
Übung zu Betriebssystembau
Ereignisbearbeitung und Synchronisation
20. Januar 2026

Alexander Krause

Arbeitsgruppe Systemsoftware
Technische Universität Dortmund
(Mit Material vom Lehrstuhl 4 der FAU)

Arbeitsgruppe
Systemsoftware

Problem

Wie sieht es mit gegenseitigem Ausschluss auf Fadenebende in STUBS aus?

Wir haben doch bereits ein spinlock implementiert...

ak Motivation 1/19

Problem

Wie sieht es mit gegenseitigem Ausschluss auf Fadenebende in STUBS aus?

Wir haben doch bereits ein spinlock implementiert...

ak Motivation 1/19

Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App1

mutex.lock()
// code
mutex.unlock()

App2
mutex.lock()
// code
mutex.unlock()

App3
mutex.lock()
// code
mutex.unlock()

active ready list

CPU-Zeit

Verschwendung von CPU-Zeit

ak Motivation 2/19

Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()

App2
mutex.lock()
// code
mutex.unlock()

App3
mutex.lock()
// code
mutex.unlock()

active ready list

CPU-Zeit

Verschwendung von CPU-Zeit

ak Motivation 2/19

Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()

App2
mutex.lock()
// code
mutex.unlock()

App3
mutex.lock()
// code
mutex.unlock()

active

App1 App2 App3
ready list

CPU-Zeit

Verschwendung von CPU-Zeit

ak Motivation 2/19

Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()

App2
mutex.lock()
// code
mutex.unlock()

App3
mutex.lock()
// code
mutex.unlock()

App1
active

App2 App3
ready list

CPU-Zeit

Verschwendung von CPU-Zeit

ak Motivation 2/19

Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()

App2
mutex.lock()
// code
mutex.unlock()

App3
mutex.lock()
// code
mutex.unlock()

App1
active

App2 App3
ready list

CPU-Zeit

Verschwendung von CPU-Zeit

ak Motivation 2/19

Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()

App2
mutex.lock()
// code
mutex.unlock()

App3
mutex.lock()
// code
mutex.unlock()

App1
active

App2 App3
ready list

CPU-Zeit

Verschwendung von CPU-Zeit

ak Motivation 2/19

Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()

App2
mutex.lock()
// code
mutex.unlock()

App3
mutex.lock()
// code
mutex.unlock()�

App1
active

App2 App3
ready list

CPU-Zeit

Verschwendung von CPU-Zeit

ak Motivation 2/19

Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()

App2
mutex.lock()
// code
mutex.unlock()

App3
mutex.lock()
// code
mutex.unlock()

active

App2 App3 App1
ready list

CPU-Zeit

Verschwendung von CPU-Zeit

ak Motivation 2/19

Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()

App2
mutex.lock()
// code
mutex.unlock()

App3
mutex.lock()
// code
mutex.unlock()

App2
active

App3 App1
ready list

CPU-Zeit

Verschwendung von CPU-Zeit

ak Motivation 2/19

Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()

App2
mutex.lock()
// code
mutex.unlock()

App3
mutex.lock()
// code
mutex.unlock()

App2
active

App3 App1
ready list

CPU-Zeit

Verschwendung von CPU-Zeit

ak Motivation 2/19

Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()

App2
mutex.lock()
// code
mutex.unlock()

App3
mutex.lock()
// code
mutex.unlock()

App2
active

App3 App1
ready list

CPU-Zeit

Verschwendung von CPU-Zeit

ak Motivation 2/19

Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()

App2
mutex.lock()
// code
mutex.unlock()

App3
mutex.lock()
// code
mutex.unlock()

�

App2
active

App3 App1
ready list

CPU-Zeit

Verschwendung von CPU-Zeit

ak Motivation 2/19

Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()

App2
mutex.lock()
// code
mutex.unlock()

App3
mutex.lock()
// code
mutex.unlock()

active

App3 App1 App2
ready list

CPU-Zeit

Verschwendung von CPU-Zeit

ak Motivation 2/19

Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()

App2
mutex.lock()
// code
mutex.unlock()

App3
mutex.lock()
// code
mutex.unlock()

App3
active

App1 App2
ready list

CPU-Zeit

Verschwendung von CPU-Zeit

ak Motivation 2/19

Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()

App2
mutex.lock()
// code
mutex.unlock()

App3
mutex.lock()
// code
mutex.unlock()

App3
active

App1 App2
ready list

CPU-Zeit

Verschwendung von CPU-Zeit

ak Motivation 2/19

Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()

App2
mutex.lock()
// code
mutex.unlock()

App3
mutex.lock()
// code
mutex.unlock()

App3
active

App1 App2
ready list

CPU-Zeit

Verschwendung von CPU-Zeit

ak Motivation 2/19

Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()

App2
mutex.lock()
// code
mutex.unlock()

App3
mutex.lock()
// code
mutex.unlock()

�

App3
active

App1 App2
ready list

CPU-Zeit

Verschwendung von CPU-Zeit

ak Motivation 2/19

Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()

App2
mutex.lock()
// code
mutex.unlock()

App3
mutex.lock()
// code
mutex.unlock()

active

App1 App2 App3
ready list

CPU-Zeit

Verschwendung von CPU-Zeit

ak Motivation 2/19

Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()

App2
mutex.lock()
// code
mutex.unlock()

App3
mutex.lock()
// code
mutex.unlock()

App1
active

App2 App3
ready list

CPU-Zeit

Verschwendung von CPU-Zeit

ak Motivation 2/19

Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()

App2
mutex.lock()
// code
mutex.unlock()

App3
mutex.lock()
// code
mutex.unlock()

App1
active

App2 App3
ready list

CPU-Zeit

Verschwendung von CPU-Zeit

ak Motivation 2/19

Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()

App2
mutex.lock()
// code
mutex.unlock()

App3
mutex.lock()
// code
mutex.unlock()

App1
active

App2 App3
ready list

CPU-Zeit

Verschwendung von CPU-Zeit

ak Motivation 2/19

Mutex mit harter Synchronisation

Analog zur Interruptsperre mit cli
Ziel: Kein (präemptives) Scheduling

Realisierbar durch
Multitasking (temporär) deaktivieren
Erweiterung des Schedulers
Wechsel auf Epilogebene

Vorteile:
konsistent
(relativ) einfach zu implementieren

Nachteile:
Breitbandwirkung
Prioritätsverletzung
Prophylaktisch

ak Motivation 3/19

Mutex mit harter Synchronisation

Analog zur Interruptsperre mit cli
Ziel: Kein (präemptives) Scheduling
Realisierbar durch

Multitasking (temporär) deaktivieren
Erweiterung des Schedulers
Wechsel auf Epilogebene

Vorteile:
konsistent
(relativ) einfach zu implementieren

Nachteile:
Breitbandwirkung
Prioritätsverletzung
Prophylaktisch

ak Motivation 3/19

Mutex mit harter Synchronisation

Analog zur Interruptsperre mit cli
Ziel: Kein (präemptives) Scheduling
Realisierbar durch

Multitasking (temporär) deaktivieren
Erweiterung des Schedulers
Wechsel auf Epilogebene

Vorteile:
konsistent
(relativ) einfach zu implementieren

Nachteile:
Breitbandwirkung
Prioritätsverletzung
Prophylaktisch

ak Motivation 3/19

Mutex mit harter Synchronisation

Analog zur Interruptsperre mit cli
Ziel: Kein (präemptives) Scheduling
Realisierbar durch

Multitasking (temporär) deaktivieren
Erweiterung des Schedulers
Wechsel auf Epilogebene

Vorteile:
konsistent
(relativ) einfach zu implementieren

Nachteile:
Breitbandwirkung
Prioritätsverletzung
Prophylaktisch

ak Motivation 3/19

Idee: Passives Warten

active ready

resume()

schedule()
resume()

dead

exit()

kill()

waiting

bl
oc

k(
)

wakeup()

kill()

Ansatz: Fäden, die den kritischen Abschnitt nicht
betreten können, werden blockiert
(d.h. von der CPU-Zuteilung ausgeschlossen)

Einführung eines waiting rooms
(Liste mit wartenden Threads)

ak Motivation 4/19

Idee: Passives Warten

active ready

resume()

schedule()
resume()

dead

exit()

kill()

waiting

bl
oc

k(
)

wakeup()

kill()

Ansatz: Fäden, die den kritischen Abschnitt nicht
betreten können, werden blockiert
(d.h. von der CPU-Zuteilung ausgeschlossen)

Einführung eines waiting rooms
(Liste mit wartenden Threads)

ak Motivation 4/19

Idee: Passives Warten

active ready

resume()

schedule()
resume()

dead

exit()

kill()

waiting

bl
oc

k(
)

wakeup()

kill()

Ansatz: Fäden, die den kritischen Abschnitt nicht
betreten können, werden blockiert
(d.h. von der CPU-Zuteilung ausgeschlossen)

