Ubung zu Betriebssystembau

Ereignisbearbeitung und Synchronisation

20. Januar 2026

Alexander Krause

Arbeitsgruppe Systemsoftware
Technische Universitat Dortmund

(Mit Material vom Lehrstuhl 4 der FAU)

technische universitat
dortmund

¥ 4

Arbeitsgruppe
Systemsoftware



Wie sieht es mit gegenseitigem Ausschluss auf Fadenebende in STUBS aus?

II ak Motivation 1/19



Wie sieht es mit gegenseitigem Ausschluss auf Fadenebende in STUBS aus?

Wir haben doch bereits ein spinlock implementiert...

II ak Motivation 1/19



Mutex mit aktivem Warten

mutex.lock()
// code

mutex.unlock()

II ak Motivation 2/19



Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code

mutex.unlock()

App2
mutex.lock()
// code

mutex.unlock()

App3

mutex.lock()
// code

mutex.unlock()

“()" ak

Motivation

2/19



Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code

mutex.unlock()

active

App2 App3
mutex.lock() mutex.lock()
// code // code

mutex.unlock() mutex.unlock()

ready list

| [App1 App2 App3

II ak

Motivation 2/19



Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code

mutex.unlock()

mutex.lock()
// code

mutex.unlock()

mutex.lock()
// code

mutex.unlock()

active ready list
App1 | [App2 App3
II ak Motivation 2/19



Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code

mutex.unlock()

mutex.lock()
// code

mutex.unlock()

mutex.lock()
// code

mutex.unlock()

active ready list
App1 | [App2 App3
CPU-Zeit —>
—
II ak Motivation 2/19



Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock()
// code

mutex.unlock()

mutex.lock()
// code

mutex.unlock()

mutex.lock()
// code

mutex.unlock()

active ready list
App1 | [App2 App3
CPU-Zeit —>
—
II ak Motivation 2/19



Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock() mutex.lock() mutex.lock()
// code // code // code
HrEe .uulup}\f\ muteX.unlOCk() muteX.unlOCk()
active ready list
App1 | [App2 App3
CPU-Zeit —>
|
/ A Motivation 2/19



Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

mutex.lock() mutex.lock() mutex.lock()
// code // code // code
mutex.unlock() mutex.unlock() mutex.unlock()
active ready list
| [App2 App3 App1
CPU-Zeit —>
|

II ak

Motivation 2/19



Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

mutex.lock()
// code

mutex.unlock()

App2
mutex.lock()
// code

mutex.unlock()

mutex.lock()
// code

mutex.unlock()

active ready list
App2 | [App3 App1
CPU-Zeit —>
——
II ak Motivation 2/19



Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App2
mutex.lock() mutex.lock() mutex.lock()
// code // code // code
mutex.unlock() mutex.unlock() mutex.unlock()
active ready list
App2 | [App3 App1

CPU-Zeit —>
I

II ak Motivation

2/19



Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App2
mutex.lock() mutex.lock() mutex.lock()
// code // code // code
mutex.unlock() mutex.unlock() mutex.unlock()
active ready list
App2 | [App3 App1

CPU-Zeit —>
I

I‘I ak Motivation

2/19



Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App2
mutex.lock() mutex.lock() 4 mutex.lock()
// code // code // code
mutex.unlock() mutex.unlock() mutex.unlock()
active ready list
App2 | [App3 App1

CPU-Zeit —>
|\ ____________________________|]

I‘I ak Motivation

2/19



Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

mutex.lock() mutex.lock() mutex.lock()
// code // code // code
mutex.unlock() mutex.unlock() mutex.unlock()
active ready list

| [App3 App1 App2

CPU-Zeit —>
|\ ____________________________|]

I‘I ak Motivation 2/19



Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App3
mutex.lock() mutex.lock() mutex.lock()
// code // code // code
mutex.unlock() mutex.unlock() mutex.unlock()
active ready list
App3 | [App1 App2

CPU-Zeit —>

I‘I ak Motivation

2/19



Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App3
mutex.lock() mutex.lock() mutex.lock()
// code // code // code
mutex.unlock() mutex.unlock() mutex.unlock()

active ready list
App3 | [App1 App2
CPU-Zeit —>

I‘I ak Motivation 2/19



Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App3
mutex.lock() mutex.lock() mutex.lock()
// code // code // code
mutex.unlock() mutex.unlock() mutex.unlock()

active ready list
App3 | [App1 App2
CPU-Zeit —>

I‘I ak Motivation 2/19



Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App3
mutex.lock() mutex.lock() mutex.lock() 4
// code // code // code
mutex.unlock() mutex.unlock() mutex.unlock()

active ready list
App3 | [App1 App2
CPU-Zeit —>

I‘I ak Motivation 2/19



Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

mutex.lock() mutex.lock() mutex.lock()
// code // code // code
mutex.unlock() mutex.unlock() mutex.unlock()
active ready list

| [App1 App2 App3

CPU-Zeit —>
-\ _____________________________/ ______________|

I‘I ak Motivation 2/19



Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock() mutex.lock() mutex.lock()
// code // code // code
mutex.unlock() mutex.unlock() mutex.unlock()
active ready list
App1 | [App2 App3
CPU-Zeit —>

