Kapitel 13 - Objektorientierte Programmierung

Peter Ulbrich
AG Systemsoftware

Veranstaltungswebseite

R Arbeitsgruppe
technische universitat)) . . .
@ dortmund Kapitel 13 - Objekto;lfyr;:ilkeerrte Programmierung (’ SySte mSOftWé re

https://sys.cs.tu-dortmund.de/
https://sys.cs.tu-dortmund.de/de/lehre/ws25/eidp
https://github.com/decker-edu/decker/

Lehrevaluation

Se 25/26

ohl4.de/eva = 7ST3Y

Kapitel 13 - Objektorientierte Programmierung 2

Einleitung

e Bisher: prozedurale bzw. imperative Programmierung

o Gepragt durch hierarchisches Aufrufen von Funktionen

o Variablen (z.B. int, char), Datenstrukturen (struct) und Funktionen sind getrennt

e Jetzt: Neue Sicht

Keine Sorge! OOP ist ,nur” eine

— Objektorientie :
Erweiterung des Bekannten.

e OOP hat einige int
o Bundelt logisch zusammengehorige Funktionen und Daten in einer Datenstruktur = Objekt

o Sauber definierte Schnittstellen fir Interaktion mit Daten

o Verstecken von internen Funktionen bzw. Variablen — information hiding

Kapitel 13 - Objektorientierte Programmierung 3

Einleitung

o = =

(©)

,"Wesentlich® im Sinne unserer Sicht auf die Dinge bei diesem Problem

— Es existieren verschiedene Sichten auf dasselbe Problem!

O

Formulierung eines Modells in

(©)

Nicht in computertechnischen Konstrukten (Hauptprogramm, Unterprogramm, Funktionen, ...)
o Klassen (Objekte) mit Attributen und Methoden

o |nteraktion untereinander

° Programmiersprache ist hier nur ein Implementierungsdetail

Kapitel 13 - Objektorientierte Programmierung 4

UML-Klassendiagramme

e Plane zur Beschreibung von abstrakten Objekt-Relationen

Person Address
+name: str +street: str
+phoneNumber: str 0.1 lives at -] +eity: str

1
+emailAddress: str +state: str
+purchaseParkingPass() +postalGode: int

+oountry: str

-validate(): bool

+outputAsLabel(): str

Student Professor
_ 0. SuUpernvises i
+studentMumber: int = fsalary: int
1.5
+averageMark: int #staffNumber: int

+isEligibleToEnroll{str): bool “yearsOiService: Int

+getSeminarsTaken(): int +numberQfClasses: int

Kapitel 13 - Objektor?entierte Programmierung

https://www.drawio.com/blog/uml-class-diagrams

Objektorientierte Programmierung

#include <iostream> #include <iostream>
struct Punkt { class Punkt {
double x; double x;
double y; double y;
b public:
void print punkt() {
void print punkt(Punkt p) { std::cout << << x <<
std::cout << << p.x << << y << std::endl;
<< p.y << std::endl; }
} }i

Neue Schlisselworter class und public, sonst gleich

Kapitel 13 - Objektorientierte Programmierung

Nomenklatur

e Als Teil einer Klasse heil3en ...

o Funktionen —

o Variablen —

e Achtung: C++ kennt diese Begriffe offiziell nicht

O

o Attribut bzw. Methode werden aber trotzdem haufig synonym verwendet

e Bauplan eines Objekts —

e Mit Werten gefillte Klasse —

Instanz und Objekt werden oft synonym verwendet. Aufpassen!