Einführung eines waiting rooms
(Liste mit wartenden Threads)

ak Motivation 4/19

Idee: Passives Warten

active ready

resume()

schedule()
resume()

dead

exit()

kill()

waiting
bl

oc
k(

)

wakeup()

kill()

Ansatz: Fäden, die den kritischen Abschnitt nicht
betreten können, werden blockiert
(d.h. von der CPU-Zuteilung ausgeschlossen)

Einführung eines waiting rooms
(Liste mit wartenden Threads)

ak Motivation 4/19

Idee: Passives Warten

active ready

resume()

schedule()
resume()

dead

exit()

kill()

waiting

bl
oc

k(
)

wakeup()

kill()

Ansatz: Fäden, die den kritischen Abschnitt nicht
betreten können, werden blockiert
(d.h. von der CPU-Zuteilung ausgeschlossen)

Einführung eines waiting rooms
(Liste mit wartenden Threads)

ak Motivation 4/19

Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()
// mehr code

App2
mutex.lock()
// code
mutex.unlock()
// mehr code

App3
mutex.lock()
// code
mutex.unlock()
// mehr code

active

App1 App2 App3
ready list waiting room

CPU-Zeit

ak Motivation 5/19

Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()
// mehr code

App2
mutex.lock()
// code
mutex.unlock()
// mehr code

App3
mutex.lock()
// code
mutex.unlock()
// mehr code

App1
active

App2 App3
ready list waiting room

CPU-Zeit

ak Motivation 5/19

Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()
// mehr code

App2
mutex.lock()
// code
mutex.unlock()
// mehr code

App3
mutex.lock()
// code
mutex.unlock()
// mehr code

App1
active

App2 App3
ready list waiting room

CPU-Zeit

ak Motivation 5/19

Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()
// mehr code

App2
mutex.lock()
// code
mutex.unlock()
// mehr code

App3
mutex.lock()
// code
mutex.unlock()
// mehr code

App1
active

App2 App3
ready list waiting room

CPU-Zeit

ak Motivation 5/19

Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()
// mehr code

App2
mutex.lock()
// code
mutex.unlock()
// mehr code

App3
mutex.lock()
// code
mutex.unlock()
// mehr code

�

App1
active

App2 App3
ready list waiting room

CPU-Zeit

ak Motivation 5/19

Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()
// mehr code

App2
mutex.lock()
// code
mutex.unlock()
// mehr code

App3
mutex.lock()
// code
mutex.unlock()
// mehr code

active

App2 App3 App1
ready list waiting room

CPU-Zeit

ak Motivation 5/19

Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()
// mehr code

App2
mutex.lock()
// code
mutex.unlock()
// mehr code

App3
mutex.lock()
// code
mutex.unlock()
// mehr code

App2
active

App3 App1
ready list waiting room

CPU-Zeit

ak Motivation 5/19

Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()
// mehr code

App2
mutex.lock()
// code
mutex.unlock()
// mehr code

App3
mutex.lock()
// code
mutex.unlock()
// mehr code

App2
active

App3 App1
ready list waiting room

CPU-Zeit

ak Motivation 5/19

Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()
// mehr code

App2
mutex.lock()
// code
mutex.unlock()
// mehr code

App3
mutex.lock()
// code
mutex.unlock()
// mehr code

active

App3 App1
ready list

App2
waiting room

CPU-Zeit

ak Motivation 5/19

Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()
// mehr code

App2
mutex.lock()
// code
mutex.unlock()
// mehr code

App3
mutex.lock()
// code
mutex.unlock()
// mehr code

App3
active

App1
ready list

App2
waiting room

CPU-Zeit

ak Motivation 5/19

Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()
// mehr code

App2
mutex.lock()
// code
mutex.unlock()
// mehr code

App3
mutex.lock()
// code
mutex.unlock()
// mehr code

App3
active

App1
ready list

App2
waiting room

CPU-Zeit

ak Motivation 5/19

Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()
// mehr code

App2
mutex.lock()
// code
mutex.unlock()
// mehr code

App3
mutex.lock()
// code
mutex.unlock()
// mehr code

active

App1
ready list

App2 App3
waiting room

CPU-Zeit

ak Motivation 5/19

Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()
// mehr code

App2
mutex.lock()
// code
mutex.unlock()
// mehr code

App3
mutex.lock()
// code
mutex.unlock()
// mehr code

App1
active ready list

App2 App3
waiting room

CPU-Zeit

ak Motivation 5/19

Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()
// mehr code

App2
mutex.lock()
// code
mutex.unlock()
// mehr code

App3
mutex.lock()
// code
mutex.unlock()
// mehr code

App1
active ready list

App2 App3
waiting room

CPU-Zeit

ak Motivation 5/19

Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()
// mehr code

App2
mutex.lock()
// code
mutex.unlock()
// mehr code

App3
mutex.lock()
// code
mutex.unlock()
// mehr code

App1
active

App2
ready list

App3
waiting room

CPU-Zeit

ak Motivation 5/19

Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()
// mehr code

App2
mutex.lock()
// code
mutex.unlock()
// mehr code

App3
mutex.lock()
// code
mutex.unlock()
// mehr code

App1
active

App2
ready list

App3
waiting room

CPU-Zeit

ak Motivation 5/19

Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()
// mehr code

App2
mutex.lock()
// code
mutex.unlock()
// mehr code

App3
mutex.lock()
// code
mutex.unlock()
// mehr code

�

App1
active

App2
ready list

App3
waiting room

CPU-Zeit

ak Motivation 5/19

Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()
// mehr code

App2
mutex.lock()
// code
mutex.unlock()
// mehr code

App3
mutex.lock()
// code
mutex.unlock()
// mehr code

active

App2 App1
ready list

App3
waiting room

CPU-Zeit

ak Motivation 5/19

Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()
// mehr code

App2
mutex.lock()
// code
mutex.unlock()
// mehr code

App3
mutex.lock()
// code
mutex.unlock()
// mehr code

App2
active

App1
ready list

App3
waiting room

CPU-Zeit

ak Motivation 5/19

Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()
// mehr code

App2
mutex.lock()
// code
mutex.unlock()
// mehr code

App3
mutex.lock()
// code
mutex.unlock()
// mehr code

App2
active

App1
ready list

App3
waiting room

CPU-Zeit

ak Motivation 5/19

Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()
// mehr code

App2
mutex.lock()
// code
mutex.unlock()
// mehr code

App3
mutex.lock()
// code
mutex.unlock()
// mehr code

App2
active

App1
ready list

App3
waiting room

CPU-Zeit

ak Motivation 5/19

Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code
mutex.unlock()
// mehr code

App2
mutex.lock()
// code
mutex.unlock()
// mehr code

App3
mutex.lock()
// code
mutex.unlock()
// mehr code

App2
active

App1 App3
ready list waiting room

CPU-Zeit

ak Motivation 5/19

Wortherkunft

sem⋅a⋅phore

1. any apparatus for signaling, as by an arrangement of lights, ̈ags, and
mechanical arms on railroads

2. a system for signaling by the use of two ̈ags, one held in each hand: the
letters of the alphabet are represented by the various positions of the arms

3. any system of signaling by semaphore

nach V. E. Neufeld, Webster’s New World Dictionary, Simon & Schuster Inc., third college edition,
1988

ak Semaphore 6/19

Operationen

init() Zähler c mit positivem Wert initialisieren
P() von Prolaag (versuchen zu verringern)

bzw. Passeering† (passieren)
c > 0 dekrementieren
c = 0 warten

V() von Verhoog (erhöhen) bzw. Vrijgave† (freigeben)
- nächsten wartenden Faden aufwecken oder
- Zähler c erhöhen

† nach Edsger W. Dijkstra, Over de sequentialiteit van procesbeschrijvingen, ca. 1962

ak Semaphore 7/19

1 Semaphore mutex(1);
2

3 void func() {
4

5 mutex.p(); // lock
6

7 // critical section
8

9 mutex.v(); // unlock
10

11 }

1 Semaphore empty(size);
2 Semaphore full(0);
3

4 void producer(){
5 empty.p();
6 // produce
7 full.v();
8 }
9

10 void consumer(){
11 full.p();
12 // consume
13 empty.v();
14 }

ak Semaphore 8/19

1 Semaphore mutex(1);
2

3 void func() {
4

5 mutex.p(); // lock
6

7 // critical section
8

9 mutex.v(); // unlock
10

11 }

1 Semaphore empty(size);
2 Semaphore full(0);
3

4 void producer(){
5 empty.p();
6 // produce
7 full.v();
8 }
9

10 void consumer(){
11 full.p();
12 // consume
13 empty.v();
14 }

ak Semaphore 8/19

Schlafen legen

1 App::action(){
2 foo();
3 sleep(13);
4 bar();
5 }

ähnlich der Funktion sleep(3)
jedoch mit Wartezeit in Millisekunden (statt Sekunden)
analog zu Wartezimmer den Thread aus Ready-Liste des Schedulers nehmen