I‘I ak Motivation 2/19



Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock() mutex.lock() mutex.lock()
// code // code // code
mutex.unlock() mutex.unlock() mutex.unlock()
active ready list
App1 | [App2 App3
CPU-Zeit —>

I‘I ak Motivation 2/19



Mutex mit aktivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock() mutex.lock() mutex.lock()
// code // code // code
mutex.unlock() mutex.unlock() mutex.unlock()
active ready list
App1 | [App2 App3
CPU-Zeit —>
| | |
—

~"
Verschwendung von CPU-Zeit

I‘I ak Motivation 2/19




Mutex mit harter Synchronisation

= Analog zur Interruptsperre mit cli
m Ziel: Kein (praemptives) Scheduling

II ak Motivation 3/19



Mutex mit harter Synchronisation

= Analog zur Interruptsperre mit cli
m Ziel: Kein (praemptives) Scheduling
= Realisierbar durch
= Multitasking (temporar) deaktivieren

= Erweiterung des Schedulers
= Wechsel auf Epilogebene

II ak Motivation 3/19



Mutex mit harter Synchronisation

Analog zur Interruptsperre mit cli

Ziel: Kein (praemptives) Scheduling
Realisierbar durch
= Multitasking (temporar) deaktivieren
= Erweiterung des Schedulers
= Wechsel auf Epilogebene

Vorteile:

= konsistent
= (relativ) einfach zu implementieren

II ak Motivation 3/19



Mutex mit harter Synchronisation

Analog zur Interruptsperre mit cli

Ziel: Kein (praemptives) Scheduling
Realisierbar durch
= Multitasking (temporar) deaktivieren
= Erweiterung des Schedulers
= Wechsel auf Epilogebene
Vorteile:
= konsistent
= (relativ) einfach zu implementieren
Nachteile:

= Breitbandwirkung
= Prioritatsverletzung
= Prophylaktisch

/ A Motivation 3/19



Idee: Passives Warten

Ansatz: Faden, die den kritischen Abschnitt nicht
betreten konnen, werden blockiert
(d.h. von der CPU-Zuteilung ausgeschlossen)

II ak Motivation 4/19



Idee: Passives Warten

Ansatz: Faden, die den kritischen Abschnitt nicht
betreten konnen, werden blockiert
(d.h. von der CPU-Zuteilung ausgeschlossen)

resume ()

schedule ()

‘th' ak

Motivation 4/19



Idee: Passives Warten

Ansatz: Faden, die den kritischen Abschnitt nicht
betreten konnen, werden blockiert
(d.h. von der CPU-Zuteilung ausgeschlossen)

resume ()

@ ak Motivation 4/19



Idee: Passives Warten

@ ak Motivation 4/19



Idee: Passives Warten

Einfihrung eines waiting rooms
(Liste mit wartenden Threads)

I‘I ak Motivation 4/19



Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

mutex.lock() mutex.lock() mutex.lock()
// code // code // code
mutex.unlock() mutex.unlock() mutex.unlock()
// mehr code // mehr code // mehr code
active ready list waiting room

| [App1 App2 App3 | |

II ak Motivation

5/19



Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App1

mutex.lock() mutex.lock() mutex.lock()
// code // code // code
mutex.unlock() mutex.unlock() mutex.unlock()
// mehr code // mehr code // mehr code
active ready list waiting room
App1 | [App2 App3 | |

II ak Motivation

5/19



Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock() mutex.lock() mutex.lock()
// code // code // code
mutex.unlock() mutex.unlock() mutex.unlock()
// mehr code // mehr code // mehr code
active ready list waiting room
App1 | [App2 App3 | |
CPU-Zeit —>
——
I ak Motivation

5/19



Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App1

mutex.lock() mutex.lock() mutex.lock()
// code // code // code
mutex.unlock() mutex.unlock() mutex.unlock()
// mehr code // mehr code // mehr code
active ready list waiting room
App1 | [App2 App3 | |

CPU-Zeit —>

]

I ak Motivation

5/19



Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App1

mutex.lock() mutex.lock() mutex.lock()
// code // code // code
mate .uulu\,}\/\ é muteX.quOCk() muteX.unlOCk()
// mehr code // mehr code // mehr code
active ready list waiting room
App1 | [App2 App3 | |

CPU-Zeit —>

|

I‘I ak

Motivation 5/19



Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

mutex.lock() mutex.lock() mutex.lock()
// code // code // code
mutex.unlock() mutex.unlock() mutex.unlock()
// mehr code // mehr code // mehr code
active ready list waiting room

| [App2 App3 Appi | |

CPU-Zeit —>
|

II ak Motivation

5/19



Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App2
mutex.lock() mutex.lock() mutex.lock()
// code // code // code
mutex.unlock() mutex.unlock() mutex.unlock()
// mehr code // mehr code // mehr code
active ready list waiting room
App2 | [App3 App1 | |
CPU-Zeit —>
|
‘I ak Motivation 5/19



Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App2
mutex.lock() mutex.lock() mutex.lock()
// code // code // code
mutex.unlock() mutex.unlock() mutex.unlock()
// mehr code // mehr code // mehr code
active ready list waiting room
App2 | [App3 App1 | |
CPU-Zeit —>
I
‘I ak Motivation 5/19



Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

mutex.lock() mutex.lock() mutex.lock()
// code // code // code
mutex.unlock() mutex.unlock() mutex.unlock()
// mehr code // mehr code // mehr code
active ready list waiting room
| [App3 App1 | {App2
CPU-Zeit —>
I
‘I ak Motivation 5/19



Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App3
mutex.lock() mutex.lock() mutex.lock()
// code // code // code
mutex.unlock() mutex.unlock() mutex.unlock()
// mehr code // mehr code // mehr code
active ready list waiting room
App3 | [App1 | {App2
CPU-Zeit —>
I
I‘I ak Motivation 5/19



Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App3
mutex.lock() mutex.lock() mutex.lock()
// code // code // code
mutex.unlock() mutex.unlock() mutex.unlock()
// mehr code // mehr code // mehr code
active ready list waiting room
App3 | [App1 | {App2
CPU-Zeit —>
I I —
I‘I ak Motivation 5/19



Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

mutex.lock() mutex.lock() mutex.lock()

// code // code // code

mutex.unlock() mutex.unlock() mutex.unlock()

// mehr code // mehr code // mehr code

active ready list waiting room
| [App1 | |App2 App3

CPU-Zeit —>

I I —

‘I ak Motivation 5/19



Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App1

mutex.lock() mutex.lock() mutex.lock()
// code // code // code
mutex.unlock() mutex.unlock() mutex.unlock()
// mehr code // mehr code // mehr code
active ready list waiting room
App1 N | |App2 App3

CPU-Zeit —>

I I —

I‘I ak

Motivation 5/19



Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App1

mutex.lock() mutex.lock() mutex.lock()
// code // code // code
mutex.unlock() mutex.unlock() mutex.unlock()
// mehr code // mehr code // mehr code
active ready list waiting room
App1 N | |App2 App3

CPU-Zeit —>

I A N —

I‘I ak

Motivation 5/19



Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App1

mutex.lock() mutex.lock() mutex.lock()
// code // code // code
mutex.unlock() mutex.unlock() mutex.unlock()
// mehr code // mehr code // mehr code
active ready list waiting room
App1 | [App2 | [App3

CPU-Zeit —>

I A N —

I‘I ak

Motivation 5/19



Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App1

mutex.lock() mutex.lock() mutex.lock()
// code // code // code
mutex.unlock() mutex.unlock() mutex.unlock()
// mehr code // mehr code // mehr code
active ready list waiting room
App1 | [App2 | [App3

CPU-Zeit —>

| | | I ——

I‘I ak

Motivation 5/19



Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App1
mutex.lock() mutex.lock() mutex.lock()
// code // code // code
mutex.unlock() mutex.unlock() mutex.unlock()
// mehr code // mehr code // mehr code
E’
active ready list waiting room
App1 | [App2 | [App3
CPU-Zeit —>
| | 1 [ ——

I‘I ak

Motivation 5/19



Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

mutex.lock() mutex.lock() mutex.lock()
// code // code // code
mutex.unlock() mutex.unlock() mutex.unlock()
// mehr code // mehr code // mehr code
active ready list waiting room
| [App2 App1 | |App3
CPU-Zeit —>
| | 1 [ ——
‘I ak Motivation 5/19



Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App2
mutex.lock() mutex.lock() mutex.lock()
// code // code // code
mutex.unlock() mutex.unlock() mutex.unlock()
// mehr code // mehr code // mehr code
active ready list waiting room
App2 | [App1 | [App3
CPU-Zeit —>
| | 1 [ ——
'I ak Motivation 5/19



Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App2
mutex.lock() mutex.lock() mutex.lock()
// code // code // code
mutex.unlock() mutex.unlock() mutex.unlock()
// mehr code // mehr code // mehr code
active ready list waiting room
App2 | [App1 | [App3
CPU-Zeit —>
| | 1 . ——
'I ak Motivation 5/19



Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App2
mutex.lock() mutex.lock() mutex.lock()
// code // code // code
mutex.unlock() mutex.unlock() mutex.unlock()
// mehr code // mehr code // mehr code
active ready list waiting room
App2 | [App1 | [App3

CPU-Zeit —>
e e e Y

I‘I ak

Motivation 5/19



Mutex mit passivem Warten

Beispiel: Drei Threads auf einer CPU

App2
mutex.lock() mutex.lock() mutex.lock()
// code // code // code
mutex.unlock() mutex.unlock() mutex.unlock()
// mehr code // mehr code // mehr code
active ready list waiting room
App2 | [App1 App3 | |

