " Y: " << p.y8
 << endl;9
}10

12

Kapitel 13 - Objektorientierte Programmierung

Initialisierung der Member-Variablen

Wir kennen jetzt den grundlegenden

Aufbau von Klassen in C++

Aber: Bisher keine Initialisierung möglich

Struct-Initialisierung nicht ohne Weiteres erlaubt

Punkt p = {2.0, 3.1}; // Error

Nachträgliches Setzen mithilfe einer set()-

Methode → sehr umständlich

class Punkt {1
 double x;2
 double y;3
public:4
 void set_x(double new_x) {5
 x = new_x;6
 }7
 double get_x() { return x; }8
 /* Restliche Implementierung */9
};10

11
Punkt p;12
p.set_x(2.0); // Umständlich13

Lösung: Konstruktor

Besondere Methode, die automatisch bei der Initialisierung aufgerufen wird

Stellt sicher, dass alle Member-Variablen korrekt und konsistent initialisiert sind

13

Kapitel 13 - Objektorientierte Programmierung

Konstruktoren: Initialisierung der Member-Variablen

Konstruktoren haben eine Reihe von besonderen Eigenschaften:

Sind an die jeweilige Klasse fest gebunden

Haben den gleichen Namen wie die Klasse

Können nicht explizit aufgerufen werden

Automatischer Aufruf bei Instanziierung

class Punkt {1
 double x;2
 double y;3
public:4
 Punkt() {} // Default5
 // Parametrisiert6
 Punkt(double x, double y)7
 : x(x), y(y) {}8
};9

Es gibt vier Hauptarten von Konstruktoren

Default-Konstruktor → Punkt() {}

Parametrisierte Konstruktor → Punkt(double nx, double ny) : x(nx), y(ny) {}

Copy-Konstruktor → Punkt(const Punkt& p) {}
Move-Konstruktor → Punkt(Punkt&& p) {}

14

Kapitel 13 - Objektorientierte Programmierung

Default-Konstruktor

Wird bei jeder Klassendefinition automatisch eingefügt,

falls kein anderer Konstruktor definiert wird

Ist ein parameterloser Konstruktor

Die folgenden beiden Definitionen sind identisch:

class Punkt {1
 double x;2
 double y;3
public:4
 Punkt() {} // Explizit genannt5
};6

class Punkt {1
 double x;2
 double y;3
// public: // Automatisch eingefügt4
// Punkt() {}5
};6

15

Kapitel 13 - Objektorientierte Programmierung

Eigenschaften des Default-Konstruktor

Initialisiert standardmäßig keine Member-Variablen

Konsistente Initialisierung auf verschiedene Weisen möglich

Hier: Durch Überschreiben des Konstruktors bzw. durch Inline-Zuweisungen

cpp cppRun ▶ Run ▶

Kapitel 13 - Objektorientierte Programmierung

#include <iostream>
using std::cout;
class Punkt {
 double x = 1.0; // Inline
 double y = 1.0;

public:
 Punkt() {}
 double get_x() { return x; }
 double get_y() { return y; }

};
int main() {
 Punkt p;
 cout << p.get_x() << " " << p.get_y();

}

#include <iostream>
using std::cout;
class Punkt {
 double x;
 double y;

public:
 Punkt() { x = 2.0; y = 2.0; }
 double get_x() { return x; }
 double get_y() { return y; }

};
int main() {
 Punkt p;
 cout << p.get_x() << " " << p.get_y();

}

16

Kapitel 13 - Objektorientierte Programmierung

Member Initializer-Liste

Initialisierung der Member über eine separate Stelle im Code

Eigenschaft: wird vor dem Body der Funktion ausgeführt

Aufbau:

<class name>(<function parameters>) : <initializer list> { <function body> }

Wichtig:

Reihenfolge der Initialisierung =
Reihenfolge der Deklaration

Alternative Schreibweise: {} statt ()

class Punkt {1
 double y;2
 double x;3
public:4
 Punkt() : x(2.0), y(1.0) {}5
 // Alternativ: Braced Init.6
 Punkt() : x{2.0}, y{1.0} {}7

