
Kapitel 12 - Einführung in C++

Kapitel 12 - Einführung in C++

Peter Ulbrich

AG Systemsoftware

Veranstaltungswebseite

🚀 by Decker

1

https://sys.cs.tu-dortmund.de/
https://sys.cs.tu-dortmund.de/de/lehre/ws25/eidp
https://github.com/decker-edu/decker/

Kapitel 12 - Einführung in C++

Rückblick – Aktueller Stand

Weiterer Ablauf der Vorlesung:

1. Einführung in C++ (nächstes Kapitel)

Wichtigste Unterschiede und Stolpersteine

2. Objektorientierte Programmierung (OOP)

Bündelung von Funktionen, Structs und

konsistenter Initialisierung

3. Ausnahmenbehandlung (Exceptions)

4. Generische Programmierung (Templates)

5. Kurzer Ausflug in die Standard Template

Library (STL)

GrundlagenGrundlagen DarstellungDarstellung

von Zahlenvon Zahlen

StructsStructs SpeicherSpeicher

OOPOOP ExceptionsExceptions

TemplatesTemplates STLSTL

C

C++

BetriebssystemeBetriebssysteme

 und Toolchain und Toolchain
Einführung inEinführung in

 C++ C++

2

Dann legen wir mal los 😀

Kapitel 12 - Einführung in C++

Unterschiede – C und C++

Zur Erinnerung: C++ ist ein Superset von C

Der Funktionsumfang von C ist (größtenteils) in C++ abgebildet

→ Kein Zwang, andere Funktionen/Konzepte als bisher zu verwenden

Wichtig: Der C++-Standard ist riesig

ISO-Spezifikation von C++23 hat 2104 Seiten

Viele Funktionalitäten wegen Mängeln mehrfach implementiert

Alte Komponenten wurden wegen Abwärtskompatibilität behalten

Unmöglich, alles davon zu verwenden bzw. in einer Vorlesung zu behandeln

Pragmatische Lösung: Verwendung der benötigten/bevorzugten Komponenten

→ Rest ignorieren 😀

3

Wir schauen uns jetzt einmal das
Notwendigste an

Kapitel 12 - Einführung in C++

Back to the Roots – „Hello World“ in C++

#include <iostream>

int main() {
 std::cout << "Hello World" << std::endl;

}

cpp

Unmittelbar auffällig: Anderer Header + Ausgabefunktion sieht anders aus

Header in C++ verzichten auf das Suffix .h

Anstatt printf() jetzt std::cout (über Outputstreams)

Im Folgenden:

Wofür steht das std:: ?

Was zeichnet Outputstreams aus?

Run ▶

4

Kapitel 12 - Einführung in C++

Einführung von Namensräumen

Worin besteht hier das Problem in C?

void print(double d);1
void print(int i);2

Zur Erinnerung: In C alle Funktionen und

Variablen auf globaler Ebene angesiedelt

Zum einen: Sehr unübersichtlich

Zum anderen: Namensvergebung ist schwierig,

Doppelungen leicht möglich

Die Lösung: Namensräume

Namensräume (Namespaces) kapseln

Funktionalität

// Besser: Namespaces in C++1
namespace Double {2
 void print(double d) {3
 std::cout << d << std::endl;4
 }5
}6

7
namespace Integer {8
 int i = 1;9
 void print(int i) {10
 std::cout << i << std::endl;11
 }12
}13

5

Kapitel 12 - Einführung in C++

Namensräume

Zugriff auf Komponenten des Namespaces mit dem Scope Resolution Operator → ::

Daher auch Präfix std → Zugriff auf Namensraum std

std entspricht C++-Standardbibliothek

Anmerkung: Es gibt auch den globalen Namespace

Leerer Name, Zugriff mit :: als Präfix (→ ::x)

Verdeutlicht Verwendung globaler Variable → besseres Verständnis

Umgehung von lokalem Shadowing einer Variablen

6

Kapitel 12 - Einführung in C++

Beispiel - Namensräume

#include <iostream>

int k = 4711;

namespace A {
 double d = 3.5;
 void print(double d) {
 std::cout << d << std::endl;
 }

}
namespace B {
 int i = 1;
 void print(int i) {
 std::cout << i << std::endl;
 }

}

int main() {

cpp Run ▶

7

Kapitel 12 - Einführung in C++

Verschachtelung von Namensräumen

Namespaces können beliebig geschachtelt werden:

(Namenräume können über mehrere Dateien verteilt sein → siehe std)

#include <iostream>

namespace A {
 int i = 0;
 namespace B {
 int add(int num1, int num2) {
 return num1 + num2;
 }
 }
 namespace C {
 int j = 2;
 }

}

int main () {

cpp Run ▶

8

Kapitel 12 - Einführung in C++

Verwendung von Namensräumen

Problem: Viel Tipparbeit bei Verwendung von Namensräumen

Lösung: Das Schlüsselwort using !

