o

technische universitat
dortmund

Kapitel 12 - Einfihrung in C++

Peter Ulbrich
AG Systemsoftware

Veranstaltungswebseite

Kapitel 12 - Einfihrung in C++

% by Decker

&

Arbeitsgruppe
Systemsoftware

https://sys.cs.tu-dortmund.de/
https://sys.cs.tu-dortmund.de/de/lehre/ws25/eidp
https://github.com/decker-edu/decker/

Riickblick - Aktueller Stand

o Weiterer Ablauf der Vorlesung:

Darstellung
von Zahlen

Iliiiiiiiilll|I|HH%HHHHHIII
o Biindelung von Funktion

konsistenter Initialisieru Dann |egen Wir mal |OS g

3. Ausnahmenbehandlung (

1. EinfUhrung in C++ (nachstes Kapitel) Grundlagen

o Wichtigste Unterschiede und Stolpersteine

2. Objektorientierte Programmierung (OOP)

Einfdhrung in
C++

4. Generische Programmierung (Templates)

5. Kurzer Ausflug in die Standard Template .
Exceptions
Library (STL)

Kapitel 12 - Einfihrung in C++ 2

Unterschiede - C und C++

e Zur Erinnerung: C++ ist ein Superset von C

e Der Funktionsumfang von C ist (gro8tenteils) in C++ abgebildet

— Kein Zwang, andere Funktionen/Konzepte als bisher zu verwenden

e Wichtig: Der C++
|ISO-Spezifikation

Viele Funktionalita

Wir schauen uns jetzt einmal das
Notwendigste an

(@)

O

(©)

Alte Komponenten wurden wegen Abwartskompatibilitat behalten

o Unmaoglich, alles davon zu verwenden bzw. in einer Vorlesung zu behandeln

e Pragmatische Losung: Verwendung der bendtigten/bevorzugten Komponenten
— Rest ignorieren &

Kapitel 12 - Einfihrung in C++ 3

Back to the Roots - ,,Hello World® in C++

int main() {
std::cout << "Hello World" << std::endl;
}

J +
e Header in C++ verzichten auf das Suffix . h

e Anstatt printf() jetzt std::cout (Uber Outputstreams)

o Woflr steht das std:: ?

o Was zeichnet Outputstreams aus?

Kapitel 12 - EinfUhrung in C++ 4

Einfhrung von Namensraumen

e Worin besteht hier das Problem in C?

void print(double d);
void print(int i);

1 d In C alle Funktionen und // Besser: Namespaces in C++
. . namespace Double {
Variablen auf globaler Ebene angesiedelt void print(double d) {
12618 R t << d << std::endl;
o Sehr unubersichtlich } ° =8 ; =
0 Namensvergebung ist schwierig, ¥
Doppelungen leicht moglich namespace Integer {
. int 1 = 1;
o Namensraume void print(int i) {
std::cout << i << std::endl;
e Namensraume (Namespaces) kapseln } }

Funktionalitat

Kapitel 12 - EinfUhrung in C++ 5

Namensraume

J des Namespaces mit dem —

e Daher auch — Zugriff auf Namensraum std

std entspricht C++-Standardbibliothek

. Es gibt auch den globalen Namespace
o Leerer Name, Zugriff mit :: als Prafix (— ::X)
o Verdeutlicht —

o Umgehung von lokalem Shadowing einer Variablen

Kapitel 12 - Einfihrung in C++ 6

Beispiel - Namensraume

int k = 4711;

namespace A {
double d = 3.5;
void print(double d) {
std::cout << d << std::endl;

}
}
namespace B {
int 1 = 1;
void print(int i) {
std::cout << i << std::endl;
}
}

int mainf(\ [

Kapitel 12 - EinfUhrung in C++ 7

Verschachtelung von Namensraumen

e Namespaces konnen werden:

namespace A {
int 1 = 0;
namespace B {
int add(int numl, int num2) {
return numl + num2;

}
}
namespace C {
int j = 2;
}

}

int main () {

(Namenrdume konnen Uber mehrere Dateien verteilt sein = siehe std)
Kapitel 12 - EinfUhrung in C++ 8