App
waiting room (13ms)

ms App

mit jedem Tick die Wartezeit dekrementieren
nach Ablauf der Wartezeit Thread wieder im Scheduler einreihen

ak Zeitgesteuertes Warten 9/19

Schlafen legen

1 App::action(){
2 foo();
3 sleep(13);
4 bar();
5 }

ähnlich der Funktion sleep(3)
jedoch mit Wartezeit in Millisekunden (statt Sekunden)
analog zu Wartezimmer den Thread aus Ready-Liste des Schedulers nehmen

App
waiting room (13ms)

ms App

mit jedem Tick die Wartezeit dekrementieren
nach Ablauf der Wartezeit Thread wieder im Scheduler einreihen

ak Zeitgesteuertes Warten 9/19

Schlafen legen

1 App::action(){
2 foo();
3 sleep(13);
4 bar();
5 }

ähnlich der Funktion sleep(3)
jedoch mit Wartezeit in Millisekunden (statt Sekunden)
analog zu Wartezimmer den Thread aus Ready-Liste des Schedulers nehmen

App
waiting room (13ms)

13ms App (alternative Darstellung)

mit jedem Tick die Wartezeit dekrementieren
nach Ablauf der Wartezeit Thread wieder im Scheduler einreihen

ak Zeitgesteuertes Warten 9/19

Schlafen legen

1 App::action(){
2 foo();
3 sleep(13);
4 bar();
5 }

ähnlich der Funktion sleep(3)
jedoch mit Wartezeit in Millisekunden (statt Sekunden)
analog zu Wartezimmer den Thread aus Ready-Liste des Schedulers nehmen

App
waiting room (13ms)

13ms App

mit jedem Tick die Wartezeit dekrementieren

nach Ablauf der Wartezeit Thread wieder im Scheduler einreihen

ak Zeitgesteuertes Warten 9/19

Schlafen legen

1 App::action(){
2 foo();
3 sleep(13);
4 bar();
5 }

ähnlich der Funktion sleep(3)
jedoch mit Wartezeit in Millisekunden (statt Sekunden)
analog zu Wartezimmer den Thread aus Ready-Liste des Schedulers nehmen

App
waiting room (13ms)

12ms App

mit jedem Tick die Wartezeit dekrementieren ●

nach Ablauf der Wartezeit Thread wieder im Scheduler einreihen

ak Zeitgesteuertes Warten 9/19

Schlafen legen

1 App::action(){
2 foo();
3 sleep(13);
4 bar();
5 }

ähnlich der Funktion sleep(3)
jedoch mit Wartezeit in Millisekunden (statt Sekunden)
analog zu Wartezimmer den Thread aus Ready-Liste des Schedulers nehmen

App
waiting room (13ms)

11ms App

mit jedem Tick die Wartezeit dekrementieren ●●

nach Ablauf der Wartezeit Thread wieder im Scheduler einreihen

ak Zeitgesteuertes Warten 9/19

Schlafen legen

1 App::action(){
2 foo();
3 sleep(13);
4 bar();
5 }

ähnlich der Funktion sleep(3)
jedoch mit Wartezeit in Millisekunden (statt Sekunden)
analog zu Wartezimmer den Thread aus Ready-Liste des Schedulers nehmen

App
waiting room (13ms)

10ms App

mit jedem Tick die Wartezeit dekrementieren ●●●

nach Ablauf der Wartezeit Thread wieder im Scheduler einreihen

ak Zeitgesteuertes Warten 9/19

Schlafen legen

1 App::action(){
2 foo();
3 sleep(13);
4 bar();
5 }

ähnlich der Funktion sleep(3)
jedoch mit Wartezeit in Millisekunden (statt Sekunden)
analog zu Wartezimmer den Thread aus Ready-Liste des Schedulers nehmen

App
waiting room (13ms)

0ms App

mit jedem Tick die Wartezeit dekrementieren

nach Ablauf der Wartezeit Thread wieder im Scheduler einreihen

ak Zeitgesteuertes Warten 9/19

Schlafen legen

1 App::action(){
2 foo();
3 sleep(13);
4 bar();
5 }

ähnlich der Funktion sleep(3)
jedoch mit Wartezeit in Millisekunden (statt Sekunden)
analog zu Wartezimmer den Thread aus Ready-Liste des Schedulers nehmen

App
waiting room (13ms)

0ms App

mit jedem Tick die Wartezeit dekrementieren
nach Ablauf der Wartezeit Thread wieder im Scheduler einreihen

ak Zeitgesteuertes Warten 9/19

Naive Datenstruktur

Beispiel: Drei Anwendungen legen sich nacheinander schlafen

1. Thread foo für 666ms

2. Thread bar für 23ms

3. Thread baz für 42ms

Verwaltung mittels verketteter Liste hat den Nachteil, dass bei jedem Tick die
gesamte Liste durchlaufen werden muss

(n , und das 1000 pro Sekunde in der Epilogebene)

66ms foo 2ms bar ms baz

Das muss besser gehen!

ak Zeitgesteuertes Warten 10/19

Naive Datenstruktur

Beispiel: Drei Anwendungen legen sich nacheinander schlafen

1. Thread foo für 666ms

2. Thread bar für 23ms

3. Thread baz für 42ms

Verwaltung mittels verketteter Liste hat den Nachteil, dass bei jedem Tick die
gesamte Liste durchlaufen werden muss

(n , und das 1000 pro Sekunde in der Epilogebene)

666ms foo 23ms bar 42ms baz

Das muss besser gehen!

ak Zeitgesteuertes Warten 10/19

Naive Datenstruktur

Beispiel: Drei Anwendungen legen sich nacheinander schlafen

1. Thread foo für 666ms

2. Thread bar für 23ms

3. Thread baz für 42ms

Verwaltung mittels verketteter Liste hat den Nachteil, dass bei jedem Tick die
gesamte Liste durchlaufen werden muss

(n , und das 1000 pro Sekunde in der Epilogebene)

666ms foo

23ms bar 42ms baz

Das muss besser gehen!

ak Zeitgesteuertes Warten 10/19

Naive Datenstruktur

Beispiel: Drei Anwendungen legen sich nacheinander schlafen

1. Thread foo für 666ms

2. Thread bar für 23ms

3. Thread baz für 42ms

Verwaltung mittels verketteter Liste hat den Nachteil, dass bei jedem Tick die
gesamte Liste durchlaufen werden muss

(n , und das 1000 pro Sekunde in der Epilogebene)

666ms foo

23ms bar 42ms baz

Das muss besser gehen!

ak Zeitgesteuertes Warten 10/19

Naive Datenstruktur

Beispiel: Drei Anwendungen legen sich nacheinander schlafen

1. Thread foo für 666ms

2. Thread bar für 23ms

3. Thread baz für 42ms

Verwaltung mittels verketteter Liste hat den Nachteil, dass bei jedem Tick die
gesamte Liste durchlaufen werden muss

(n , und das 1000 pro Sekunde in der Epilogebene)

666ms foo 23ms bar

42ms baz

Das muss besser gehen!

ak Zeitgesteuertes Warten 10/19

Naive Datenstruktur

Beispiel: Drei Anwendungen legen sich nacheinander schlafen

1. Thread foo für 666ms

2. Thread bar für 23ms

3. Thread baz für 42ms

Verwaltung mittels verketteter Liste hat den Nachteil, dass bei jedem Tick die
gesamte Liste durchlaufen werden muss

(n , und das 1000 pro Sekunde in der Epilogebene)

666ms foo 23ms bar

42ms baz

Das muss besser gehen!

ak Zeitgesteuertes Warten 10/19

Naive Datenstruktur

Beispiel: Drei Anwendungen legen sich nacheinander schlafen

1. Thread foo für 666ms

2. Thread bar für 23ms

3. Thread baz für 42ms

Verwaltung mittels verketteter Liste hat den Nachteil, dass bei jedem Tick die
gesamte Liste durchlaufen werden muss

(n , und das 1000 pro Sekunde in der Epilogebene)

666ms foo 23ms bar 42ms baz

Das muss besser gehen!

ak Zeitgesteuertes Warten 10/19

Naive Datenstruktur

Beispiel: Drei Anwendungen legen sich nacheinander schlafen

1. Thread foo für 666ms

2. Thread bar für 23ms

3. Thread baz für 42ms

Verwaltung mittels verketteter Liste

hat den Nachteil, dass bei jedem Tick die
gesamte Liste durchlaufen werden muss

(n , und das 1000 pro Sekunde in der Epilogebene)

666ms foo 23ms bar 42ms baz

Das muss besser gehen!

ak Zeitgesteuertes Warten 10/19

Naive Datenstruktur

Beispiel: Drei Anwendungen legen sich nacheinander schlafen

1. Thread foo für 666ms

2. Thread bar für 23ms

3. Thread baz für 42ms

Verwaltung mittels verketteter Liste

hat den Nachteil, dass bei jedem Tick die
gesamte Liste durchlaufen werden muss

(n , und das 1000 pro Sekunde in der Epilogebene)