8
 /* Restliche Implementierung */9
};10

11
12

17

Kapitel 13 - Objektorientierte Programmierung

Parametrisierter Konstruktor

Initialisierung der Member mit
beliebigen Werten

Prinzip bereits bekannt, jetzt mit
Funktionsparametern

Wichtig: Beliebig viele, verschiedene
Konstruktoren erlaubt

→ Nennt sich Überladung des
Konstruktors

class Punkt {1
 double x_;2
 double y_;3
 bool g_; // Geheim4
public:5
 Punkt() :6
 x_(2.0), y_(1.0), g_(false) {}7

8
 Punkt(double x, double y) :9
 x_(x), y_(y), g_(false) {}10

11
 Punkt(double x, double y, bool g) :12
 x_(x), y_(y), g_(g) {}13

14
 /* Restliche Implementierung */15
};16

18

Kapitel 13 - Objektorientierte Programmierung

Parametrisierter Konstruktor

#include <iostream>

using std::cout, std:: endl;

class Punkt {
 double x_;
 double y_;
 bool g_; // Geheim

public:
 Punkt() : x_(2.0), y_(1.0), g_(false) {}

 Punkt(double x, double y) : x_(x), y_(y), g_(false) {}

 Punkt(double x, double y, bool g) : x_(x), y_(y), g_(g) {}

 void print_punkt() {
 cout << "X: " << x_ << " Y: " << y_ << " G: " << g_ << endl;
 }

};

cpp Run ▶

19

Kapitel 13 - Objektorientierte Programmierung

Konstruktoren

Bisher: Beliebige Anzahl von verschiedener Konstruktoren definieren

Aber: Können wir Konstruktoren auch verbieten?

Lösung: Schlüsselwort delete löscht automatisch erzeugte Konstruktoren

→ Punkt P() = delete;

Analog dazu: Konstruktoren auch explizit als default markierbar

→ Punkt P() = default;

delete und default sollen die Intention des Programmierers verdeutlichen

→ Macht Außenstehendem sofort deutlich, dass die Konstruktoren korrekt sind

20

Kapitel 13 - Objektorientierte Programmierung

Destruktor

Das Erzeugen und Initialisieren von Objekten ist jetzt bekannt

Der durch Objekte belegte Speicher muss aber irgendwann auch wieder freigegeben

werden

Für primitive Datentypen wie int , double geschieht dies automatisch

Aber: Komplexere Datentypen wie Zeiger müssen explizit wieder freigegeben werden

Gleiches gilt im Übrigen auch für von der Klasse gehaltene Ressourcen

Beispiele: Geöffnete Datei, aktive Datenbankverbindung

… oder was auch immer gerade benötigt wird

Hier wird der Destruktor relevant!

21

Kapitel 13 - Objektorientierte Programmierung

Destruktor

Destruktor ist das Komplement

zum Konstruktor

Benennung: Vorangestellte Tilde (~) vor

dem Klassennamen → ~Punkt() {}
Wird ebenfalls automatisch erzeugt und

muss ggf. überschrieben werden

Allerdings keine Überladung möglich

(immer nur ein Destruktor pro Klasse)

Wird bei Verlassen des Scopes

aufgerufen, in dem das Objekt

instanziiert wurde

class DataHandle {1
 void * data;2
 int size_;3
public:4
 DataHandle() = delete;5
 DataHandle(int size): size_(size) {6
 data = malloc(size * sizeof(void*));7
 }8
 ~DataHandle() {9
 free(data);10
 }11
};12

13
14

int main() {15
 DataHandle dh{3}; // Instanziierung16
 /* Arbeite mit dh */17
} /* Aufruf Destruktor dh */18

22

Kapitel 13 - Objektorientierte Programmierung

Destruktor

#include <iostream>

class DataHandle {
 void * data;
 int size_;

public:
 DataHandle() = delete;
 DataHandle(int size): size_(size) {
 data = malloc(size * sizeof(void*));
 std::cout << "Constructor called" << std::endl;
 }
 ~DataHandle() {
 free(data);
 std::cout << "Destructor called" << std::endl;
 }

};

int main() {

cpp Run ▶

23

Kapitel 13 - Objektorientierte Programmierung

Beispiel - Copy-Konstruktor

Angenommen, folgender Code wird ausgeführt. Was wird passieren?