Verwendung von Namensraumen

J Viel Tipparbeit bei Verwendung von Namensraumen

° Das Schliisselwort using!

e Erlaubt selektives Einbinden von
benotigten Funktionen/Variablen

° ist
ebenfalls moglich:

— using namespace std

Kapitel 12 - EinfUhrung in C++

#include <iostream>
using std::cout, std::endl;

int main() {
cout << << endl;

#include <iostream>
using namespace std;

int main() {
cout << << endl;

}

Anmerkungen zum Einsatz von

#include <iostream>
using namespace std;

e Einerseits: Weniger Tipparbeit als vorher

o Aber: Globaler Namesraum wieder genauso N

gefullt wie in C BliEb<< "Hello" << endl;
VR . Nehmt euch die Zeit, das
auszuschreiben. Es erspart auf
lange Sicht Qualen.

cmath>
o Aullerdem: Haufig FooMath {
sin(float num) {
eturn num;

Implementierunge

o Bessere Performance fur den jeweiligen S \ }
Anwendungsfall 3
o Namensraum hilft bei Unterscheidbarkeit 2 alithe WEREA() o ,
10 // Jetzt gut unterscheidbar
11 std::sin(3.5f); // -0.3507
12 FooMath::sin(3.5f); // 3.5
13 }

Kapitel 12 - Einfihrung in C+~ 10

Outputstreams

e Parallel zu printf() gibt esin C++ einen neuen 1 #include <iostream>
. 2 using std::cout, std::endl;
Mechanismus: 3
4 int main() {
e Name ist Programm: Sind als 2 cout << << endl;

}
konzipiert

e Konsolenausgabe tiber std: :cout
e Verkettung der Zeichen durch Operator
e Neue Zeile mit std: :endl

° Setzen von Manipulator-Flags

o ,Einfarbung® des Stroms, bis Flag wieder geandert wird

o Beispiel: std: :hex, um alle folgenden Zahlen hexadezimal darzustellen
Kapitel 12 - EinfGhrung in C++ 11

Outputstreams

int main() {
bool b = true;
int 1 = 42;

std::cout << "1: \t" << b << std::endl;
std::cout << std::boolalpha;

std::cout << "true: \t" << b << std::endl;
std::cout << std::noboolalpha;

std::cout << "1: \t" << b << std::endl;

atAe ernnt << "MNMare \+" << 1 << at+AeeanAdAl.

(Eine Liste aller Manipulator-Flags ist verlinkt)

Kapitel 12 - EinfUhrung in C++ 12

https://en.cppreference.com/w/cpp/io/manip.html

Inputstreams

e Analog zu Outputstreams gibt es #include <iostream>
using std::cout, std::endl;
Funktionsweise wie bei Outputstreams, using std::cin;
int main() {
char buffer[24];

cout << ;
cin >> buffer;
cout << buffer << endl;

std::cin

Einlesen eines Zeichenstroms und Abspeichern in return 0;

Variable

Der Operator zum Verketten ist

umgedreht —

Kapitel 12 - EinfUhrung in C++ 13

Alternative: print

e Qutputstreams sind machtiges Werkzeug

° Fir einfache Ausgabe oft zu machtig und zu viel Schreibaufwand
o std::print()
e Verbindet von printf () mit von Outputstreams

e Erkennt Parameter Uber Position in Parameterliste und konvertiert diese

#include <print>

int main() {
// Achtung: Nullbasiertes Indizes
std: :print({1} {0} {2}", 1, true,);
return 0;

Kapitel 12 - EinfUhrung in C++ 14

° sind in C++ jeweils in vorhanden

stdio.h
2. cstdio

Mit Prafix c, ohne Suffix . h

. : C++-Version kapselt im Namensraum std — std::printf;

o C-Variante ,verschmutzt” den globalen Namesraum

Kapitel 12 - Einfihrung in C++ 15

® Zeiger 1 void swap (int *a, int *b); // Alt
2 void swap (int &a, int &b); // Neu
. 3
. Zeiger + Referenzen .
4 1nt a = 1;
. .] 5 int &a ref = a; // Alias von a
. Beide verweisen auf einen