666ms foo 23ms bar 42ms baz

Das muss besser gehen!

ak Zeitgesteuertes Warten 10/19

Naive Datenstruktur

Beispiel: Drei Anwendungen legen sich nacheinander schlafen

1. Thread foo für 666ms

2. Thread bar für 23ms

3. Thread baz für 42ms

Verwaltung mittels verketteter Liste hat den Nachteil, dass bei jedem Tick die
gesamte Liste durchlaufen werden muss

(n , und das 1000 pro Sekunde in der Epilogebene)

666ms foo 23ms bar 42ms baz

Das muss besser gehen!

ak Zeitgesteuertes Warten 10/19

Naive Datenstruktur

Beispiel: Drei Anwendungen legen sich nacheinander schlafen

1. Thread foo für 666ms

2. Thread bar für 23ms

3. Thread baz für 42ms

Verwaltung mittels verketteter Liste hat den Nachteil, dass bei jedem Tick die
gesamte Liste durchlaufen werden muss ●

(n , und das 1000 pro Sekunde in der Epilogebene)

665ms foo 22ms bar 41ms baz

Das muss besser gehen!

ak Zeitgesteuertes Warten 10/19

Naive Datenstruktur

Beispiel: Drei Anwendungen legen sich nacheinander schlafen

1. Thread foo für 666ms

2. Thread bar für 23ms

3. Thread baz für 42ms

Verwaltung mittels verketteter Liste hat den Nachteil, dass bei jedem Tick die
gesamte Liste durchlaufen werden muss ●●

(n , und das 1000 pro Sekunde in der Epilogebene)

664ms foo 21ms bar 40ms baz

Das muss besser gehen!

ak Zeitgesteuertes Warten 10/19

Naive Datenstruktur

Beispiel: Drei Anwendungen legen sich nacheinander schlafen

1. Thread foo für 666ms

2. Thread bar für 23ms

3. Thread baz für 42ms

Verwaltung mittels verketteter Liste hat den Nachteil, dass bei jedem Tick die
gesamte Liste durchlaufen werden muss ●●●

(n , und das 1000 pro Sekunde in der Epilogebene)

663ms foo 20ms bar 39ms baz

Das muss besser gehen!

ak Zeitgesteuertes Warten 10/19

Naive Datenstruktur

Beispiel: Drei Anwendungen legen sich nacheinander schlafen

1. Thread foo für 666ms

2. Thread bar für 23ms

3. Thread baz für 42ms

Verwaltung mittels verketteter Liste hat den Nachteil, dass bei jedem Tick die
gesamte Liste durchlaufen werden muss
(O(n), und das 1000× pro Sekunde in der Epilogebene)

663ms foo 20ms bar 39ms baz

Das muss besser gehen!

ak Zeitgesteuertes Warten 10/19

Naive Datenstruktur

Beispiel: Drei Anwendungen legen sich nacheinander schlafen

1. Thread foo für 666ms

2. Thread bar für 23ms

3. Thread baz für 42ms

Verwaltung mittels verketteter Liste hat den Nachteil, dass bei jedem Tick die
gesamte Liste durchlaufen werden muss
(O(n), und das 1000× pro Sekunde in der Epilogebene)

663ms foo 20ms bar 39ms baz

Das muss besser gehen!

ak Zeitgesteuertes Warten 10/19

Alternative Variante

Einführung einer absoluten Zeit

wird mit jedem Tick inkrementiert

Berechnung der Endzeit beim Einfügen neuer Threads
Einordnen in einer Vorrangwarteschlange (n)
Wenn die aktuelle Zeit T dem ersten Element entspricht:
Thread wieder dem Scheduler übergeben (1)

Beispiel: absolute Zeit T =

1. Thread foo: 666ms + 1337ms
2. Thread bar: 23ms + 1337ms
3. Thread baz: 42ms + 1337ms

ak Zeitgesteuertes Warten 11/19

Alternative Variante

Einführung einer absoluten Zeit

wird mit jedem Tick inkrementiert

Berechnung der Endzeit beim Einfügen neuer Threads
Einordnen in einer Vorrangwarteschlange (n)
Wenn die aktuelle Zeit T dem ersten Element entspricht:
Thread wieder dem Scheduler übergeben (1)

Beispiel: absolute Zeit T = 1334ms

1. Thread foo: 666ms + 1337ms
2. Thread bar: 23ms + 1337ms
3. Thread baz: 42ms + 1337ms

ak Zeitgesteuertes Warten 11/19

Alternative Variante

Einführung einer absoluten Zeit
wird mit jedem Tick inkrementiert

Berechnung der Endzeit beim Einfügen neuer Threads
Einordnen in einer Vorrangwarteschlange (n)
Wenn die aktuelle Zeit T dem ersten Element entspricht:
Thread wieder dem Scheduler übergeben (1)

Beispiel: absolute Zeit T = 1334ms

1. Thread foo: 666ms + 1337ms
2. Thread bar: 23ms + 1337ms
3. Thread baz: 42ms + 1337ms

ak Zeitgesteuertes Warten 11/19

Alternative Variante

Einführung einer absoluten Zeit
wird mit jedem Tick inkrementiert ●

Berechnung der Endzeit beim Einfügen neuer Threads
Einordnen in einer Vorrangwarteschlange (n)
Wenn die aktuelle Zeit T dem ersten Element entspricht:
Thread wieder dem Scheduler übergeben (1)

Beispiel: absolute Zeit T = 1335ms

1. Thread foo: 666ms + 1337ms
2. Thread bar: 23ms + 1337ms
3. Thread baz: 42ms + 1337ms

ak Zeitgesteuertes Warten 11/19

Alternative Variante

Einführung einer absoluten Zeit
wird mit jedem Tick inkrementiert ●●

Berechnung der Endzeit beim Einfügen neuer Threads
Einordnen in einer Vorrangwarteschlange (n)
Wenn die aktuelle Zeit T dem ersten Element entspricht:
Thread wieder dem Scheduler übergeben (1)

Beispiel: absolute Zeit T = 1336ms

1. Thread foo: 666ms + 1337ms
2. Thread bar: 23ms + 1337ms
3. Thread baz: 42ms + 1337ms

ak Zeitgesteuertes Warten 11/19

Alternative Variante

Einführung einer absoluten Zeit
wird mit jedem Tick inkrementiert ●●●

Berechnung der Endzeit beim Einfügen neuer Threads
Einordnen in einer Vorrangwarteschlange (n)
Wenn die aktuelle Zeit T dem ersten Element entspricht:
Thread wieder dem Scheduler übergeben (1)

Beispiel: absolute Zeit T = 1337ms

1. Thread foo: 666ms + 1337ms
2. Thread bar: 23ms + 1337ms
3. Thread baz: 42ms + 1337ms

ak Zeitgesteuertes Warten 11/19

Alternative Variante

Einführung einer absoluten Zeit
wird mit jedem Tick inkrementiert

Berechnung der Endzeit beim Einfügen neuer Threads

Einordnen in einer Vorrangwarteschlange (n)
Wenn die aktuelle Zeit T dem ersten Element entspricht:
Thread wieder dem Scheduler übergeben (1)

Beispiel: absolute Zeit T = 1337ms

1. Thread foo: 666ms + 1337ms
2. Thread bar: 23ms + 1337ms
3. Thread baz: 42ms + 1337ms

ak Zeitgesteuertes Warten 11/19

Alternative Variante

Einführung einer absoluten Zeit
wird mit jedem Tick inkrementiert

Berechnung der Endzeit beim Einfügen neuer Threads

Einordnen in einer Vorrangwarteschlange (n)
Wenn die aktuelle Zeit T dem ersten Element entspricht:
Thread wieder dem Scheduler übergeben (1)

Beispiel: absolute Zeit T = 1337ms

1. Thread foo: 666ms + 1337ms

2. Thread bar: 23ms + 1337ms
3. Thread baz: 42ms + 1337ms

ak Zeitgesteuertes Warten 11/19

Alternative Variante

Einführung einer absoluten Zeit
wird mit jedem Tick inkrementiert

Berechnung der Endzeit beim Einfügen neuer Threads

Einordnen in einer Vorrangwarteschlange (n)
Wenn die aktuelle Zeit T dem ersten Element entspricht:
Thread wieder dem Scheduler übergeben (1)

Beispiel: absolute Zeit T = 1337ms

1. Thread foo: 666ms + 1337ms

2. Thread bar: 23ms + 1337ms
3. Thread baz: 42ms + 1337ms

2003ms foo

ak Zeitgesteuertes Warten 11/19

Alternative Variante

Einführung einer absoluten Zeit
wird mit jedem Tick inkrementiert

Berechnung der Endzeit beim Einfügen neuer Threads

Einordnen in einer Vorrangwarteschlange (n)
Wenn die aktuelle Zeit T dem ersten Element entspricht:
Thread wieder dem Scheduler übergeben (1)