Erlaubt selektives Einbinden von

benötigten Funktionen/Variablen

Einbinden von ganzen Namespaces ist

ebenfalls möglich:

→ Beispiel: using namespace std

#include <iostream>1
using std::cout, std::endl;2

3
int main() {4
 cout << "Hello World!" << endl;5

6
}7

#include <iostream>1
using namespace std;2

3
int main() {4
 cout << "Hello World" << endl;5
}6

9

Kapitel 12 - Einführung in C++

Anmerkungen zum Einsatz von using namespace std

Einerseits: Weniger Tipparbeit als vorher

Aber: Globaler Namesraum wieder genauso

gefüllt wie in C

Vorteil der Schachtelung zunichte gemacht

Außerdem: Häufig werden eigene

Implementierungen geschrieben

Bessere Performance für den jeweiligen

Anwendungsfall

Namensraum hilft bei Unterscheidbarkeit

#include <iostream>1
using namespace std;2

3
int main() {4
 cout << "Hello" << endl;5
}6

#include <cmath>1
2

namespace FooMath {3
 float sin(float num) {4
 return num;5
 }6
}7

8
int main() {9
 // Jetzt gut unterscheidbar10
 std::sin(3.5f); // -0.350711
 FooMath::sin(3.5f); // 3.512
}13

10

Nehmt euch die Zeit, das
auszuschreiben. Es erspart auf
lange Sicht Qualen.

Kapitel 12 - Einführung in C++

Outputstreams

Parallel zu printf() gibt es in C++ einen neuen

Mechanismus: Outputstreams

Name ist Programm: Sind als beliebig langer

Zeichenstrom konzipiert

Konsolenausgabe über std::cout

Verkettung der Zeichen durch Operator <<

Neue Zeile mit std::endl

Besonderheit: Setzen von Manipulator-Flags

„Einfärbung“ des Stroms, bis Flag wieder geändert wird

Beispiel: std::hex , um alle folgenden Zahlen hexadezimal darzustellen

#include <iostream>1
using std::cout, std::endl;2

3
int main() {4
 cout << "Hello" << endl;5
}6

11

Kapitel 12 - Einführung in C++

Outputstreams

(Eine Liste aller Manipulator-Flags ist verlinkt)

#include <iostream>

int main() {
 bool b = true;
 int i = 42;

 std::cout << "1: \t" << b << std::endl;
 std::cout << std::boolalpha; // Uminterpretierung von bool
 std::cout << "true: \t" << b << std::endl;
 std::cout << std::noboolalpha; // Revertierung
 std::cout << "1: \t" << b << std::endl;

std::cout << "Dec: \t" << i << std::endl; // Default ist std::dec

cpp

hier

Run ▶

12

https://en.cppreference.com/w/cpp/io/manip.html

Kapitel 12 - Einführung in C++

Inputstreams

Analog zu Outputstreams gibt es Inputstreams

Funktionsweise wie bei Outputstreams, aber in

umgekehrter Richtung

Einlesen von der Konsole: std::cin

Einlesen eines Zeichenstroms und Abspeichern in

Variable

Achtung: Der Operator zum Verketten ist

umgedreht → >>

#include <iostream>1
using std::cout, std::endl;2
using std::cin;3

4
int main() {5
 char buffer[24];6
 cout << "Name: ";7
 cin >> buffer;8
 cout << buffer << endl;9
 return 0;10
}11

13

Kapitel 12 - Einführung in C++

Alternative: std::print

Outputstreams sind mächtiges Werkzeug

Aber: Für einfache Ausgabe oft zu mächtig und zu viel Schreibaufwand

Seit C++23: std::print()

Verbindet Einfachheit von printf() mit Nützlichkeit von Outputstreams

Erkennt Parameter über Position in Parameterliste und konvertiert diese

#include <print>1
2

int main() {3
 // Achtung: Nullbasiertes Indizes4
 std::print("B: {1}, I: {0}, S: {2}", 1, true, "Hello");5
 return 0;6
}7