#include <iostream>

class DataHandle {
 void * data;
 int size_;

public:
 DataHandle() = delete;
 DataHandle(int size): size_(size) {
 data = malloc(size * sizeof(void*));
 }
 ~DataHandle() {
 std::cout << "Destructor called" << std::endl;
 free(data);
 }

};

cpp Run ▶

24

Kapitel 13 - Objektorientierte Programmierung

Copy-Konstruktor

dh2 ist eine bitweise Kopie von dh1
(Shallow Copy)

Beinhaltet auch den Zeiger data

dh1.data und dh2.data zeigen auf

gleichen Speicher

Doppelter Aufruf von Destruktor

Ergebnis: Zweifaches free() führt zu

Absturz des Programms 🤯

class DataHandle {1
 void * data;2
 int size_;3
public:4
 ~DataHandle() {5
 std::cout6
 << "Destructor called"7
 << std::endl;8
 free(data);9
 }10
};11

int main() {1
 DataHandle dh1{4};2
 {3
 DataHandle dh2 = dh1;4
 } // Destruktor dh25
} // Destruktor dh1. BOOM6

7

25

Deshalb gibt es den Copy-
Konstruktor

Kapitel 13 - Objektorientierte Programmierung

Copy-Konstruktor

Copy-Konstruktor hat einen Parameter → Referenz auf Objekt

Beispiel: DataHandle(const DataHandle& d) {}

const verbietet Modifikation des Originals

Referenz → kein Copy-by-Value des Originals (aufwendig)

Korrektes Initialisieren

von Member (Deep Copy)

class DataHandle {1
 void * data;2
 int size_;3
public:4
 DataHandle(const DataHandle& d) : size_(d.size_) {5
 data = malloc(d.size_);6
 std::memcpy(data, d.data, d.size_);7
 }8
};9

26

Kapitel 13 - Objektorientierte Programmierung

Copy-Konstruktor

#include <iostream>
#include <cstring>

class DataHandle {
 void * data;
 int size_;

public:
 DataHandle() = delete;
 DataHandle(int size): size_(size) {
 data = malloc(size * sizeof(void*));
 std::cout << "Constructor called" << std::endl;
 }
 DataHandle(const DataHandle & d) : size_(d.size_) {
 data = malloc(d.size_);
 std::memcpy(data, d.data, d.size_);
 std::cout << "Copy Constructor called" << std::endl;
 }

~DataHandle() {

cpp Run ▶

27

Kapitel 13 - Objektorientierte Programmierung

Move-Konstruktor

Ist ein etwas fortgeschritttener Aspekt von C++

Hier: Konzept verstehen, statt jedes technische Detail zu ergründen

Zunächst ein abstraktes Beispiel: Staffellauf

Dabei übergibt ein bisheriger Läufer (→

Objekt) einem neuen Läufer eine wichtige

Ressource (→ Stab)

© Microsoft Imagine - mit KI generiert

Mit unserem bisherigen Wissen wäre das nicht gut umsetzbar 🙁

28

An dieser Stelle kommt der
Move-Konstruktor ins Spiel!

Kapitel 13 - Objektorientierte Programmierung

Move-Konstruktor

Ziel: effizientes Verschieben von Ressourcen von einer Instanz zu einer anderen

Beispiel Zeiger: Verschieben des Zeigerwerts zum neuen Objekt

Wichtig: Originales Objekt sollte danach keinen Zugriff mehr auf die Ressource haben

→ Bester Weg: Alter Zeiger wird nullptr

Spezielle Signatur:

<Type>(<Type>&& var_name);
Beispiel: DataHandle(DataHandle&& dh);

Formal ist && dh eine Referenz auf einen Rvalue

Der Vollständigkeit halber: Rvalues sind temporär existierende

Werte/Ausdrücke (z.B. 3 + 3;)