Kapitel 13 - Objektorientierte Programmierung

0O o 0 s W DN R

// Definition des Bauplans
class Punkt {

double x;

double y;

}i

// Instanz: Initialisierung
Punkt p;

Sichtbarkeit

e Abkapselung von Informationen mit Schliisselwoértern public und private

o Sauberer Zugriff auf Variablen
o Verstecken von Informationen, die nicht 6ffentlich zuganglich sein sollen

o Compiler hilft bei der Durchsetzung

struct Punkt {
double x;
double y;

}i

// Bisher erlaubt

Punkt p;

p.Xx = 2.0;

(Bei struct istalles 6ffentlich)

class Punkt {
double x;
double y;

}i

// Compiler-Fehler

Punkt p;

p.x = 2.0;

(Bei class ist alles privat)

Kapitel 13 - Objektorientierte Programmierung

Alles unsichtbar

o private wird bei Klassen automatisch gesetzt
class Punkt { class Punkt {
// private: implizit gesetzt private: // Aquivalent
double x; double x;
double y; double y;
}i }i

e Fir Strukturen ist implizit public — Zugriff erlaubt

e zwischen Klassen und Strukturen

o Ansonsten sind sie

struct Punkt { struct Punkt {

// public: implizit gesetzt public: // Aquivalent
double x; double x;
double y; double y;

}i }i

Kapitel 13 - Objektorientierte Programmierung 9

Zugriff auf Attribute

. auf private Attribute nur 1 class Punkt {
. 2 double x;
tuber Umwege 3 double y;
4 public: // Ab hier alles 6ffentlich
. Werte der Attribute sollen stets 5 void set x(double new_x) {
]] 6 if (new x != 0.0) {
wohldefiniert sein 7 X = new x;
8 }
° 9 }
10 void set y(double new y) {
o Verwendung offentlicher Funktionen flur Zugriff 11 if (new_y != 0.0) {
12 y = new_y;
o QEt() — Abrufen 13 }
14 }
° SEt() — Setzen 15 double get x() { return x; }
o HeiBen deswegen auch Getter bzw. Setter b } domale g i) o TEEIED 7)
17 ;

o Erméglicht Uberpriifung bzw. Konvertierung der
Werte

Kapitel 13 - Objektorientierte Programmierung 10

Sichtbarkeitsmodifikation

von private und public ist

prinzipiell moglich

Schlecht lesbar und untbersichtlich

— Modglichst vermeiden!

e Bei grol3en Projekten oft erst offentlicher Teill

— Weniger Sucharbeit bei sehr grof3en Klassen

class VeryBigClass {
public:

/* Viele Funktionen */

private:

/* Noch mehr private Details */

}i

Kapitel 13 - Objektorientierte Programmierung

// Schlecht lesbar
class Punkt {
private:
double x;
public:
double get x() {
return X;
}
private:
double y;
public:
double get y() {
return y;
}
}i

11

Information Hiding

Trennung von Klassendefinition und

Implementierung

o Umsetzung Uber Header- und Source-Datei

o Definition im Header und Implementierung in der Source-
Datei

e Haufige Konvention:

O

Klasse pro Header-/Source-Datei

o Name von Header-/Source-Datei

: Die Methoden benoétigen hier zusatzlich

das Namespace-Prafix der Klasse!

Kapitel 13 - Objektorientierte Programmierung

// punkt.h
#pragma once

class Punkt {
double x;
double y;
public:
void print punkt();

}i

// punkt.cpp
#include "punkt.h"
#include <iostream>

using std::cout, std::endl;
void Punkt::print punkt() {

cout << << p.X
<< << p.y
<< endl;

12

Initialisierung der Member-Variablen

e Wir kennen jetzt den grundlegenden 1 class Punkt {
. 2 double x;
Aufbau von Klassen in C++ 3 double y;
4 public:
J Bisher keine Initialisierung maoglich 5 void set_x(double new_x) {
6 X = new X;
o Struct-Initialisierung nicht ohne Weiteres erlaubt 7 }
B] 8 double get x() { return x; }
o Punkt p =12.0, 3.1}; // Error 9 /* Restliche Implementierung */
o Nachtragliches Setzen mithilfe einer set () - 12 Fi
Methode — 12 Punkt p;
13 p.set _x(2.0); // Umstédndlich
° Konstruktor
o Besondere Methode, die aufgerufen wird
o Stellt sicher, dass alle Member-Variablen sind