14

Kapitel 12 - Einführung in C++

Header

C-Header sind in C++ jeweils in zwei Ausführungen vorhanden

1. Bereits bekannte Form: stdio.h
2. Version für C++: cstdio

Mit Präfix c, ohne Suffix .h

Unterschied: C++-Version kapselt im Namensraum std → std::printf;

Mit anderen Worten: C-Variante „verschmutzt“ den globalen Namesraum

15

Kapitel 12 - Einführung in C++

Zeiger++

In C: Zeiger

In C++: Zeiger + Referenzen

Funktional: Beide verweisen auf einen

Speicherbereich

Notation: Referenzoperator & ersetzt Zeigerstern *

Hauptunterschied

Zeiger sind eigenständige Typen (mit eigenem Speicher, z.B. auf dem Stack)

Wert des Zeigers ist der verwiesene Speicherbereich

Wert kann verändert werden (→ Tor zur Hölle 😈)

Referenzen sind nur ein Alias der Variable, keine Dereferenzierung möglich!

void swap (int *a, int *b); // Alt1
void swap (int &a, int &b); // Neu2

3
int a = 1;4
int &a_ref = a; // Alias von a5

16

Kapitel 12 - Einführung in C++

Beispiel - Referenzen

#include <iostream>

void swap(int &a, int &b) {
 int temp = a;
 a = b;
 b = temp;

}

int main() {
 int a = 1, b = 2;
 std::cout << "A: " << a << ", B: " << b << std::endl;
 swap(a, b);
 std::cout << "A: " << a << ", B: " << b << std::endl;

}

cpp Run ▶

17

Kapitel 12 - Einführung in C++

Funktionen++

C++ ermöglicht das sogenannte „Überladen“

von Funktionen (Overloading)

Gleichen Funktionsnamen mit verschiedenen

Parametern zu überladen

Geht also auch ohne Namensräume

#include <iostream>1
2

using std::cout, std::endl;3
4

void print_num(double d);5
void print_num(int i);6

7
int main() {8
 cout << print(3.5) << endl;9
 cout << print(1) << endl;10
}11

Achtung: Gilt nur für die Parameter

Rückgabewert wird nicht berücksichtigt

void print_num(int i);1
int print_num(int i); // Error2

18

Kapitel 12 - Einführung in C++

Default-Werte für Funktionsparameter

Weitere Neuerung: Parameter können Default-Werte haben

Beginnend bei letztem Parameter können für Parameter Rückfallwerte verwendet

werden

Derartige Parameter müssen nicht explizit im Aufruf genannt werden

int add1(int i, int j, int k = 2); // Ok1
int add2(int i, int j = 1, int k = 2); // Ok2
int add3(int i = 0, int j = 1, int k = 2); // Ok3
int add4(int i = 0, int j, int k = 2); // Error, falsche Reihenfolge4

5
add3(); // Rückgabe: 36
add3(1); // Rückgabe: 47
add3(1,4); // Rückgabe: 78
add3(1,2,3); // Rückgabe: 69

19

Kapitel 12 - Einführung in C++

Überladung von Funktionen hinter den Kulissen

// Dieser C-Quellcode...1
int add(int i, int j) {2
 return i + j;3
}4

5
int sub(int i, int j) {6
 return i - j;7
}8

9
int main() {10
 add(1,2);11
 sub(2,1);12
}13

// ... erzeugt folgende Symbole1
add2
sub3
main4

// Dieser C++-Quellcode...1
int add(int i, int j) {2
 return i + j;3
}4

5
int sub(int i, int j) {6
 return i - j;7
}8

9
int main() {10
 add(1,2);11
 sub(2,1);12
}13

// ... erzeugt folgende Symbole1
_Z3addii2
_Z3subii3
main4

20

In C++ codiert der Symbolname
u. a. Parameter 💡

Kapitel 12 - Einführung in C++

Name Mangling

Codiert u. a. Namensraum, Rückgabewert,
Funktionsnamen, Parameter und deren Typen
in Symbolname

→ C++ Name Mangling

Achtung: Die Kodierung ist nicht standardisiert

Unter anderem abhängig von Compiler und Plattform

GCC und Clang verwenden unter Linux/Unix die

Itanium C++ ABI für Name Mangling ()