CPU-Zeit —>
e e e Y

I‘I ak

Motivation 5/19



sem-a-phore

1. any apparatus for signaling, as by an arrangement of lights, flags, and
mechanical arms on railroads

2. a system for signaling by the use of two flags, one held in each hand: the
letters of the alphabet are represented by the various positions of the arms

3. any system of signaling by semaphore

nach V. E. Neufeld, Webster's New World Dictionary, Simon & Schuster Inc., third college edition,
1988

II ak Semaphore 6/19



init() Zahler ¢ mit positivem Wert initialisieren
P() von Prolaag (versuchen zu verringern)
bzw. Passeering’ (passieren)
c>0 dekrementieren
c=0 warten
V() von Verhoog (erhdhen) bzw. Vrijgave' (freigeben)

- nachsten wartenden Faden aufwecken oder
- Zahler cerhohen

" nach Edsger W. Dijkstra, Over de sequentialiteit van procesbeschrijvingen, ca. 1962

II ak Semaphore 7119



1 Semaphore mutex(1);

3 void func() {

s mutex.p(); // lock

7 // critical section

9 mutex.v(); // unlock

I‘I ak Semaphore 8/19



1 Semaphore mutex(1); 1 Semaphore empty(size);

2 > Semaphore full(0);
3 void func() { 3
4 4 void producer (){
s mutex.p(); // lock s empty.pQ);
6 s // produce
7 // critical section 7 full.v();
8 s
9 mutex.v(); // unlock 9
10 10 void consumer (){
u } u full.pQ);
12 // consume

13 empty.v();

I‘I ak Semaphore 8/19



Schlafen legen

1 App::action(){

2 foo();

3 sleep (13);
4 bar () ;

s }

= ahnlich der Funktion sleep(3)
= jedoch mit Wartezeit in Millisekunden (statt Sekunden)
= analog zu Wartezimmer den Thread aus Ready-Liste des Schedulers nehmen

I ak Zeitgesteuertes Warten 9/19



Schlafen legen

1 App::action(){

2 foo();

3 sleep (13);
4 bar () ;

s }

= ahnlich der Funktion sleep(3)
= jedoch mit Wartezeit in Millisekunden (statt Sekunden)
= analog zu Wartezimmer den Thread aus Ready-Liste des Schedulers nehmen

waiting room (13ms)

App

I ak Zeitgesteuertes Warten 9/19



Schlafen legen

1 App::action(){

2 foo();

3 sleep (13);
4 bar () ;

s }

= ahnlich der Funktion sleep(3)
= jedoch mit Wartezeit in Millisekunden (statt Sekunden)
= analog zu Wartezimmer den Thread aus Ready-Liste des Schedulers nehmen

\/13ms \ (alternative Darstellung)

I ak Zeitgesteuertes Warten 9/19



Schlafen legen

1 App::action(){

2 foo();

3 sleep (13);
4 bar () ;

s }

ahnlich der Funktion sleep(3)

jedoch mit Wartezeit in Millisekunden (statt Sekunden)

analog zu Wartezimmer den Thread aus Ready-Liste des Schedulers nehmen

(13us [ App] |

mit jedem Tick die Wartezeit dekrementieren

I ak Zeitgesteuertes Warten 9/19



Schlafen legen

1 App::action(){

2 foo();

3 sleep (13);
4 bar () ;

s }

ahnlich der Funktion sleep(3)

jedoch mit Wartezeit in Millisekunden (statt Sekunden)

analog zu Wartezimmer den Thread aus Ready-Liste des Schedulers nehmen

(12 o0

mit jedem Tick die Wartezeit dekrementieren o

I ak Zeitgesteuertes Warten 9/19



Schlafen legen

1 App::action(){

2 foo();

3 sleep (13);
4 bar () ;

s }

ahnlich der Funktion sleep(3)

jedoch mit Wartezeit in Millisekunden (statt Sekunden)

analog zu Wartezimmer den Thread aus Ready-Liste des Schedulers nehmen

(tims o0

mit jedem Tick die Wartezeit dekrementieren ee

I ak Zeitgesteuertes Warten 9/19



Schlafen legen

1 App::action(){

2 foo();

3 sleep (13);
4 bar () ;

s }

ahnlich der Funktion sleep(3)

jedoch mit Wartezeit in Millisekunden (statt Sekunden)

analog zu Wartezimmer den Thread aus Ready-Liste des Schedulers nehmen

(1oms [Aop]

mit jedem Tick die Wartezeit dekrementieren eee

I ak Zeitgesteuertes Warten 9/19



Schlafen legen

1 App::action(){

2 foo();