Kapitel 13 - Objektorientierte Programmierung 13

Konstruktoren: Initialisierung der Member-Variablen

o Konstruktoren haben eine Reihe von besonderen Eigenschaften:

e Sind 1 class Punkt {
2 double x;
e Haben den wie die Klasse . double y;
4 public:
. . . . 5 Punkt() {} // Default
e Kdnnen nicht explizit aufgerufen werden 6 V) e e et
7 Punkt (double x, double y)
. bei Instanziierung 8 : x(x), y(y) {}
9 };

e Es gibt vier Hauptarten von Konstruktoren

0 -Konstruktor — Punkt() {}

o Konstruktor = Punkt(double nx, double ny) : x(nx), y(ny) {}
o -Konstruktor — Punkt(const Punkt& p) {}

o -Konstruktor — Punkt(Punkt&& p) {}

Kapitel 13 - Objektorientierte Programmierung 14

Default-Konstruktor

e Wird bei jeder Klassendefinition

falls kein anderer Konstruktor definiert wird
e |stein

e Die folgenden beiden Definitionen sind identisch:

class Punkt { class Punkt {
double x; double x;
double y; double y;

public: // public: // Automatisch eingefliigt
Punkt() {} // Explizit genannt // Punkt() {}

}i }i

Kapitel 13 - Objektorientierte Programmierung 15

Eigenschaften des Default-Konstruktor

e |nitialisiert standardmafiig
e Konsistente Initialisierung auf verschiedene Weisen moglich

o Durch Uberschreiben des Konstruktors bzw. durch Inline-Zuweisungen

Kapitel 13 - Objektorientierte Programmierung

using std::cout;
class Punkt {

using std::cout;
class Punkt {

<< p.get_y();

double x = 1.0; // Inline double x;
double y = 1.0; double y;
public: public:
Punkt() {} Punkt() { x = 2.0; y = 2.0; }
double get x() { return x; } double get x() { return x; }
double get y() { return y; } double get y() { return y; }
}i }i
int main() { int main() {
Punkt p; Punkt p;
cout << p.get x() << " " << p.get y(); cout << p.get x() << " "
} }

Kapitel 13 - Objektorientierte Programmierung

16

Member Initializer-Liste

e [nitialisierung der Member lGber eine separate Stelle im Code

° wird
o
(<function parameters>): { <function body> }
[1 class Punkt {
2 double y;
Reihenfolge der Initialisierung = 3 double x;
. . 4 public:
Reihenfolge der Deklaration 5 punkt() : x(2.0), y(1.0) {}
)] . 6 // Alternativ: Braced Init.
e Alternative Schreibweise: 1 ; statt 7 Punkt() : x{2.0}, y{1.0} {}
8
9 /* Restliche Implementierung */
10 };
11
12

Kapitel 13 - Objektorientierte P 17

Parametrisierter Konstruktor

e Initialisierung der Member mit class Punkt {
double x ;
double y ;
. bool g ; // Geheim
e Prinzip bereits bekannt, jetzt mit public:

Funktionsparametern Punkt () :
X (2.0), vy (1.0), g (false) {}

e Wichtig: Beliebig viele, verschiedene punkt (double x, double y) :
Konstruktoren erlaubt x_(x), y_(y), 9_(false) {}

— Nennt SiCh Punkt (double x, double y, bool g)
X (%), Y _(y), 9_(9) {}

/* Restliche Implementierung */

}i

Kapitel 13 - Objektorientierte Programmierung 18

Parametrisierter Konstruktor

using std::cout, std:: endl;

class {
double x_ ;
double y ;
bool g ;
public:
Punkt() : x (2.0), y (1.0), g (false) {}

Punkt (double x, double y) : x (X)), v (y), g (false) {}

Punkt (double x, double y, bool g) : x (x), v (V), 9 _(9) {}

void print punkt() {
cout << "X: " << x << " ¥V: " <Ky << " G: " << g << endl;

}i

Kapitel 13 - Objektorientierte Programmierung 19

Konstruktoren

. Beliebige Anzahl von verschiedener Konstruktoren definieren
o Kénnen wir Konstruktoren auch verbieten?
° Schliisselwort delete l6scht automatisch erzeugte Konstruktoren