Beispiel: absolute Zeit T = 1337ms

1. Thread foo: 666ms + 1337ms
2. Thread bar: 23ms + 1337ms

3. Thread baz: 42ms + 1337ms

2003ms foo

ak Zeitgesteuertes Warten 11/19

Alternative Variante

Einführung einer absoluten Zeit
wird mit jedem Tick inkrementiert

Berechnung der Endzeit beim Einfügen neuer Threads

Einordnen in einer Vorrangwarteschlange (n)
Wenn die aktuelle Zeit T dem ersten Element entspricht:
Thread wieder dem Scheduler übergeben (1)

Beispiel: absolute Zeit T = 1337ms

1. Thread foo: 666ms + 1337ms
2. Thread bar: 23ms + 1337ms

3. Thread baz: 42ms + 1337ms

2003ms foo 1360ms bar

ak Zeitgesteuertes Warten 11/19

Alternative Variante

Einführung einer absoluten Zeit
wird mit jedem Tick inkrementiert

Berechnung der Endzeit beim Einfügen neuer Threads
Einordnen in einer Vorrangwarteschlange (O(n))

Wenn die aktuelle Zeit T dem ersten Element entspricht:
Thread wieder dem Scheduler übergeben (1)

Beispiel: absolute Zeit T = 1337ms

1. Thread foo: 666ms + 1337ms
2. Thread bar: 23ms + 1337ms

3. Thread baz: 42ms + 1337ms

2003ms foo 1360ms bar

ak Zeitgesteuertes Warten 11/19

Alternative Variante

Einführung einer absoluten Zeit
wird mit jedem Tick inkrementiert

Berechnung der Endzeit beim Einfügen neuer Threads
Einordnen in einer Vorrangwarteschlange (O(n))

Wenn die aktuelle Zeit T dem ersten Element entspricht:
Thread wieder dem Scheduler übergeben (1)

Beispiel: absolute Zeit T = 1337ms

1. Thread foo: 666ms + 1337ms
2. Thread bar: 23ms + 1337ms

3. Thread baz: 42ms + 1337ms

1360ms bar 2003ms foo

ak Zeitgesteuertes Warten 11/19

Alternative Variante

Einführung einer absoluten Zeit
wird mit jedem Tick inkrementiert

Berechnung der Endzeit beim Einfügen neuer Threads
Einordnen in einer Vorrangwarteschlange (O(n))

Wenn die aktuelle Zeit T dem ersten Element entspricht:
Thread wieder dem Scheduler übergeben (1)

Beispiel: absolute Zeit T = 1337ms

1. Thread foo: 666ms + 1337ms
2. Thread bar: 23ms + 1337ms
3. Thread baz: 42ms + 1337ms

1360ms bar 2003ms foo

ak Zeitgesteuertes Warten 11/19

Alternative Variante

Einführung einer absoluten Zeit
wird mit jedem Tick inkrementiert

Berechnung der Endzeit beim Einfügen neuer Threads
Einordnen in einer Vorrangwarteschlange (O(n))

Wenn die aktuelle Zeit T dem ersten Element entspricht:
Thread wieder dem Scheduler übergeben (1)

Beispiel: absolute Zeit T = 1337ms

1. Thread foo: 666ms + 1337ms
2. Thread bar: 23ms + 1337ms
3. Thread baz: 42ms + 1337ms

1360ms bar 2003ms foo 1379ms baz

ak Zeitgesteuertes Warten 11/19

Alternative Variante

Einführung einer absoluten Zeit
wird mit jedem Tick inkrementiert

Berechnung der Endzeit beim Einfügen neuer Threads
Einordnen in einer Vorrangwarteschlange (O(n))

Wenn die aktuelle Zeit T dem ersten Element entspricht:
Thread wieder dem Scheduler übergeben (1)

Beispiel: absolute Zeit T = 1337ms

1. Thread foo: 666ms + 1337ms
2. Thread bar: 23ms + 1337ms
3. Thread baz: 42ms + 1337ms

1360ms bar 1379ms baz 2003ms foo

ak Zeitgesteuertes Warten 11/19

Alternative Variante

Einführung einer absoluten Zeit
wird mit jedem Tick inkrementiert

Berechnung der Endzeit beim Einfügen neuer Threads
Einordnen in einer Vorrangwarteschlange (O(n))
Wenn die aktuelle Zeit T dem ersten Element entspricht:
Thread wieder dem Scheduler übergeben (O(1))

Beispiel: absolute Zeit T = 1337ms

1. Thread foo: 666ms + 1337ms
2. Thread bar: 23ms + 1337ms
3. Thread baz: 42ms + 1337ms

1360ms bar 1379ms baz 2003ms foo

ak Zeitgesteuertes Warten 11/19

Alternative Variante

Einführung einer absoluten Zeit
wird mit jedem Tick inkrementiert

Berechnung der Endzeit beim Einfügen neuer Threads
Einordnen in einer Vorrangwarteschlange (O(n))
Wenn die aktuelle Zeit T dem ersten Element entspricht:
Thread wieder dem Scheduler übergeben (O(1))

Beispiel: absolute Zeit T = 1360ms

1. Thread foo: 666ms + 1337ms
2. Thread bar: 23ms + 1337ms
3. Thread baz: 42ms + 1337ms

1360ms bar 1379ms baz 2003ms foo

ak Zeitgesteuertes Warten 11/19

Alternative Variante

Einführung einer absoluten Zeit
wird mit jedem Tick inkrementiert

Berechnung der Endzeit beim Einfügen neuer Threads
Einordnen in einer Vorrangwarteschlange (O(n))
Wenn die aktuelle Zeit T dem ersten Element entspricht:
Thread wieder dem Scheduler übergeben (O(1))

Nachteile
Absolute Zeit ist ein neuer Zustand
Bei 32bit Überlauf möglich (nach 49.7 Tagen)

Geht das nicht e˺zienter (ohne solche Probleme)?

ak Zeitgesteuertes Warten 11/19

Alternative Variante

Einführung einer absoluten Zeit
wird mit jedem Tick inkrementiert

Berechnung der Endzeit beim Einfügen neuer Threads
Einordnen in einer Vorrangwarteschlange (O(n))
Wenn die aktuelle Zeit T dem ersten Element entspricht:
Thread wieder dem Scheduler übergeben (O(1))

Nachteile
Absolute Zeit ist ein neuer Zustand
Bei 32bit Überlauf möglich (nach 49.7 Tagen)

Geht das nicht e˺zienter (ohne solche Probleme)?

ak Zeitgesteuertes Warten 11/19

E˾ziente Variante (Optional!)

Verwendung der relativen Delta-Zeit

Es wird nur die Zeitdi˽erenz zum Vorgänger gespeichert
Vorgänger des ersten Elements hat Zeit t0 0ms

Neue Threads nach Schlafdauer einordnen (n)

Nachfolgendes Element muss angepasst werden (1)
keine Vorrangwarteschlange!

Erstes Element wird mit jedem Tick dekrementiert

und bei 0 dem Scheduler übergeben (1)

Beispiel:

1. Thread foo:
2. Thread bar: 23ms
3. Thread baz:

19ms

ak Zeitgesteuertes Warten 12/19

E˾ziente Variante (Optional!)

Verwendung der relativen Delta-Zeit
Es wird nur die Zeitdi˽erenz zum Vorgänger gespeichert
(negative Zeitdi˽erenzen sind nicht erlaubt!)

Vorgänger des ersten Elements hat Zeit t0 0ms

Neue Threads nach Schlafdauer einordnen (n)

Nachfolgendes Element muss angepasst werden (1)
keine Vorrangwarteschlange!

Erstes Element wird mit jedem Tick dekrementiert

und bei 0 dem Scheduler übergeben (1)

Beispiel:

1. Thread foo:
2. Thread bar: 23ms
3. Thread baz:

19ms

ak Zeitgesteuertes Warten 12/19

E˾ziente Variante (Optional!)

Verwendung der relativen Delta-Zeit
Es wird nur die Zeitdi˽erenz zum Vorgänger gespeichert

Vorgänger des ersten Elements hat Zeit t0 0ms

Neue Threads nach Schlafdauer einordnen (n)

Nachfolgendes Element muss angepasst werden (1)
keine Vorrangwarteschlange!

Erstes Element wird mit jedem Tick dekrementiert

und bei 0 dem Scheduler übergeben (1)

Beispiel:
1. Thread foo: 666ms

2. Thread bar: 23ms
3. Thread baz:

19ms

ak Zeitgesteuertes Warten 12/19

E˾ziente Variante (Optional!)

Verwendung der relativen Delta-Zeit
Es wird nur die Zeitdi˽erenz zum Vorgänger gespeichert

Vorgänger des ersten Elements hat Zeit t0 0ms

Neue Threads nach Schlafdauer einordnen (n)

Nachfolgendes Element muss angepasst werden (1)
keine Vorrangwarteschlange!