3 sleep (13);
4 bar () ;

s }

ahnlich der Funktion sleep(3)

jedoch mit Wartezeit in Millisekunden (statt Sekunden)

analog zu Wartezimmer den Thread aus Ready-Liste des Schedulers nehmen

ConeApp]

mit jedem Tick die Wartezeit dekrementieren

I ak Zeitgesteuertes Warten 9/19



Schlafen legen

1 App::action(){

2 foo();

3 sleep (13);
4 bar () ;

s }

ahnlich der Funktion sleep(3)

jedoch mit Wartezeit in Millisekunden (statt Sekunden)

analog zu Wartezimmer den Thread aus Ready-Liste des Schedulers nehmen

ConeApp]

mit jedem Tick die Wartezeit dekrementieren

nach Ablauf der Wartezeit Thread wieder im Scheduler einreihen

I ak Zeitgesteuertes Warten 9/19



Naive Datenstruktur

Beispiel: Drei Anwendungen legen sich nacheinander schlafen

I ak Zeitgesteuertes Warten 10/19



Naive Datenstruktur

Beispiel: Drei Anwendungen legen sich nacheinander schlafen

1. Thread foo fur 666ms

I ak Zeitgesteuertes Warten 10/19



Naive Datenstruktur

Beispiel: Drei Anwendungen legen sich nacheinander schlafen

1. Thread foo fur 666ms

(6e6as [foo] )

I ak Zeitgesteuertes Warten 10/19



Naive Datenstruktur

Beispiel: Drei Anwendungen legen sich nacheinander schlafen

1. Thread foo fur 666ms
2. Thread bar fur 23ms

(6e6as [foo] )

I ak Zeitgesteuertes Warten 10/19



Naive Datenstruktur

Beispiel: Drei Anwendungen legen sich nacheinander schlafen

1. Thread foo fur 666ms
2. Thread bar fur 23ms

(6ebus [foo ) (zamsbar] )

I ak Zeitgesteuertes Warten 10/19



Naive Datenstruktur

Beispiel: Drei Anwendungen legen sich nacheinander schlafen

1. Thread foo fur 666ms
2. Thread bar fur 23ms
3. Thread baz fur 42ms

(6ebus [foo ) (zamsbar] )

I ak Zeitgesteuertes Warten 10/19



Naive Datenstruktur

Beispiel: Drei Anwendungen legen sich nacheinander schlafen

1. Thread foo fur 666ms
2. Thread bar fur 23ms
3. Thread baz fur 42ms

(666ms [foo| ] (28ms|bar| ] (42us|baz| ]

I ak Zeitgesteuertes Warten 10/19



Naive Datenstruktur

Beispiel: Drei Anwendungen legen sich nacheinander schlafen

1. Thread foo fur 666ms
2. Thread bar fur 23ms
3. Thread baz fir 42ms

Verwaltung mittels verketteter Liste

(Gemslfoo] ) (zams[bar] ) (42us[baz] |

I ak Zeitgesteuertes Warten 10/19



Naive Datenstruktur

Beispiel: Drei Anwendungen legen sich nacheinander schlafen

1. Thread foo fur 666ms
2. Thread bar fur 23ms
3. Thread baz fir 42ms

Verwaltung mittels verketteter Liste

o—(e66s [ oo [+3——(23ma  bar | #}——{22us [ baz] )

I ak Zeitgesteuertes Warten 10/19



Naive Datenstruktur

Beispiel: Drei Anwendungen legen sich nacheinander schlafen

1. Thread foo fur 666ms
2. Thread bar fur 23ms
3. Thread baz fir 42ms

Verwaltung mittels verketteter Liste hat den Nachteil, dass bei jedem Tick die
gesamte Liste durchlaufen werden muss

o—(e66s [ oo [+3——(23ma  bar | #}——{22ue [ baz] )

I ak Zeitgesteuertes Warten 10/19



Naive Datenstruktur

Beispiel: Drei Anwendungen legen sich nacheinander schlafen

1. Thread foo fur 666ms
2. Thread bar fur 23ms
3. Thread baz fir 42ms

Verwaltung mittels verketteter Liste hat den Nachteil, dass bei jedem Tick die
gesamte Liste durchlaufen werden muss

o {8658 [ oo #}——(22aa ] bar #}——{1ns  baz] )

I ak Zeitgesteuertes Warten 10/19



Naive Datenstruktur

Beispiel: Drei Anwendungen legen sich nacheinander schlafen

1. Thread foo fur 666ms
2. Thread bar fur 23ms
3. Thread baz fir 42ms

Verwaltung mittels verketteter Liste hat den Nachteil, dass bei jedem Tick die
gesamte Liste durchlaufen werden muss ee

o {864 [ oo #}——(2ina  bar +}——{0ms  baz] )

I ak Zeitgesteuertes Warten 10/19



Naive Datenstruktur

Beispiel: Drei Anwendungen legen sich nacheinander schlafen

1. Thread foo fur 666ms
2. Thread bar fur 23ms
3. Thread baz fir 42ms

Verwaltung mittels verketteter Liste hat den Nachteil, dass bei jedem Tick die
gesamte Liste durchlaufen werden muss eee

o—(e63as [ oo [+3——(20ns  bar | #}——{39us [ baz] )