— Punkt P() = delete;

o Konstruktoren auch explizit als default markierbar

— Punkt P() = default;

e delete und default sollen die Intention des Programmierers verdeutlichen

— Macht AulRenstehendem sofort deutlich, dass die Konstruktoren korrekt sind

Kapitel 13 - Objektorientierte Programmierung 20

Destruktor

e Das Erzeugen und Initialisieren von Objekten ist jetzt bekannt

e Der durch Objekte belegte Speicher muss aber irgendwann auch wieder freigegeben
werden

o Fur primitive Datentypen wie int, double geschieht dies automatisch
o Aber: Komplexere Datentypen wie Zeiger mussen explizit wieder freigegeben werden

o Gleiches gilt im Ubrigen auch fiir von der Klasse gehaltene Ressourcen
o Beispiele: Gedffnete Datei, aktive Datenbankverbindung

o ...oder was auch immer gerade benotigt wird

e Hier wird der relevant!

Kapitel 13 - Objektorientierte Programmierung 21

Destruktor

e Destruktor ist das Komplement
zum Konstruktor

o Benennung: Vorangestellte Tilde (~) vor
dem Klassennamen = ~Punkt () {}

o Wird ebenfalls automatisch erzeugt und
muss ggf. Uberschrieben werden

o Allerdings keine Uberladung méglich
(immer nur ein Destruktor pro Klasse)
e Wird bei Verlassen des Scopes
aufgerufen, in dem das Objekt
instanziiert wurde

class DataHandle {

void * data;
int size ;

public:

}i

int

DataHandle() = delete;
DataHandle(int size): size (size) {
data = malloc(size * sizeof(void*));
}
~DataHandle () {
free(data);

}

main() {

DataHandle dh{3}; // Instanziierung
/* Arbeite mit dh */

/* Aufruf Destruktor dh */

Kapitel 13 - Objektorientierte Programmierung 22

Destruktor

class {
void * data;
int size ;
public:
DataHandle() = delete;
DataHandle(int size): size (size) {
data = malloc(size * sizeof(void*));
std::cout << "Constructor called" << std::endl;

}
~DataHandle() {

free(data);
std::cout << "Destructor called" << std::endl;

int mainf(\ [

Kapitel 13 - Objektorientierte Programmierung 23

Beispiel - Copy-Konstruktor

e Angenommen, folgender Code wird ausgefthrt. Was wird passieren?

class {
void * data;
int size ;
public:
DataHandle() = delete;
DataHandle(int size): size (size) {
data = malloc(size * sizeof(void*));

}
~DataHandle () {

std::cout << "Destructor called" << std::endl;
free(data);

}i

Kapitel 13 - Objektorientierte Programmierung 24

Copy-Konstruktor

dh2 ist eine bitweise Kopie von dh1l 1 class DataHandle {
2 void * data;
(Shallow Copy) 3 ffe S
4 public:
Beinhaltet auch den Zeiger data 5 ~DataHandle() {

e cout
E< "Destructor called"

Deshalb gibt es den Copy- << std::endl;

dhl.data und c

leichen Speicher (data);
8 P Konstruktor
Doppelter Aufruf
)] . 1 int main() {
Ergebnis: Zweifaches free() fihrt zu 2 DataHandle dhl1{4};
= 3 {

Absturz des Programms & A DataHandle dh2 = dhl;
5 } // Destruktor dh2
6 } // Destruktor dhl. BOOM
7

Kapitel 13 - Objektorientierte Programmierung 25

Copy-Konstruktor

J hat — Referenz auf Objekt
o DataHandle(const DataHandle& d) {}

o const verbietet Modifikation des Originals

o Referenz — kein Copy-by-Value des Originals (aufwendig)

e Korrektes Initialisieren class DataHandle {
void * data;
von Member () int size ;
public:

DataHandle(const DataHandle& d) : size (d.size) {
data = malloc(d.size);
std: :memcpy(data, d.data, d.size);