Speicherbereich

. Referenzoperator & ersetzt Zeigerstern

o Zeiger sind eigenstindige Typen (mit eigenem Speicher, z.B. auf dem Stack)
o Wert des Zeigers ist der verwiesene Speicherbereich

o Wert kann verandert werden (— Tor zur Holle @)

e Referenzen sind nur ein Alias der Variable, keine Dereferenzierung moglich!
Kapitel 12 - Einfihrung in C++ 16

Beispiel - Referenzen

void swap(int &a, int &b) {
int temp = a;
a = b;
b = temp;

}

int main() {
int a =1, b = 2;

std::cout << "A: " << a <<
swap(a, b);
std: :cout << "A: " << a <<

4

4

B:

B:

" << b << std::endl;

" << b << std::endl;

Kapitel 12 - EinfUhrung in C++

17

(«

o C++ ermoglicht das sogenannte
von Funktionen ()

° nnit
ZU Uberladen

e Geht also auch ohne Namensraume

o Gilt nur fir die Parameter

e Rickgabewert wird nicht berlicksichtigt

Kapitel 12 - EinfUhrung in C++

#include <iostream>
using std::cout, std::endl;

void print num(double d);
void print num(int 1i);

int main() {

cout << print(3.5) << endl;
cout << print(l) << endl;

void print num(int 1i);
int print num(int i); // Error

18

Default-Werte fir Funktionsparameter

o Parameter konnen Default-Werte haben

o konnen fur Parameter Ruckfallwerte verwendet
werden

e Derartige Parameter mussen nicht explizit im Aufruf genannt werden

int addl(int i, int j, int k = 2); // Ok

int add2(int i, int j = 1, int k = 2); // Ok

int add3(int i = 0, int j = 1, int k = 2); // Ok

int add4(int i = 0, int j, int k = 2); // Error, falsche Reihenfolge
add3(); // Riickgabe: 3

add3(1); // Riickgabe: 4

add3(1,4); // Riickgabe: 7

add3(1,2,3); // Rilickgabe: 6

Kapitel 12 - EinfUhrung in C++ 19

Uberladung von Funktionen hinter den Kulissen

1 // Dieser C-Quellcode... 1 // Dieser C++-Quellcode...
2 int add(int i, int j) { 2 int add(int i, int 3j) {
3 return i + j; 3 return i1 + j;
4 3 4}
5 5
6 int sub(int i, int G int j) {
7 return i1 - j; :
8} In C++ codiert der Symbolname
2
10 int main() { u. a. Parameter ¢
11 add(1,2);
12 sub(2,1); ub(2,1);
13} 13 }
1 // ... erzeugt folgende Symbole 1 // ... erzeugt folgende Symbole
2 add 2 _Z3addii
3 sub 3 _Z3subii
4 main 4 main

Kapitel 12 - EinfUhrung in C++ 20

Name Mangling

e Codiert u. a. Namensraum, Rlickgabewert, 1 // Dieser C++-Quellcode. ..
. 2 1int add(int i, int j) {
Funktionsnamen, Parameter und deren Typen . return i + is
in Symbolname 4}
5
— 6 int sub(int i, int j) {
7 return i1 - j;
. 8
e Achtung: Die Kodierung ist nicht standardisiert ; :
o Unter anderem abhingig von Compiler und Plattform e ()
11 add(1,2);
o GCC und Clang verwenden unter Linux/Unix die 12 sub(2,1);
Itanium C++ ABI fir Name Mangling () L3
o Microsoft hingegen definiert seine eigene ABI flr 1 // ... erzeugt folgende Symbole
Windows 2 _Z3addii
3 _Z3subii
4 main

Kapitel 12 - Einfihrung in C++ 21

https://itanium-cxx-abi.github.io/cxx-abi/abi.html

Name Mangling meets Reality

° Existierendes C-Projekt mit C++-Code kombinieren

o C++ nutzt Name Mangling, C hingegen nicht

o Linker kann hier die Namen der Symbole nicht richtig auflosen

o Ruckfall auf C-Namensschema mithilfe von extern

e Definierte Bereiche verwenden

1 // Ohne Name Mangling... 1 // ... werden C-Symbole erzeugt
2 1int add(int i, int j); 2 add