I ak Zeitgesteuertes Warten 10/19



Naive Datenstruktur

Beispiel: Drei Anwendungen legen sich nacheinander schlafen

1. Thread foo fur 666ms
2. Thread bar fur 23ms
3. Thread baz fir 42ms

Verwaltung mittels verketteter Liste hat den Nachteil, dass bei jedem Tick die
gesamte Liste durchlaufen werden muss
(O(n), und das 1000x pro Sekunde in der Epilogebene)

o—(e63as [ oo [+3——(20ns  bar | #}——{39us [ baz] )

I ak Zeitgesteuertes Warten 10/19



Naive Datenstruktur

Beispiel: Drei Anwendungen legen sich nacheinander schlafen

1. Thread foo fur 666ms
2. Thread bar fur 23ms
3. Thread baz fir 42ms

Verwaltung mittels verketteter Liste hat den Nachteil, dass bei jedem Tick die
gesamte Liste durchlaufen werden muss
(O(n), und das 1000x pro Sekunde in der Epilogebene)

o—(e63as [ oo [+3——(20ns  bar | #}——{39us [ baz] )

Das muss besser gehen!

I ak Zeitgesteuertes Warten 10/19



Alternative Variante

= Einflihrung einer absoluten Zeit

I ak Zeitgesteuertes Warten 11/19



Alternative Variante

= Einflihrung einer absoluten Zeit

Beispiel: absolute Zeit T = 1334ms

I ak Zeitgesteuertes Warten 11/19



Alternative Variante

= Einflihrung einer absoluten Zeit
= wird mit jedem Tick inkrementiert

Beispiel: absolute Zeit T = 1334ms

I ak Zeitgesteuertes Warten 11/19



Alternative Variante

= Einflihrung einer absoluten Zeit
= wird mit jedem Tick inkrementiert

Beispiel: absolute Zeit T = 1335ms

I ak Zeitgesteuertes Warten 11/19



Alternative Variante

= Einflihrung einer absoluten Zeit
= wird mit jedem Tick inkrementiert ee

Beispiel: absolute Zeit T = 1336ms

I ak Zeitgesteuertes Warten 11/19



Alternative Variante

= Einflihrung einer absoluten Zeit
= wird mit jedem Tick inkrementiert eee

Beispiel: absolute Zeit T = 1337ms

I ak Zeitgesteuertes Warten 11/19



Alternative Variante

= Einflihrung einer absoluten Zeit
= wird mit jedem Tick inkrementiert

m Berechnung der Endzeit beim Einfligen neuer Threads

Beispiel: absolute Zeit T = 1337ms

I ak Zeitgesteuertes Warten 11/19



Alternative Variante

= Einflihrung einer absoluten Zeit
= wird mit jedem Tick inkrementiert

m Berechnung der Endzeit beim Einfligen neuer Threads

Beispiel: absolute Zeit T = 1337ms
1. Thread foo: 666ms + 1337ms

I ak Zeitgesteuertes Warten 11/19



Alternative Variante

= Einflihrung einer absoluten Zeit
= wird mit jedem Tick inkrementiert

m Berechnung der Endzeit beim Einfligen neuer Threads

Beispiel: absolute Zeit T = 1337ms
1. Thread foo: 666ms + 1337ms

e—{2003ms )

I ak Zeitgesteuertes Warten 11/19



Alternative Variante

= Einflihrung einer absoluten Zeit
= wird mit jedem Tick inkrementiert

m Berechnung der Endzeit beim Einfligen neuer Threads

Beispiel: absolute Zeit T = 1337ms

1. Thread foo: 666ms + 1337ms
2. Thread bar: 23ms + 1337ms

e—{2003ms )

I ak Zeitgesteuertes Warten 11/19



Alternative Variante

= Einflihrung einer absoluten Zeit
= wird mit jedem Tick inkrementiert

m Berechnung der Endzeit beim Einfligen neuer Threads

Beispiel: absolute Zeit T = 1337ms

1. Thread foo: 666ms + 1337ms
2. Thread bar: 23ms + 1337ms

e—{2003ms ) (1360ms )

I ak Zeitgesteuertes Warten 11/19



Alternative Variante

= Einflihrung einer absoluten Zeit
= wird mit jedem Tick inkrementiert

m Berechnung der Endzeit beim Einfligen neuer Threads

= Einordnen in einer Vorrangwarteschlange (O(n))

Beispiel: absolute Zeit T = 1337ms

1. Thread foo: 666ms + 1337ms
2. Thread bar: 23ms + 1337ms

0—>\:2003ms \/\ ‘:136011‘18 \/\

I ak Zeitgesteuertes Warten 11/19



Alternative Variante

= Einflihrung einer absoluten Zeit
= wird mit jedem Tick inkrementiert

m Berechnung der Endzeit beim Einfligen neuer Threads

= Einordnen in einer Vorrangwarteschlange (O(n))