}i

Kapitel 13 - Objektorientierte Programmierung 26

Copy-Konstruktor

class {
void * data;
int size_ ;
public:
DataHandle() = delete;
DataHandle(int size): size (size) {
data = malloc(size * sizeof(void*));
std::cout << "Constructor called" << std::endl;
}
DataHandle(const DataHandle & d) : size (d.size) {
data = malloc(d.size);
std: :memcpy(data, d.data, d.size);
std::cout << "Copy Constructor called" << std::endl;

}

~Na+adHanAdlar) [

Kapitel 13 - Objektorientierte Programmierung 27

Move-Konstruktor

e |st ein etwas fortgeschritttener Aspekt von C++
o Hier: Konzept verstehen, statt jedes technische Detail zu ergriinden

e Zunachst ein abstraktes Beispiel: Staffellauf

JERELEIN Il AN dieser Stelle kommt der

O UEEIEUNE. Move-Konstruktor ins Spiel!
Ressource (— Stab

© Microsoft Imagine - mit Kl generiert

e Mit unserem bisherigen Wissen wire das nicht gut umsetzbar &

Kapitel 13 - Objektorientierte Programmierung 28

Move-Konstruktor

. effizientes Verschieben von Ressourcen von einer Instanz zu einer anderen
o Verschieben des Zeigerwerts zum neuen Objekt
o Originales Objekt sollte danach keinen Zugriff mehr auf die Ressource haben

— Bester Weg: Alter Zeiger wird nullptr

° 1 3 + 3; // Temp. Rvalue

<Type>(<Type>&& var_name);
o DataHandle(DataHandle&& dh);

o Formalist && dh eine Referenz auf einen Rvalue

o Der Vollstandigkeit halber: Rvalues sind temporar existierende
Werte/Ausdriicke (z.B. 3 + 33;)

Kapitel 13 - Objektorientierte Programmierung 29

Move-Konstruktor

#include <utility> // fiir std::move
DataHandle dhl() ;

// Type-Casting auf DataHandle &&
// gefolgt von Konstruktor-Aufruf
DataHandle dh2(std::move(dhl));

C++ bietet fur die Konvertierung eine
Hilfsfunktion: std: :move

O & W NP

Irrefiihrender Name, std: :move bewegt eigentlich nichts

Stattdessen nur ZU

— DataHand le wird zu DataHand le &&

Gecasteter Wert wird anschliel3end als Parameter im Konstruktor-Aufruf verwendet

Kapitel 13 - Objektorientierte Programmierung 30

Move-Konstruktor

e Move-Konstruktor hat grundsitzlich Ahnlichkeit zum Copy-Konstruktor
. Ressourcen beim alten Objekt unzuganglich machen

. Alte Objekte existieren nach Move weiterhin
(und kdnnten prinzipiell auch Ressourcen manipulieren)

class DataHandle {
void * data;
int size_ ;
public:
DataHandle(DataHandle && dh) : data(dh.data), size (dh.size) {
dh.data = nullptr; // Zugangssperre
}

/* Restliche Implementierung */

}i

Kapitel 13 - Objektorientierte Programmierung 31

Aufrufreihenfolge Destruktor

. .
AUfrUfrelhenfOIge von using std::cout, std::endl;
Konstruktoren und Destruktoren
class {
e Zerstdrung immerin public:
A() { cout << "A: Constructor”
zur Deklarierung ~A() { cout << "A: Destructor"
}i
class {
public:

B() { cout << "B: Constructor"
~B() { cout << "B: Destructor"

}i

Kapitel 13 - Objektorientierte Programmierung

<<
<<

<<
<<

endl;
endl;

endl;
endl;

32

Resource Acquisition Is Initialization (RAII)

e |st eine interessante Programmiertechnik:

o Maglich durch automatische Destruktoraufrufe bei Verlassen des Scopes
o Ressourcen in diesem Kontext muiissen vorher akquiriert werden

o Offnen einer Datei bzw. Datenbankverbindung

° Bei Konstruktor-Aufruf wird Ressource akquiriert, bei Destruktor-
Aufruf automatisch wieder freigegeben

o Sehr praktisch: Speicherleck/Ressourcenleck wird dadurch unmoglich

Kapitel 13 - Objektorientierte Programmierung 33

Beispiel - Resource Acquisition Is Initialization

e Situation: Automatisches Offnen und SchlieRen einer Datei bei Initialisierung und
Destruktor-Aufruf

o Biastosmilas RAIll ist eine extrem nutzliche

using std::ios;