Microsoft hingegen definiert seine eigene ABI für

Windows

Link

// Dieser C++-Quellcode...1
int add(int i, int j) {2
 return i + j;3
}4

5
int sub(int i, int j) {6
 return i - j;7
}8

9
int main() {10
 add(1,2);11
 sub(2,1);12
}13

// ... erzeugt folgende Symbole1
_Z3addii2
_Z3subii3
main4

21

https://itanium-cxx-abi.github.io/cxx-abi/abi.html

Kapitel 12 - Einführung in C++

Name Mangling meets Reality

Situation: Existierendes C-Projekt mit C++-Code kombinieren

Problem

C++ nutzt Name Mangling, C hingegen nicht

Linker kann hier die Namen der Symbole nicht richtig auflösen

Lösung: Rückfall auf C-Namensschema mithilfe von extern "C"

Definierte Bereiche verwenden C Linkage

// Ohne Name Mangling...1
int add(int i, int j);2
int sub(int i, int j);3
int main();4

// ... werden C-Symbole erzeugt1
add2
sub3
main4

(Das C-Namensschema ist allgemein sehr einfach und wird deswegen für die Interoperabilität zwischen verschiedenen
Programmiersprachen sehr oft verwendet.) 22

Kapitel 12 - Einführung in C++

Abschalten des Name Manglings

Markieren einzelner Funktionen/Blöcke Entfernen des Name Manglings für Header

// Markierung einer Funktion1
extern "C" void print(int i);2

3
// Alternativ: Blockweise Markierung4
extern "C" {5
 void foo1(double d);6
 void foo2(char c);7
}8

// Kein #pragma once -> Komplett kompatibel1
// Gut für Projekte mit C und C++2
#ifndef HEADERNAME_H3
#define HEADERNAME_H4

5
#ifdef __cplusplus // Nur in C++ definiert6
extern "C" { // Block-Beginn7
#endif8

9
/* Header-Code */10

11
#ifdef __cplusplus12
} // Block-Ende13
#endif14
#endif // HEADERNAME_H15
// Dateiende16

23

Kapitel 12 - Einführung in C++

Strings

In C++ eine Abstraktion für Strings →

std::string
std::string str = "Hello";1
std::cout << str;2

Kapselt C-String char * bzw. char [] in Klasse

Zugriff auf C-String mit c_str()

Neuer Komfort: size() → Gibt Größe aus

std::string bietet einige Vorteile

Einfache String-Konkatenation: str += " World";

Für vollständige Liste der Funktionen in nachschauenReferenz

24

https://en.cppreference.com/w/cpp/string/basic_string.html

Kapitel 12 - Einführung in C++

Range-based for-loops

In C++ gibt es eine Abstraktion der bereits
bekannten for -Schleifen:

Range-based for-loops

Gedacht als Tipperleichterung für komplexere
Daten-Container wie std::vector (kommt
gleich)

Vorteil: Es muss nicht mehr auf die Indizes
geachtet werden

Erreicht dies unter der Haube über sogenannte
Iteratoren (hier nicht weiter Thema)

#include <string>
#include <iostream>
using std::cout, std::endl;

int main() {
 std::string str = "Hello World";
 for (char c: str) {
 // Print every character
 cout << c;
 }
 cout << endl;
}

cpp Run ▶

25

Kapitel 12 - Einführung in C++

Range-based for-loops

Achtung: Range-based for-loops haben eine kleine Tücke

Die Schleifenvariable wird standardmäßig bei jedem Durchlauf neu initialisiert (By

Value!)

Schlecht bei großen Datenstrukturen (Structs/Klassen)

Besser: Variable als Referenz deklarieren

Und falls Daten nicht verändert werden sollen: Zusätzliches const

// Okay für primitive Datentypen:1
// By-Value2
for (char c: str) {3
 cout << c;4
}5
cout << endl;6

// Besser für komplexe Datentypen:1
// Read-Only und By-Reference2
for (const char & c: str) {3
 cout << c;4
}5
cout << endl;6

26

Kapitel 12 - Einführung in C++

Moderne Felder

Klasse std::vector kapselt Eigenschaften eines Feldes

Zugriff mittels [] , kann beliebige Datentypen aufnehmen und dynamische Größe 🤯

Alternativ: Zugriff mit Funktion at() , da [] bei falschem Index undefiniert ist

#include <iostream>
#include <vector>

int main() {
 std::vector<int> nums;

 nums.push_back(3);
 nums.push_back(42);
 nums.push_back(-1);

 nums[2] += 10;

for (const int & i : nums) {

cpp Run ▶

27

Kapitel 12 - Einführung in C++

Zusammenfassung

Übergang von zu C zu C++ 🥳

„Hello World“-Beispiel in C++

Namensräume

Überladen von Funktionen

Default-Parameter

Range-based for loops

std::string und std::vector

28

Kapitel 12 - Einführung in C++