3 + 3; // Temp. Rvalue1

29

Kapitel 13 - Objektorientierte Programmierung

Move-Konstruktor

C++ bietet für die Konvertierung eine

Hilfsfunktion: std::move

Irreführender Name, std::move bewegt eigentlich nichts

Stattdessen nur Type-Casting zu Referenz auf Rvalue

→ DataHandle wird zu DataHandle &&

Gecasteter Wert wird anschließend als Parameter im Konstruktor-Aufruf verwendet

#include <utility> // für std::move1
DataHandle dh1("foo");2
// Type-Casting auf DataHandle &&3
// gefolgt von Konstruktor-Aufruf4
DataHandle dh2(std::move(dh1));5

30

Kapitel 13 - Objektorientierte Programmierung

Move-Konstruktor

Move-Konstruktor hat grundsätzlich Ähnlichkeit zum Copy-Konstruktor

Wichtiger Unterschied: Ressourcen beim alten Objekt unzugänglich machen

Grund: Alte Objekte existieren nach Move weiterhin

(und könnten prinzipiell auch Ressourcen manipulieren)

class DataHandle {1
 void * data;2
 int size_;3
public:4
 DataHandle(DataHandle && dh) : data(dh.data), size_(dh.size_) {5
 dh.data = nullptr; // Zugangssperre6
 }7
 /* Restliche Implementierung */8
};9

31

Kapitel 13 - Objektorientierte Programmierung

Aufrufreihenfolge Destruktor

Wichtig: Aufrufreihenfolge von

Konstruktoren und Destruktoren

Zerstörung immer in umgekehrter

Reihenfolge zur Deklarierung

#include <iostream>
using std::cout, std::endl;

class A {
public:
 A() { cout << "A: Constructor" << endl; }
 ~A() { cout << "A: Destructor" << endl; }
};

class B {
public:
 B() { cout << "B: Constructor" << endl; }
 ~B() { cout << "B: Destructor" << endl; }
};

cpp Run ▶

32

Kapitel 13 - Objektorientierte Programmierung

Resource Acquisition Is Initialization (RAII)

Ist eine interessante Programmiertechnik: Resource Acquisition Is Initialization (RAII)

Möglich durch automatische Destruktoraufrufe bei Verlassen des Scopes

Ressourcen in diesem Kontext müssen vorher akquiriert werden

Beispiel: Öffnen einer Datei bzw. Datenbankverbindung

Grundgedanke: Bei Konstruktor-Aufruf wird Ressource akquiriert, bei Destruktor-

Aufruf automatisch wieder freigegeben

Sehr praktisch: Speicherleck/Ressourcenleck wird dadurch unmöglich

33

Kapitel 13 - Objektorientierte Programmierung

Beispiel - Resource Acquisition Is Initialization

Situation: Automatisches Öffnen und Schließen einer Datei bei Initialisierung und

Destruktor-Aufruf

#include <iostream>
#include <fstream>

using std::cout, std::endl;
using std::ios;

class FileHandler {
 std::fstream file; // File Handle

public:
 FileHandler(const std::string& filename) {
 file.open(filename, ios::in | ios::app);
 if (file.is_open()) {
 cout << "File opened successfully" << endl;
 }
 }

cpp Run ▶

34

RAII ist eine extrem nützliche
Programmiertechnik. Nutzt sie!

Kapitel 13 - Objektorientierte Programmierung

Zwischenstand

Zeit für einen kurzen Zwischenstand:

Grundlegende Eigenschaften von Objekten wurden vorgestellt

Die grundlegende Reihenfolge der Initialisierung/Destruktion ebenso

Konstruktoren/Destruktoren sind jetzt bekannt

Es fehlt: Smart Pointer (besseres Speicher-Management bei Zeigern)

Teil einer Reihe von Verbesserungen, die mit C++11 eingeführt wurden

35

Zunächst einmal kommen aber
noch einige allgemeine Konzepte!