Programmiertechnik. Nutzt sie!

class FileHandler {
std::fstream file; Handle
public:
FileHandler(const std::string& filename) {
file.open(filename, ios::in | ios::app);
if (file.is open()) {
cout << "File opened successfully" << endl;

}

Kapitel 13 - Objektorientierte Programmierung 34

Zwischenstand

e /Zeit fur einen kurzen Zwischenstand:

o Grundlegende Eigenschaften von Objekten wurden vorgestellt
o Die grundlegende Reihenfolge der Initialisierung/Destruktion ebenso

o Konstruktoren/De

ey Zunachst einmal kommen aber rn)
RSz hoch einige allgemeine Konzepte!

Kapitel 13 - Objektorientierte Programmierung 35

Operator-Uberladung

o C++ erlaubt das Uberladen von Funktionen (und Konstruktoren)

o konnnen auch Uberladen werden (Klassen/Strukturen)
o Bereits bekannt: <<-Operator bei std: :cout

o std::cout << :

e Uberladung mithilfe des Schliisselworts operator

o operator+=(int 1i); // Uberlade += fiir int-Parameter

e |st flir die meisten Operatoren moglich, mit ein paar Ausnahmen:
o . (bzw. .*) = Member-Zugriff (bzw. Member-Zugriff iber Zeiger)

o — Scope Resolution Operator

o — Ternarer Operator

Kapitel 13 - Objektorientierte Programmierung 36

Beispiel - Operator-Uberladung

o Beispiel: Wrapper-Klasse fir Integer

class Integer {

int val; 0
public: Operator-Uberladung ist sehr
Integer() = delete

Integer(int i) : nUtZIiCh, wenn es an den
e richtigen Stellen eingesetzt wird!

void operator+=(int

int value() { return val; }

}:

int main() {

Kapitel 13 - Objektorientierte Programmierung 37

Einschub: Rule of Three/Five

e Betrachtung einer wichtigen Regel in C++:

o Wenn es notwendig ist, einen eigenen Destruktor, Copy-Konstruktor, oder Copy-Assignment-Operator
(operator=(const &))zu erstellen, sollen* alle drei erstellt werden

o Erweiterung der Rule of Three um Move-Konstruktor und Move-Assignment-Operator (operator=
(&&))

o Ressourcen sollen immer konsistent initialisiert werden bzw.
verflugbar sein

Kapitel 13 - Objektorientierte Programmierung 38

Schliisselwort

Variablen

fremde Klasse soll direkten Zugriff

haben

auf Member-

Funktionen oder

C++ verbietet das! &2

class Punkt {

double x;
double y;
public:
void print punkt() { // Ok
cout << << x <<

<< y << endl;
}
}i
// Uberladung von Operator << fiir cout
// Compiler-Error: Zugriff auf private Member
ostream& operator<<(ostream& os, Punkt& p) {
return os << << p.X
<< << p.y << endl;

}

e Mit den aktuellen Maéglichkeiten geht das nicht!

—b

Neues Schlisselwort friend &

Kapitel 13 - Objektorientierte Programmierung 39

Schlisselwort

e friend gestattet selektiven Zugriff fir

— friend ostream& operator<<(ostream& os, Punkt& p);

J Aufruf von externen Funktionen ohne Namespace-Prafix

using std::cout, std::endl;
using std::ostream;

class {
double x;
double y;
public:
Punkt (double x, double y) : x(x), v(y) {}

friend void print punkt (Punkté& p);
friend ostream& operator<<(ostream& os, Punkté& p);

Kapitel 13 - Objektorientierte Programmierung

40

Schliisselwort

e Nur innerhalb einer Klasse verfligbar

o Zeiger auf die aktuelle Instanz der Klasse (wird automatisch erzeugt)

e Verwendung wie alle anderen Zeiger

@)

(©)