Erstes Element wird mit jedem Tick dekrementiert

und bei 0 dem Scheduler übergeben (1)

Beispiel:
1. Thread foo: 666ms

2. Thread bar: 23ms
3. Thread baz:

19ms

666ms foo

ak Zeitgesteuertes Warten 12/19

E˾ziente Variante (Optional!)

Verwendung der relativen Delta-Zeit
Es wird nur die Zeitdi˽erenz zum Vorgänger gespeichert
Vorgänger des ersten Elements hat Zeit t0 = 0ms

Neue Threads nach Schlafdauer einordnen (n)

Nachfolgendes Element muss angepasst werden (1)
keine Vorrangwarteschlange!

Erstes Element wird mit jedem Tick dekrementiert

und bei 0 dem Scheduler übergeben (1)

Beispiel:
1. Thread foo: 666ms

2. Thread bar: 23ms
3. Thread baz:

19ms

666ms foo

ak Zeitgesteuertes Warten 12/19

E˾ziente Variante (Optional!)

Verwendung der relativen Delta-Zeit
Es wird nur die Zeitdi˽erenz zum Vorgänger gespeichert
Vorgänger des ersten Elements hat Zeit t0 = 0ms

Neue Threads nach Schlafdauer einordnen (n)

Nachfolgendes Element muss angepasst werden (1)
keine Vorrangwarteschlange!

Erstes Element wird mit jedem Tick dekrementiert

und bei 0 dem Scheduler übergeben (1)

Beispiel:
1. Thread foo: 666ms − t0 = 666ms

2. Thread bar: 23ms
3. Thread baz:

19ms

666ms foo

ak Zeitgesteuertes Warten 12/19

E˾ziente Variante (Optional!)

Verwendung der relativen Delta-Zeit
Es wird nur die Zeitdi˽erenz zum Vorgänger gespeichert
Vorgänger des ersten Elements hat Zeit t0 = 0ms

Neue Threads nach Schlafdauer einordnen (n)

Nachfolgendes Element muss angepasst werden (1)
keine Vorrangwarteschlange!

Erstes Element wird mit jedem Tick dekrementiert

und bei 0 dem Scheduler übergeben (1)

Beispiel:
1. Thread foo: 666ms

2. Thread bar: 23ms
3. Thread baz:

19ms

666ms foo

ak Zeitgesteuertes Warten 12/19

E˾ziente Variante (Optional!)

Verwendung der relativen Delta-Zeit
Es wird nur die Zeitdi˽erenz zum Vorgänger gespeichert
Vorgänger des ersten Elements hat Zeit t0 = 0ms

Neue Threads nach Schlafdauer einordnen (n)

Nachfolgendes Element muss angepasst werden (1)
keine Vorrangwarteschlange!

Erstes Element wird mit jedem Tick dekrementiert

und bei 0 dem Scheduler übergeben (1)

Beispiel:
1. Thread foo: 666ms
2. Thread bar: 23ms

3. Thread baz:

19ms

666ms foo

ak Zeitgesteuertes Warten 12/19

E˾ziente Variante (Optional!)

Verwendung der relativen Delta-Zeit
Es wird nur die Zeitdi˽erenz zum Vorgänger gespeichert
Vorgänger des ersten Elements hat Zeit t0 = 0ms

Neue Threads nach Schlafdauer einordnen (n)

Nachfolgendes Element muss angepasst werden (1)
keine Vorrangwarteschlange!

Erstes Element wird mit jedem Tick dekrementiert

und bei 0 dem Scheduler übergeben (1)

Beispiel:
1. Thread foo: 666ms
2. Thread bar: 23ms

3. Thread baz:

19ms

666ms foo 23ms bar

ak Zeitgesteuertes Warten 12/19

E˾ziente Variante (Optional!)

Verwendung der relativen Delta-Zeit
Es wird nur die Zeitdi˽erenz zum Vorgänger gespeichert
Vorgänger des ersten Elements hat Zeit t0 = 0ms

Neue Threads nach Schlafdauer einordnen (O(n))

Nachfolgendes Element muss angepasst werden (1)
keine Vorrangwarteschlange!

Erstes Element wird mit jedem Tick dekrementiert

und bei 0 dem Scheduler übergeben (1)

Beispiel:
1. Thread foo: 666ms
2. Thread bar: 23ms

3. Thread baz:

19ms

666ms foo 23ms bar

ak Zeitgesteuertes Warten 12/19

E˾ziente Variante (Optional!)

Verwendung der relativen Delta-Zeit
Es wird nur die Zeitdi˽erenz zum Vorgänger gespeichert
Vorgänger des ersten Elements hat Zeit t0 = 0ms

Neue Threads nach Schlafdauer einordnen (O(n))

Nachfolgendes Element muss angepasst werden (1)
keine Vorrangwarteschlange!

Erstes Element wird mit jedem Tick dekrementiert

und bei 0 dem Scheduler übergeben (1)

Beispiel:
1. Thread foo: 666ms
2. Thread bar: 23ms − t0 = 23ms

3. Thread baz:

19ms

666ms foo 23ms bar

ak Zeitgesteuertes Warten 12/19

E˾ziente Variante (Optional!)

Verwendung der relativen Delta-Zeit
Es wird nur die Zeitdi˽erenz zum Vorgänger gespeichert
Vorgänger des ersten Elements hat Zeit t0 = 0ms

Neue Threads nach Schlafdauer einordnen (O(n))

Nachfolgendes Element muss angepasst werden (1)
keine Vorrangwarteschlange!

Erstes Element wird mit jedem Tick dekrementiert

und bei 0 dem Scheduler übergeben (1)

Beispiel:
1. Thread foo: 666ms
2. Thread bar: 23ms

3. Thread baz:

19ms

23ms bar 666ms foo

ak Zeitgesteuertes Warten 12/19

E˾ziente Variante (Optional!)

Verwendung der relativen Delta-Zeit
Es wird nur die Zeitdi˽erenz zum Vorgänger gespeichert
Vorgänger des ersten Elements hat Zeit t0 = 0ms

Neue Threads nach Schlafdauer einordnen (O(n))
Nachfolgendes Element muss angepasst werden (O(1))

keine Vorrangwarteschlange!

Erstes Element wird mit jedem Tick dekrementiert

und bei 0 dem Scheduler übergeben (1)

Beispiel:
1. Thread foo: 666ms
2. Thread bar: 23ms

3. Thread baz:

19ms

23ms bar 666ms foo

ak Zeitgesteuertes Warten 12/19

E˾ziente Variante (Optional!)

Verwendung der relativen Delta-Zeit
Es wird nur die Zeitdi˽erenz zum Vorgänger gespeichert
Vorgänger des ersten Elements hat Zeit t0 = 0ms

Neue Threads nach Schlafdauer einordnen (O(n))
Nachfolgendes Element muss angepasst werden (O(1))

keine Vorrangwarteschlange!

Erstes Element wird mit jedem Tick dekrementiert

und bei 0 dem Scheduler übergeben (1)

Beispiel:
1. Thread foo: 666ms − tbar = 643ms
2. Thread bar: 23ms

3. Thread baz:

19ms

23ms bar 643ms foo

ak Zeitgesteuertes Warten 12/19

E˾ziente Variante (Optional!)

Verwendung der relativen Delta-Zeit
Es wird nur die Zeitdi˽erenz zum Vorgänger gespeichert
Vorgänger des ersten Elements hat Zeit t0 = 0ms

Neue Threads nach Schlafdauer einordnen (O(n))
Nachfolgendes Element muss angepasst werden (O(1))

keine Vorrangwarteschlange!

Erstes Element wird mit jedem Tick dekrementiert

und bei 0 dem Scheduler übergeben (1)

Beispiel:
1. Thread foo: 643ms
2. Thread bar: 23ms

3. Thread baz:

19ms

23ms bar 643ms foo

ak Zeitgesteuertes Warten 12/19

E˾ziente Variante (Optional!)

Verwendung der relativen Delta-Zeit
Es wird nur die Zeitdi˽erenz zum Vorgänger gespeichert
Vorgänger des ersten Elements hat Zeit t0 = 0ms

Neue Threads nach Schlafdauer einordnen (O(n))
Nachfolgendes Element muss angepasst werden (O(1))

keine Vorrangwarteschlange!

Erstes Element wird mit jedem Tick dekrementiert

und bei 0 dem Scheduler übergeben (1)

Beispiel:
1. Thread foo: 643ms
2. Thread bar: 23ms
3. Thread baz: 42ms

19ms

23ms bar 643ms foo

ak Zeitgesteuertes Warten 12/19

E˾ziente Variante (Optional!)

Verwendung der relativen Delta-Zeit
Es wird nur die Zeitdi˽erenz zum Vorgänger gespeichert
Vorgänger des ersten Elements hat Zeit t0 = 0ms

Neue Threads nach Schlafdauer einordnen (O(n))
Nachfolgendes Element muss angepasst werden (O(1))

keine Vorrangwarteschlange!