Beispiel: absolute Zeit T = 1337ms

1. Thread foo: 666ms + 1337ms
2. Thread bar: 23ms + 1337ms

o—{1360ms o——{2003us )

I ak Zeitgesteuertes Warten 11/19



Alternative Variante

= Einflihrung einer absoluten Zeit
= wird mit jedem Tick inkrementiert

m Berechnung der Endzeit beim Einfligen neuer Threads

= Einordnen in einer Vorrangwarteschlange (O(n))

Beispiel: absolute Zeit T = 1337ms

1. Thread foo: 666ms + 1337ms
2. Thread bar: 23ms + 1337ms
3. Thread baz: 42ms + 1337ms

o—{1360ms o——{2003us )

I ak Zeitgesteuertes Warten 11/19



Alternative Variante

= Einflihrung einer absoluten Zeit
= wird mit jedem Tick inkrementiert

m Berechnung der Endzeit beim Einfligen neuer Threads

= Einordnen in einer Vorrangwarteschlange (O(n))

Beispiel: absolute Zeit T = 1337ms

1. Thread foo: 666ms + 1337ms
2. Thread bar: 23ms + 1337ms
3. Thread baz: 42ms + 1337ms

o—{1360ms o——{2003us ) (1379ms [baz| )

I ak Zeitgesteuertes Warten 11/19



Alternative Variante

= Einflihrung einer absoluten Zeit
= wird mit jedem Tick inkrementiert

m Berechnung der Endzeit beim Einfligen neuer Threads

= Einordnen in einer Vorrangwarteschlange (O(n))

Beispiel: absolute Zeit T = 1337ms

1. Thread foo: 666ms + 1337ms
2. Thread bar: 23ms + 1337ms
3. Thread baz: 42ms + 1337ms

o—{1360ms o——{1379ns o——{2003us )

I ak Zeitgesteuertes Warten 11/19



Alternative Variante

= Einflihrung einer absoluten Zeit
= wird mit jedem Tick inkrementiert

m Berechnung der Endzeit beim Einfligen neuer Threads
= Einordnen in einer Vorrangwarteschlange (O(n))

= Wenn die aktuelle Zeit T dem ersten Element entspricht:
Thread wieder dem Scheduler iibergeben (O(1))

Beispiel: absolute Zeit T = 1337ms

1. Thread foo: 666ms + 1337ms
2. Thread bar: 23ms + 1337ms
3. Thread baz: 42ms + 1337ms

o—{1360ms o——{1379ns o——{2003us )

I ak Zeitgesteuertes Warten 11/19



Alternative Variante

= Einflihrung einer absoluten Zeit
= wird mit jedem Tick inkrementiert

m Berechnung der Endzeit beim Einfligen neuer Threads
= Einordnen in einer Vorrangwarteschlange (O(n))

= Wenn die aktuelle Zeit T dem ersten Element entspricht:
Thread wieder dem Scheduler iibergeben (O(1))

Beispiel: absolute Zeit T = 1360ms

1. Thread foo: 666ms + 1337ms
2. Thread bar: 23ms + 1337ms
3. Thread baz: 42ms + 1337ms

o—(i360ms [ bar [+}——{(1575ms  baz | e——(2003ms | foo | )

I ak Zeitgesteuertes Warten 11/19



Alternative Variante

= Einflihrung einer absoluten Zeit
= wird mit jedem Tick inkrementiert

m Berechnung der Endzeit beim Einfligen neuer Threads
= Einordnen in einer Vorrangwarteschlange (O(n))

= Wenn die aktuelle Zeit T dem ersten Element entspricht:
Thread wieder dem Scheduler iibergeben (O(1))

Nachteile
m Absolute Zeit ist ein neuer Zustand
= Bei 32bit Uberlauf méglich (nach 49.7 Tagen)

I ak Zeitgesteuertes Warten 11/19



Alternative Variante

= Einflihrung einer absoluten Zeit
= wird mit jedem Tick inkrementiert

m Berechnung der Endzeit beim Einfligen neuer Threads
= Einordnen in einer Vorrangwarteschlange (O(n))

= Wenn die aktuelle Zeit T dem ersten Element entspricht:
Thread wieder dem Scheduler iibergeben (O(1))

Nachteile
m Absolute Zeit ist ein neuer Zustand
= Bei 32bit Uberlauf méglich (nach 49.7 Tagen)

Geht das nicht effizienter (ohne solche Probleme)?

I ak Zeitgesteuertes Warten 11/19



Effiziente Variante (Optional!)

= Verwendung der relativen Delta-Zeit

I ak Zeitgesteuertes Warten 12/19



Effiziente Variante (Optional!)

= Verwendung der relativen Delta-Zeit

= Es wird nur die Zeitdifferenz zum Vorganger gespeichert
(negative Zeitdifferenzen sind nicht erlaubt!)