Kapitel 13 - Objektorientierte Programmierung

Operator-Überladung

Zur Erinnerung: C++ erlaubt das Überladen von Funktionen (und Konstruktoren)

Außerdem: Operatoren könnnen auch überladen werden (Klassen/Strukturen)

Bereits bekannt: <<-Operator bei std::cout

std::cout << "Echo";

Überladung mithilfe des Schlüsselworts operator
operator+=(int i); // Überlade += für int-Parameter

Ist für die meisten Operatoren möglich, mit ein paar Ausnahmen:

. (bzw. .*) → Member-Zugriff (bzw. Member-Zugriff über Zeiger)

:: → Scope Resolution Operator

?: → Ternärer Operator

36

Kapitel 13 - Objektorientierte Programmierung

Beispiel - Operator-Überladung

Beispiel: Wrapper-Klasse für Integer

#include <iostream>

class Integer {
 int val;

public:
 Integer() = delete;
 Integer(int i) : val(i) {}

 int operator+(int summand) { return val + summand; }
 void operator+=(int summand) { val += summand; }

 int value() { return val; }
};

int main() {

cpp Run ▶

37

Operator-Überladung ist sehr
nützlich, wenn es an den
richtigen Stellen eingesetzt wird!

Kapitel 13 - Objektorientierte Programmierung

Einschub: Rule of Three/Five

Betrachtung einer wichtigen Regel in C++: Rule of Three/Five

Rule of Three

Wenn es notwendig ist, einen eigenen Destruktor, Copy-Konstruktor, oder Copy-Assignment-Operator

(operator=(const &)) zu erstellen, sollen* alle drei erstellt werden

Rule of Five

Erweiterung der Rule of Three um Move-Konstruktor und Move-Assignment-Operator (operator=
(&&))

Grund ist simpel: Ressourcen sollen immer konsistent initialisiert werden bzw.

verfügbar sein

38

Kapitel 13 - Objektorientierte Programmierung

Schlüsselwort friend

Externer Zugriff auf Member-

Variablen nur via Methoden

Ausgangslage: Funktionen oder

fremde Klasse soll direkten Zugriff

haben

Problem: C++ verbietet das! 😱

class Punkt {1
 double x;2
 double y;3
public:4
 void print_punkt() { // Ok5
 cout << "X=" << x <<6
 " Y=" << y << endl;7
 }8
};9
// Überladung von Operator << für cout10
// Compiler-Error: Zugriff auf private Member11
ostream& operator<<(ostream& os, Punkt& p) {12
 return os << "X=" << p.x13
 << "Y=" << p.y << endl;14
}15

Mit den aktuellen Möglichkeiten geht das nicht!

→ Lösung: Neues Schlüsselwort friend 😀

39

Kapitel 13 - Objektorientierte Programmierung

Schlüsselwort friend

friend gestattet selektiven Zugriff für externe Klassen und Funktionen

→ friend ostream& operator<<(ostream& os, Punkt& p);

Randbemerkung: Aufruf von externen Funktionen ohne Namespace-Präfix
#include <iostream>
using std::cout, std::endl;
using std::ostream;

class Punkt {
 double x;
 double y;

public:
 Punkt(double x, double y) : x(x), y(y) {}

 friend void print_punkt(Punkt& p);
 friend ostream& operator<<(ostream& os, Punkt& p);

};

cpp Run ▶

40

Kapitel 13 - Objektorientierte Programmierung

Schlüsselwort this

Nur innerhalb einer Klasse verfügbar

Zeiger auf die aktuelle Instanz der Klasse (wird automatisch erzeugt)

Verwendung wie alle anderen Zeiger

this->print();

*this; // Objekt selbst

Vorteile

Vermeidung von Namenskonflikten

Manche Operatorüberladungen erfordern Verweis auf

sich selbst

Explizite Nennung verbessert Lesbarkeit des

Quellcodes

class Integer {1
 int val;2
public:3
 Integer(int i) : val(i) {}4

5
 int value() {6
 return val; // Implizit7
 }8
 int value_explicit() {9
 return this->val;10
 }11
};12

41

Kapitel 13 - Objektorientierte Programmierung

Schlüsselwort static in Klassen

Member dürfen als static deklariert werden

Gehören keinem Objekt an, sondern der Klasse selbst

#include <iostream>

using std::cout, std::endl;

class A {
public:
 static int _count;
 A() { _count++; }
 ~A() { _count--; }
 static int count() { return _count; }