Erstes Element wird mit jedem Tick dekrementiert

und bei 0 dem Scheduler übergeben (1)

Beispiel:
1. Thread foo: 643ms
2. Thread bar: 23ms
3. Thread baz: 42ms

19ms

23ms bar 643ms foo 42ms baz

ak Zeitgesteuertes Warten 12/19

E˾ziente Variante (Optional!)

Verwendung der relativen Delta-Zeit
Es wird nur die Zeitdi˽erenz zum Vorgänger gespeichert
Vorgänger des ersten Elements hat Zeit t0 = 0ms

Neue Threads nach Schlafdauer einordnen (O(n))
Nachfolgendes Element muss angepasst werden (O(1))

keine Vorrangwarteschlange!

Erstes Element wird mit jedem Tick dekrementiert

und bei 0 dem Scheduler übergeben (1)

Beispiel:
1. Thread foo: 643ms
2. Thread bar: 23ms
3. Thread baz: 42ms − t0 = 42ms

19ms

23ms bar 643ms foo 42ms baz

ak Zeitgesteuertes Warten 12/19

E˾ziente Variante (Optional!)

Verwendung der relativen Delta-Zeit
Es wird nur die Zeitdi˽erenz zum Vorgänger gespeichert
Vorgänger des ersten Elements hat Zeit t0 = 0ms

Neue Threads nach Schlafdauer einordnen (O(n))
Nachfolgendes Element muss angepasst werden (O(1))

keine Vorrangwarteschlange!

Erstes Element wird mit jedem Tick dekrementiert

und bei 0 dem Scheduler übergeben (1)

Beispiel:
1. Thread foo: 643ms
2. Thread bar: 23ms
3. Thread baz: 42ms − t0 = 42ms > tbar

19ms

23ms bar 643ms foo 42ms baz

ak Zeitgesteuertes Warten 12/19

E˾ziente Variante (Optional!)

Verwendung der relativen Delta-Zeit
Es wird nur die Zeitdi˽erenz zum Vorgänger gespeichert
Vorgänger des ersten Elements hat Zeit t0 = 0ms

Neue Threads nach Schlafdauer einordnen (O(n))
Nachfolgendes Element muss angepasst werden (O(1))

keine Vorrangwarteschlange!

Erstes Element wird mit jedem Tick dekrementiert

und bei 0 dem Scheduler übergeben (1)

Beispiel:
1. Thread foo: 643ms
2. Thread bar: 23ms
3. Thread baz: 42ms − t0 − tbar = 19ms

19ms

23ms bar 643ms foo 19ms baz

ak Zeitgesteuertes Warten 12/19

E˾ziente Variante (Optional!)

Verwendung der relativen Delta-Zeit
Es wird nur die Zeitdi˽erenz zum Vorgänger gespeichert
Vorgänger des ersten Elements hat Zeit t0 = 0ms

Neue Threads nach Schlafdauer einordnen (O(n))
Nachfolgendes Element muss angepasst werden (O(1))

keine Vorrangwarteschlange!

Erstes Element wird mit jedem Tick dekrementiert

und bei 0 dem Scheduler übergeben (1)

Beispiel:
1. Thread foo: 643ms
2. Thread bar: 23ms
3. Thread baz: 19ms

23ms bar 19ms baz 643ms foo

ak Zeitgesteuertes Warten 12/19

E˾ziente Variante (Optional!)

Verwendung der relativen Delta-Zeit
Es wird nur die Zeitdi˽erenz zum Vorgänger gespeichert
Vorgänger des ersten Elements hat Zeit t0 = 0ms

Neue Threads nach Schlafdauer einordnen (O(n))
Nachfolgendes Element muss angepasst werden (O(1))

⇒ keine Vorrangwarteschlange!

Erstes Element wird mit jedem Tick dekrementiert

und bei 0 dem Scheduler übergeben (1)

Beispiel:
1. Thread foo: 643ms
2. Thread bar: 23ms
3. Thread baz: 19ms

23ms bar 19ms baz 643ms foo

ak Zeitgesteuertes Warten 12/19

E˾ziente Variante (Optional!)

Verwendung der relativen Delta-Zeit
Es wird nur die Zeitdi˽erenz zum Vorgänger gespeichert
Vorgänger des ersten Elements hat Zeit t0 = 0ms

Neue Threads nach Schlafdauer einordnen (O(n))
Nachfolgendes Element muss angepasst werden (O(1))

⇒ keine Vorrangwarteschlange!

Erstes Element wird mit jedem Tick dekrementiert

und bei 0 dem Scheduler übergeben (1)

Beispiel:
1. Thread foo: 643ms − tbaz = 624ms
2. Thread bar: 23ms
3. Thread baz: 19ms

23ms bar 19ms baz 624ms foo

ak Zeitgesteuertes Warten 12/19

E˾ziente Variante (Optional!)

Verwendung der relativen Delta-Zeit
Es wird nur die Zeitdi˽erenz zum Vorgänger gespeichert
Vorgänger des ersten Elements hat Zeit t0 = 0ms

Neue Threads nach Schlafdauer einordnen (O(n))
Nachfolgendes Element muss angepasst werden (O(1))

⇒ keine Vorrangwarteschlange!

Erstes Element wird mit jedem Tick dekrementiert

und bei 0 dem Scheduler übergeben (1)

Beispiel:
1. Thread foo: 624ms
2. Thread bar: 23ms
3. Thread baz: 19ms

23ms bar 19ms baz 624ms foo

ak Zeitgesteuertes Warten 12/19

E˾ziente Variante (Optional!)

Verwendung der relativen Delta-Zeit
Es wird nur die Zeitdi˽erenz zum Vorgänger gespeichert
Vorgänger des ersten Elements hat Zeit t0 = 0ms

Neue Threads nach Schlafdauer einordnen (O(n))
Nachfolgendes Element muss angepasst werden (O(1))

⇒ keine Vorrangwarteschlange!

Erstes Element wird mit jedem Tick dekrementiert

und bei 0 dem Scheduler übergeben (1)

Beispiel:
1. Thread foo: 624ms
2. Thread bar: 23ms
3. Thread baz: 19ms

23ms bar 19ms baz 624ms foo

ak Zeitgesteuertes Warten 12/19

E˾ziente Variante (Optional!)

Verwendung der relativen Delta-Zeit
Es wird nur die Zeitdi˽erenz zum Vorgänger gespeichert
Vorgänger des ersten Elements hat Zeit t0 = 0ms

Neue Threads nach Schlafdauer einordnen (O(n))
Nachfolgendes Element muss angepasst werden (O(1))

⇒ keine Vorrangwarteschlange!

Erstes Element wird mit jedem Tick dekrementiert ●

und bei 0 dem Scheduler übergeben (1)

Beispiel:
1. Thread foo: 624ms
2. Thread bar: 23ms
3. Thread baz: 19ms

22ms bar 19ms baz 624ms foo

ak Zeitgesteuertes Warten 12/19

E˾ziente Variante (Optional!)

Verwendung der relativen Delta-Zeit
Es wird nur die Zeitdi˽erenz zum Vorgänger gespeichert
Vorgänger des ersten Elements hat Zeit t0 = 0ms

Neue Threads nach Schlafdauer einordnen (O(n))
Nachfolgendes Element muss angepasst werden (O(1))

⇒ keine Vorrangwarteschlange!

Erstes Element wird mit jedem Tick dekrementiert ●●

und bei 0 dem Scheduler übergeben (1)

Beispiel:
1. Thread foo: 624ms
2. Thread bar: 23ms
3. Thread baz: 19ms

21ms bar 19ms baz 624ms foo

ak Zeitgesteuertes Warten 12/19

E˾ziente Variante (Optional!)

Verwendung der relativen Delta-Zeit
Es wird nur die Zeitdi˽erenz zum Vorgänger gespeichert
Vorgänger des ersten Elements hat Zeit t0 = 0ms

Neue Threads nach Schlafdauer einordnen (O(n))
Nachfolgendes Element muss angepasst werden (O(1))

⇒ keine Vorrangwarteschlange!

Erstes Element wird mit jedem Tick dekrementiert ●●●

und bei 0 dem Scheduler übergeben (1)

Beispiel:
1. Thread foo: 624ms
2. Thread bar: 23ms
3. Thread baz: 19ms

20ms bar 19ms baz 624ms foo

ak Zeitgesteuertes Warten 12/19

E˾ziente Variante (Optional!)

Verwendung der relativen Delta-Zeit
Es wird nur die Zeitdi˽erenz zum Vorgänger gespeichert
Vorgänger des ersten Elements hat Zeit t0 = 0ms

Neue Threads nach Schlafdauer einordnen (O(n))
Nachfolgendes Element muss angepasst werden (O(1))

⇒ keine Vorrangwarteschlange!