1 class Integer {
. _ 2 int val;
this—>print(); 3 public:
: . 4 Integer(int i) : val(i

xthis; // Objekt selbst ; ges) (1) {}
6 int value() {
7 return val; // Implizit

. : 8 }

Vermeidung von Namenskonflikten 9 int value explicit() {

Manche Operatoriiberladungen erfordern Verweis auf 1(1) \ ERENE USSR

sich selbst 12 };

Explizite Nennung verbessert Lesbarkeit des
Quellcodes

Kapitel 13 - Objektorientierte Programmierung 41

Schliisselwort in Klassen

e Member diurfen als static deklariert werden

e Gehoren keinem Objekt an, sondern

using std::cout, std::endl;

class {
public:

static int _count;

A() { _count++; }

~A() { _count--; }

static int count() { return count; }
}i

int A:: count = 0;

int main() {
A al, a2;
Kapitel 13 - Objektorientierte Programmierung

42

Dynamische Allokation in C++ (/)

C++ erweitert die aus C bekannten
Funktionen malloc und free

Operatoren ersetzen die Funktionen

o malloc — new (dyn. Allokation)

o free — delete (dyn. Deallokation)

Im globalen Namespace enthalten

— kein Einbinden von Headern notwendig

Ansonsten gleiche Eigenschaften wie

malloc und free

using std::cout, std::endl;

class {
public:
int bar;

Foo(int wval) : bar(val) {}
}i

int main() {
Foo * foo = new Foo(l);
int * i = new int(5);

cout << "Foo: " << foo->bar << endl;
cout << "Int: " << *i1 << endl;
delete 1i;

delete foo;

Kapitel 13 - Objektorientierte Programmierung 43

Dynamische Allokation in C++ (/)

new und delete kdénnen auch mit
Arrays umgehen

Das Loschen von Arrays erfolgt mit
Operator delete[]

: Beil Arrays mit
mehreren Dimensionen muss Uber die
Dimensionen iteriert werden

Foo * foo = new Foo[ROWS][COLS];

for (int i = 0; i < ROWS; ++i) {
delete[] foo[i]; // Spalte i 1lbschen

}

delete[] foo;

f = nullptr;

// Alle Zeilen
// Zeigerwert l&schen

S Ul > LW DN -

I\UpMILCT A AN -Jnt'e. = o

using std::cout, std::endl;

class {
public:

i

int bar;
Foo() : bar(0) {}
Foo(int val) : bar(val) {}

int main() {

Foo * foo = new Foo[1l0];

int * 1 = new int([5] { 1, 2, 4, 8, 16 };
foo[2].bar = 4;

cout << "Foo: " << foo[2].bar << endl;
cout << "Int: " << i[4] << endl;
delete[] 1i;

delete[] foo;

S 44

Dynamische Allokation in C++ (

e new und delete haben die gleichen Schwachen wie free und malloc &
e Syntax ist jetzt etwas angenehmer
e Aber: Programmierer:in kann immer noch Aufrufe vergessen

e |st esalso am Ende in C++ genauso schlimm wie in C?

—b

e C++11 hat die sogenannten eingefuhrt

Kapitel 13 - Objektorientierte Programmierung

45

Smart Pointer

Seit C++11 Bestanteil des Standards
Objekte kapseln Zeigervariable
Verwenden dazu im Kern das RAIll-Idiom

Zwei wichtige Typen
o unique_ptr

o shared_ptr

Klassische Zeiger werden oft als Raw Pointer bezeichnet

Kapitel 13 - Objektorientierte Programmierung

46

Unique Pointer

e lLebensdauervon unique_ptr

vollstandig an den aktuellen Scope
gebunden (— RAll)

e Bei Verlassen des Scopes wird ein

unique_ptr zerstort

1 // Vereinfachte Darstellung eines

2 // Unique Pointers fiir int *

3 class UniquePtr {

4 private:

5 int * ptr ;

6 public:

7 UniquePtr(int * ptr) : ptr (ptr) {}
8 ~UniquePtr() { delete ptr ; }

9 }

Kapitel 13 - Objektorientierte Programmierung 47

Unique Pointer

e Benutzung von Unique Pointer ist sehr einfach

—

e Erstellung eines neuen Zeigers mithilfe

std::unique_ptr<int> 1_ptr; // Zeiger auf int x

std: :make_unique

O 00 ~J o6 Ul » LW N -

#include <memory> // std::unique ptr

using std::unique ptr;
using std::make unique;

// Erstellt neuen int *

// Wert des derefenzierten int#* ist 5
unique ptr<int> i ptr = make unique<int>(5);

int 1

*1i ptr + 3; // 8

e Bestehenden Zeiger Ubernehmen —
Konstruktur von unique_ptr

#include <memory> // std::unique ptr
using std::unique ptr;

class Foo{ /* */ };

int main() {
Foo * £ = new Foo();
unique ptr<Foo> f ptr(f);
} // f ptr ruft delete

O 00 J O U1 & W IDN -

Kapitel 13 - Objektorientierte Programmierung 48

Unique Pointer

e Dank Operator-Uberladung Zugriff auf gekapselten Zeiger

e Dereferenzierung mit
° Member-Zugriﬁ: mit unique ptr<int> i ptr

(bei Klassen)

class Foo {
public:

void bar() {}
}

unique ptr<Foo> f ptr

f ptr->bar();

Kapitel 13 - Objektorientierte Programmierung

make unique<int>(5);

int i = *i ptr + 3; // 8

make unique<Foo>();

49

Beispiel - Unique Pointer

using std::unique_ ptr;

using std::cout, std::endl;

class Foo {

public:
Foo() { cout << "
~Foo() { cout << "

}:

int main() {

Unique Pointer sind deutlich
besser als handisches Verwalten!
Nutzt sie, wenn ihr konnt.

cout << "main(): Enter" << endl;

Foo * £ = new Foo();
I

Kapitel 13 - Objektorientierte Programmierung

50

Shared Pointer

° Analog ydl unique p't r g|bt es 1 class SharedPtr { // Vereinfachte Darstellung
o 2 private:
noch shared ptr 3 int * ptr;
4 int counter = 1;
o Hauptzweck: Einsatz in nebenlaufiger SR

Programmierung (& cpy) { t+counter; }

CPU-Kernen) shared_ptr ist hauptsachlich
JUICETEEENNT, flir nebenlaufige Programmierung
neuem Kopieren gedacht!

inkrementiert (Zah

0)

e Bei Aufrufen des Destruktors wird dieser Zahler dekrementiert

o Erst wenn Zahler Wert @ annimmt, wird der gehaltene Zeiger zerstort

e Achtung: Zum Teilen von Membern in verschiedenen Klassen gedacht

o Aber: Widerspricht dem Grundgedanken der sauberen Kapselung durch Klassen
Kapitel 13 - Objektorientierte Programmierung 51

Einschub: Garbage Collection

Idee hinter Shared Pointer:

Gibt es auch in anderen Programmiersparchen: z.B. Java, Python, C#, Javascript

Keine automatischen Destruktor-Aufrufe vorhanden wie in C++

Konzept namens

o Dazu wird fur jedes Objekt zusatzlich ein Referenzenzahler angelegt

Ausfihrungsumgebung (Runtime)

regelmallig und zahlt

o Falls ein Zahler den Wert 0 hat, wird das zugehorige Objekt entfernt

O

o Nattrlich deutlich langsamer als in C++ (Je nach Sprache 1-2 Gré6B8enordnungen)

o Daflur muss der Programmierer sich aber keine Gedanken Uber Speichermanagement machen

Kapitel 13 - Objektorientierte Programmierung

52

Zusammenfassung

e Aufbau von Klassen

o Sichtbarkeitsmodifikatoren

o Konstruktoren (Copy, Move, ...)

o Destruktoren

Konzept der Operator-Uberladung

Resource Acquisition Is Initialization

Dynamische Speicherallokation(new / delete)

Smart Pointer

Kapitel 13 - Objektorientierte Programmierung

53

Kapitel 13 - Objektorientierte Programmierung