};
int A::_count = 0; // Initialisierung *außerhalb* der Klasse in *.cpp-Datei

int main() {
 A a1, a2;

cpp Run ▶

42

Kapitel 13 - Objektorientierte Programmierung

Dynamische Allokation in C++ (new / delete)

C++ erweitert die aus C bekannten
Funktionen malloc und free

Operatoren ersetzen die Funktionen

malloc → new (dyn. Allokation)

free → delete (dyn. Deallokation)

Im globalen Namespace enthalten

→ kein Einbinden von Headern notwendig

Ansonsten gleiche Eigenschaften wie
malloc und free

#include <iostream>
using std::cout, std::endl;

class Foo {
public:
 int bar;
 Foo(int val) : bar(val) {}
};

int main() {
 Foo * foo = new Foo(1);
 int * i = new int(5);
 cout << "Foo: " << foo->bar << endl;
 cout << "Int: " << *i << endl;
 delete i;
 delete foo;
}

cpp Run ▶

43

Kapitel 13 - Objektorientierte Programmierung

Dynamische Allokation in C++ (new / delete)

new und delete können auch mit

Arrays umgehen

Das Löschen von Arrays erfolgt mit

Operator delete[]

Achtung Stolperfalle: Bei Arrays mit

mehreren Dimensionen muss über die

Dimensionen iteriert werden

Foo * foo = new Foo[ROWS][COLS];1
for (int i = 0; i < ROWS; ++i) {2
 delete[] foo[i]; // Spalte i löschen3
}4
delete[] foo; // Alle Zeilen5
f = nullptr; // Zeigerwert löschen6

#include <iostream>
using std::cout, std::endl;

class Foo {
public:
 int bar;
 Foo() : bar(0) {}
 Foo(int val) : bar(val) {}
};

int main() {
 // 10 Foo-Objekte, default-initialisiert
 Foo * foo = new Foo[10];
 int * i = new int[5] { 1, 2, 4, 8, 16 };

 foo[2].bar = 4;
 cout << "Foo: " << foo[2].bar << endl;
 cout << "Int: " << i[4] << endl;
 delete[] i;
 delete[] foo;

cpp Run ▶

44

Kapitel 13 - Objektorientierte Programmierung

Dynamische Allokation in C++ (new / delete)

new und delete haben die gleichen Schwächen wie free und malloc 🙁

Syntax ist jetzt etwas angenehmer

Aber: Programmierer:in kann immer noch Aufrufe vergessen

Ist es also am Ende in C++ genauso schlimm wie in C?

→ Nein!

C++11 hat die sogenannten Smart Pointer eingeführt

45

Kapitel 13 - Objektorientierte Programmierung

Smart Pointer

Seit C++11 Bestanteil des Standards

Objekte kapseln Zeigervariable

Verwenden dazu im Kern das RAII-Idiom

Zwei wichtige Typen

unique_ptr

shared_ptr

Klassische Zeiger werden oft als Raw Pointer bezeichnet

46

Kapitel 13 - Objektorientierte Programmierung

Unique Pointer

Lebensdauer von unique_ptr
vollständig an den aktuellen Scope

gebunden (→ RAII)

Bei Verlassen des Scopes wird ein

unique_ptr zerstört

// Vereinfachte Darstellung eines1
// Unique Pointers für int *2
class UniquePtr {3
private:4
 int * ptr_;5
public:6
 UniquePtr(int * ptr) : ptr_(ptr) {}7
 ~UniquePtr() { delete ptr_; }8
}9

47

Kapitel 13 - Objektorientierte Programmierung

Unique Pointer

Benutzung von Unique Pointer ist sehr einfach

→ Deklaration: std::unique_ptr<int> i_ptr; // Zeiger auf int *

Erstellung eines neuen Zeigers mithilfe

std::make_unique
Bestehenden Zeiger übernehmen →

Konstruktur von unique_ptr

#include <memory> // std::unique_ptr1
using std::unique_ptr;2
using std::make_unique;3