Erstes Element wird mit jedem Tick dekrementiert
und bei 0 dem Scheduler übergeben

(1)

Beispiel:
1. Thread foo: 624ms
2. Thread bar: 23ms
3. Thread baz: 19ms

0ms bar 19ms baz 624ms foo

ak Zeitgesteuertes Warten 12/19

E˾ziente Variante (Optional!)

Verwendung der relativen Delta-Zeit
Es wird nur die Zeitdi˽erenz zum Vorgänger gespeichert
Vorgänger des ersten Elements hat Zeit t0 = 0ms

Neue Threads nach Schlafdauer einordnen (O(n))
Nachfolgendes Element muss angepasst werden (O(1))

⇒ keine Vorrangwarteschlange!

Erstes Element wird mit jedem Tick dekrementiert
und bei 0 dem Scheduler übergeben (O(1))
Beispiel:
1. Thread foo: 624ms
2. Thread bar: 23ms
3. Thread baz: 19ms

0ms bar 19ms baz 624ms foo

ak Zeitgesteuertes Warten 12/19

Aufgaben

Implementierung von Semaphoren mit passivem Warten
Verwendung in der neuen getKey() Funktion

Zeitgesteuertes Schlafen der Threads
Leerlauf des Prozessor (falls keine Threads vorhanden)
Kapselung in Systemaufrufschnittstellen (syscall)
welche sich um den Wechsel in die Epilogebene kümmern

ak Umsetzung 13/19

(viel zu) viele Wartezimmer

jede Semaphore ist gleichzeitig ein Wartezimmer

und jeder Wecker (bell) ebenfalls
auch wenn bei unseren Weckern nur je ein Faden darin weilt
einfache Implementierung, da wir beim Wecker die neuen
Ablaufplanmethoden für die Semaphoren verwenden können.
Wirkt aber auf den ersten Blick halt komisch.

Umsetzung durch Ableitung von waitingroom

Alle aktiven Wecker werden selbst wieder in einer verketteten Liste (vom
bellringer) verwaltet

ak Umsetzung 14/19

(viel zu) viele Wartezimmer

jede Semaphore ist gleichzeitig ein Wartezimmer
und jeder Wecker (bell) ebenfalls

auch wenn bei unseren Weckern nur je ein Faden darin weilt
: einfache Implementierung, da wir beim Wecker die neuen
Ablaufplanmethoden für die Semaphoren verwenden können.
Wirkt aber auf den ersten Blick halt komisch.

Umsetzung durch Ableitung von waitingroom

Alle aktiven Wecker werden selbst wieder in einer verketteten Liste (vom
bellringer) verwaltet

ak Umsetzung 14/19

(viel zu) viele Wartezimmer

jede Semaphore ist gleichzeitig ein Wartezimmer
und jeder Wecker (bell) ebenfalls

auch wenn bei unseren Weckern nur je ein Faden darin weilt
: einfache Implementierung, da wir beim Wecker die neuen
Ablaufplanmethoden für die Semaphoren verwenden können.
Wirkt aber auf den ersten Blick halt komisch.

Umsetzung durch Ableitung von waitingroom

Alle aktiven Wecker werden selbst wieder in einer verketteten Liste (vom
bellringer) verwaltet

ak Umsetzung 14/19

(viel zu) viele Wartezimmer

jede Semaphore ist gleichzeitig ein Wartezimmer
und jeder Wecker (bell) ebenfalls

auch wenn bei unseren Weckern nur je ein Faden darin weilt
: einfache Implementierung, da wir beim Wecker die neuen
Ablaufplanmethoden für die Semaphoren verwenden können.
Wirkt aber auf den ersten Blick halt komisch.

Umsetzung durch Ableitung von waitingroom

Alle aktiven Wecker werden selbst wieder in einer verketteten Liste (vom
bellringer) verwaltet

ak Umsetzung 14/19

Richtig ticken

Der bellringer prüft regelmäßig die Wecker

unter Verwendung des LAPIC Timers
welcher mit windup(1000) auf Millisekundentakt gestellt wird
es reicht, wenn eine CPU das übernimmt

ak Umsetzung 15/19

Leerlauf

Problem: zu wenig Threads bereit

Lösung: je ein IdleThread pro CPU

ak Umsetzung 16/19

Leerlauf

Problem: zu wenig Threads bereit
Lösung: je ein IdleThread pro CPU

1 void IdleThread::action() {
2 while (true) {
3 if (!Scheduler::isEmpty())
4 GuardedScheduler::resume();
5 }
6 }

CPU fungiert e˽ektiv als Heizkörper, besser wäre jedoch ein Schlafzustand

ak Umsetzung 16/19

Leerlauf

Problem: zu wenig Threads bereit
Lösung: je ein IdleThread pro CPU

1 void IdleThread::action() {
2 while (true) {
3 if (!Scheduler::isEmpty())
4 GuardedScheduler::resume();
5 }
6 }

CPU fungiert e˽ektiv als Heizkörper

, besser wäre jedoch ein Schlafzustand

ak Umsetzung 16/19

Leerlauf

Problem: zu wenig Threads bereit
Lösung: je ein IdleThread pro CPU

1 void IdleThread::action() {
2 while (true) {
3 if (!Scheduler::isEmpty())
4 GuardedScheduler::resume();
5 }
6 }

CPU fungiert e˽ektiv als Heizkörper, besser wäre jedoch ein Schlafzustand
Core::idle() hält CPU bis zum nächsten Interrupt an

(mittels atomaren sti und hlt)

ak Umsetzung 16/19

Leerlauf

Core::idle() hält CPU bis zum nächsten Interrupt an

(mittels atomaren sti und hlt)

ak Umsetzung 16/19

Leerlauf

Core::idle() hält CPU bis zum nächsten Interrupt an

(mittels atomaren sti und hlt)

1 void IdleThread::action() {
2 while (true) {
3 if (Scheduler::isEmpty())
4 Core::idle();
5 else
6 GuardedScheduler::resume();
7 }
8 }

Durch Aufwachen eines wartenden Threads (oder Neueinplanung bei MPSTUBS)
kann ein Lost-Wakeup passieren!

ak Umsetzung 16/19

Leerlauf

Core::idle() hält CPU bis zum nächsten Interrupt an

(mittels atomaren sti und hlt)

1 void IdleThread::action() {
2 while (true) {
3 if (Scheduler::isEmpty())
4 Core::idle();
5 else
6 GuardedScheduler::resume();
7 }
8 }

Thread ready

Durch Aufwachen eines wartenden Threads (oder Neueinplanung bei MPSTUBS)
kann ein Lost-Wakeup passieren!

ak Umsetzung 16/19

Leerlauf

Core::idle() hält CPU bis zum nächsten Interrupt an

(mittels atomaren sti und hlt)

1 void IdleThread::action() {
2 while (true) {
3 if (Scheduler::isEmpty())
4 Core::idle();
5 else
6 GuardedScheduler::resume();
7 }
8 }

Thread ready

Durch Aufwachen eines wartenden Threads (oder Neueinplanung bei MPSTUBS)
kann ein Lost-Wakeup passieren!

ak Umsetzung 16/19

Leerlauf

Core::idle() hält CPU bis zum nächsten Interrupt an
(mittels atomaren sti und hlt)

1 void IdleThread::action() {
2 while (true) {
3 if (Scheduler::isEmpty())
4 Core::idle();
5 else
6 GuardedScheduler::resume();
7 }
8 }

Thread ready

Durch Aufwachen eines wartenden Threads (oder Neueinplanung bei MPSTUBS)
kann ein Lost-Wakeup passieren!

ak Umsetzung 16/19

Leerlauf

Core::idle() hält CPU bis zum nächsten Interrupt an
(mittels atomaren sti und hlt)

1 void IdleThread::action() {
2 while (true) {
3 Core::Interrupt::disable();
4 if (Scheduler::isEmpty())
5 Core::idle();
6 else {
7 Core::Interrupt::enable();
8 GuardedScheduler::resume();
9 }
10 }
11 }

ak Umsetzung 16/19

Leerlauf mittels Core::idle()

1 namespace Core {
2 inline void idle() {
3 asm volatile("sti\n\t"
4 "hlt\n\t"
5 ::: "memory");
6 }
7 }

ak Umsetzung 17/19

Leerlauf in MPStuBS

Problem: Sobald ein Thread bereit ist, soll eine CPU im Leerlauf sofort mit der
Abarbeitung beginnen

Lösung: Aufwecken der CPU mittels IPI

ak Umsetzung 18/19

Leerlauf in MPStuBS

Problem: Sobald ein Thread bereit ist, soll eine CPU im Leerlauf sofort mit der
Abarbeitung beginnen

Lösung: Aufwecken der CPU mittels IPI

ak Umsetzung 18/19

Weitere Fragen?

Fast geschát - dies ist die letzte P̄ichtaufgabe!

	Motivation
	Semaphore
	Zeitgesteuertes Warten
	Umsetzung