3 1int sub(int i, int j); 3 sub

4 int main(); 4 main

(Das C-Namensschema ist allgemein sehr einfach und wird deswegen fiir die Interoperabilitdt zwischen verschiedenen
Programmiersprachen sehr oft verwendet.) Kapitel 12 - Einfiihrung in C++

22

Abschalten des Name Manglings

Markieren einzelner Funktionen/Bloécke Entfernen des Name Manglings fir Header

1 // Markierung einer Funktion 1 // Kein #pragma once -> Komplett kompatibel
2 extern void print(int i); 2 // Gut fiir Projekte mit C und C++
3 3 #ifndef HEADERNAME H
4 // Alternativ: Blockweise Markierung 4 #define HEADERNAME H
5 extern { 5
6 void fool(double d); 6 #ifdef __ cplusplus // Nur in C++ definiert
7 void foo2(char c); 7 extern { // Block-Beginn
8 } 8 #endif
9
10 /* Header-Code */
11
12 #ifdef _ cplusplus
13} // Block-Ende
14 #endif
15 #endif // HEADERNAME H
16 // Dateiende

Kapitel 12 - EinfUhrung in C++ 23

e In C++ eine Abstraktion fur Strings — 1 std::string str = ;

2 std::cout << str;

std::string
e Kapselt C-String char * bzw. char [] in Klasse
e Zugriff auf C-String mit c_str()
o size() — Gibt GroRe aus

e std::string bietet einige Vorteile

o Einfache String-Konkatenation: str += ’

e Fir vollstandige Liste der Funktionen in nachschauen

Kapitel 12 - Einfihrung in C++ 24

https://en.cppreference.com/w/cpp/string/basic_string.html

Range-based for-loops

e In C++ gibt es eine Abstraktion der bereits
bekannten for -Schleifen:

e Gedacht als Tipperleichterung fiur komplexere
Daten-Container wie std: :vector (kommt
gleich)

e Vorteil: Es muss nicht mehr auf die Indizes
geachtet werden

e Erreicht dies unter der Haube Uber sogenannte
Iteratoren (hier nicht weiter Thema)

Kapitel 12 - Einfihrung in C++

using std::cout, std::endl;

int main() {
std::string str = "Hello World";
for (char c: str) {

cout << c;

}

cout << endl;

25

Range-based for-loops

e Achtung: Range-based for-loops haben eine kleine Tlicke

e Die Schleifenvariable wird standardmafig bei jedem Durchlauf neu initialisiert (By
Value!)

o Schlecht bei grof3en Datenstrukturen (Structs/Klassen)
e Besser: Variable als Referenz deklarieren

e Und falls Daten nicht verandert werden sollen: Zusatzliches const

// Besser fiir komplexe Datentypen:
// Read-Only und By-Reference
for (const char & c: str) {

cout << c¢;

// Okay fiir primitive Datentypen:
// By-Value
for (char c: str) {

cout << c¢j;

}

cout << endl;

o O W N B

}

cout << endl;

SN U1l W IDN P

Kapitel 12 - EinfUhrung in C++ 26

Moderne Felder

o Klasse std: :vector kapselt Eigenschaften eines Feldes

e Zugriff mittels [], kann beliebige Datentypen aufnehmen und

o Alternativ: Zugriff mit Funktion at(),da [] beifalschem Index undefiniert ist

int main() {
std: :vector<int> nums;

nums .push back(3);
nums .push back(42);
nums .push back(-1);

nums[2] += 10;

fAr (~Anct+ Tn+ £ 1 e mMmitmca\ J

Kapitel 12 - EinfUhrung in C++

%4

27

Zusammenfassung

V‘.
——

® 2

e Hello World“-Beispiel in C++
e Namensraume

e Uberladen von Funktionen

e Default-Parameter

e Range-based for loops

e std::string und std::vector

Kapitel 12 - Einfihrung in C++

28

Kapitel 12 - Einfihrung in C++