4
// Erstellt neuen int *5
// Wert des derefenzierten int* ist 56
unique_ptr<int> i_ptr = make_unique<int>(5);7

8
int i = *i_ptr + 3; // 89

#include <memory> // std::unique_ptr1
using std::unique_ptr;2

3
class Foo{ /* */ };4

5
int main() {6
 Foo * f = new Foo();7
 unique_ptr<Foo> f_ptr(f);8
} // f_ptr ruft delete9

48

Kapitel 13 - Objektorientierte Programmierung

Unique Pointer

Dank Operator-Überladung Zugriff auf gekapselten Zeiger

Dereferenzierung mit *i_ptr

Member-Zugriff mit ->

(bei Klassen)

Dereferenzierung

Member-Zugriff

unique_ptr<int> i_ptr = make_unique<int>(5);1
2

int i = *i_ptr + 3; // 83

class Foo {1
public:2
 void bar() {}3
}4

5
unique_ptr<Foo> f_ptr = make_unique<Foo>();6

7
f_ptr->bar();8

49

Kapitel 13 - Objektorientierte Programmierung

Beispiel - Unique Pointer

#include <memory>
#include <iostream>

using std::unique_ptr;
using std::cout, std::endl;

class Foo {
public:
 Foo() { cout << "Foo constructor called\n"; }
 ~Foo() { cout << "Foo destructor called\n"; }

 void print() { cout << "Hello Foo\n"; }
};

int main() {
 cout << "main(): Enter" << endl;
 Foo * f = new Foo();

{

cpp Run ▶

50

Unique Pointer sind deutlich
besser als händisches Verwalten!
Nutzt sie, wenn ihr könnt.

Kapitel 13 - Objektorientierte Programmierung

Shared Pointer

Analog zu unique_ptr gibt es

noch shared_ptr
Hauptzweck: Einsatz in nebenläufiger

Programmierung (→ z.B. auf mehreren

CPU-Kernen)

Unterschied zu unique_ptr : Bei

neuem Kopieren wird Zähler

inkrementiert (Zählen der Referenzen)

Bei Aufrufen des Destruktors wird dieser Zähler dekrementiert

Erst wenn Zähler Wert 0 annimmt, wird der gehaltene Zeiger zerstört

Achtung: Zum Teilen von Membern in verschiedenen Klassen gedacht

Aber: Widerspricht dem Grundgedanken der sauberen Kapselung durch Klassen

class SharedPtr { // Vereinfachte Darstellung1
private:2
 int * ptr;3
 int counter = 1;4
public:5
 SharedPtr(SharedPtr& cpy) { ++counter; }6
 ~SharedPtr() {7
 --counter;8
 if (counter == 0)9
 delete ptr;10
 }11
}12

51

shared_ptr ist hauptsächlich
für nebenläufige Programmierung
gedacht!

Kapitel 13 - Objektorientierte Programmierung

Einschub: Garbage Collection

Idee hinter Shared Pointer: Zählen von Referenzen

Gibt es auch in anderen Programmiersparchen: z.B. Java, Python, C#, Javascript

Keine automatischen Destruktor-Aufrufe vorhanden wie in C++

Stattdessen: Konzept namens Garbage Collection

Dazu wird für jedes Objekt zusätzlich ein Referenzenzähler angelegt

Ausführungsumgebung (Runtime) pausiert die Ausführung regelmäßig und zählt

Falls ein Zähler den Wert 0 hat, wird das zugehörige Objekt entfernt

Das Programm steht in der Zwischenzeit!

Natürlich deutlich langsamer als in C++ (Je nach Sprache 1-2 Größenordnungen)

Dafür muss der Programmierer sich aber keine Gedanken über Speichermanagement machen

52

Kapitel 13 - Objektorientierte Programmierung

Zusammenfassung

Aufbau von Klassen

Sichtbarkeitsmodifikatoren

Konstruktoren (Copy, Move, …)

Destruktoren

Konzept der Operator-Überladung

Resource Acquisition Is Initialization

Dynamische Speicherallokation(new / delete)

Smart Pointer

53

Kapitel 13 - Objektorientierte Programmierung