I ak Zeitgesteuertes Warten 12/19



Effiziente Variante (Optional!)

= Verwendung der relativen Delta-Zeit
= Es wird nur die Zeitdifferenz zum Vorganger gespeichert

Beispiel:
1. Thread foo: 666ms

I ak Zeitgesteuertes Warten 12/19



Effiziente Variante (Optional!)

= Verwendung der relativen Delta-Zeit
= Es wird nur die Zeitdifferenz zum Vorganger gespeichert

Beispiel:
1. Thread foo: 666ms

(e66es oo | )

I ak Zeitgesteuertes Warten 12/19



Effiziente Variante (Optional!)

= Verwendung der relativen Delta-Zeit

= Es wird nur die Zeitdifferenz zum Vorganger gespeichert
= Vorganger des ersten Elements hat Zeit t = Oms

Beispiel:
1. Thread foo: 666ms

(e66es oo | )

I ak Zeitgesteuertes Warten 12/19



Effiziente Variante (Optional!)

= Verwendung der relativen Delta-Zeit

= Es wird nur die Zeitdifferenz zum Vorganger gespeichert
= Vorganger des ersten Elements hat Zeit t = Oms

Beispiel:
1. Thread foo: 666ms — t; = 666ms

(e66ea oo | |

I ak Zeitgesteuertes Warten 12/19



Effiziente Variante (Optional!)

= Verwendung der relativen Delta-Zeit

= Es wird nur die Zeitdifferenz zum Vorganger gespeichert
= Vorganger des ersten Elements hat Zeit t = Oms

Beispiel:
1. Thread foo: 666ms

o—»\ 666ms - \\

I ak Zeitgesteuertes Warten 12/19



Effiziente Variante (Optional!)

= Verwendung der relativen Delta-Zeit

= Es wird nur die Zeitdifferenz zum Vorganger gespeichert
= Vorganger des ersten Elements hat Zeit t = Oms

Beispiel:
1. Thread foo: 666ms
2. Thread bar: 23ms

o—»\ 666ms - \\

I ak Zeitgesteuertes Warten 12/19



Effiziente Variante (Optional!)

= Verwendung der relativen Delta-Zeit

= Es wird nur die Zeitdifferenz zum Vorganger gespeichert
= Vorganger des ersten Elements hat Zeit tg = Oms

Beispiel:
1. Thread foo: 666ms
2. Thread bar: 23ms

o—(ooems [foo] ) (2ams bar] )

I ak Zeitgesteuertes Warten 12/19



Effiziente Variante (Optional!)

= Verwendung der relativen Delta-Zeit

= Es wird nur die Zeitdifferenz zum Vorganger gespeichert
= Vorganger des ersten Elements hat Zeit tg = Oms

= Neue Threads nach Schlafdauer einordnen (O(n))

Beispiel:
1. Thread foo: 666ms
2. Thread bar: 23ms

o—(ooems [foo] ) (2ams bar] )

I ak Zeitgesteuertes Warten 12/19



Effiziente Variante (Optional!)

= Verwendung der relativen Delta-Zeit

= Es wird nur die Zeitdifferenz zum Vorganger gespeichert
= Vorganger des ersten Elements hat Zeit tg = Oms

= Neue Threads nach Schlafdauer einordnen (O(n))

Beispiel:
1. Thread foo: 666ms
2. Thread bar: 23ms — ty = 23ms

o—(ooems [foo] ) (2ams bar] )

I ak Zeitgesteuertes Warten 12/19



Effiziente Variante (Optional!)

= Verwendung der relativen Delta-Zeit

= Es wird nur die Zeitdifferenz zum Vorganger gespeichert
= Vorganger des ersten Elements hat Zeit tg = Oms

= Neue Threads nach Schlafdauer einordnen (O(n))

Beispiel:
1. Thread foo: 666ms
2. Thread bar: 23ms

o—(zms[bar] ) (6ems]foo] )

I ak Zeitgesteuertes Warten 12/19



Effiziente Variante (Optional!)

= Verwendung der relativen Delta-Zeit

= Es wird nur die Zeitdifferenz zum Vorganger gespeichert
= Vorganger des ersten Elements hat Zeit tg = Oms

= Neue Threads nach Schlafdauer einordnen (O(n))
= Nachfolgendes Element muss angepasst werden (O(1))

Beispiel:
1. Thread foo: 666ms
2. Thread bar: 23ms

o—(zms[bar] ) (6ems]foo] )

I ak Zeitgesteuertes Warten 12/19



Effiziente Variante (Optional!)

= Verwendung der relativen Delta-Zeit

= Es wird nur die Zeitdifferenz zum Vorganger gespeichert
= Vorganger des ersten Elements hat Zeit tg = Oms

= Neue Threads nach Schlafdauer einordnen (O(n))
= Nachfolgendes Element muss angepasst werden (O(1))

Beispiel:
1. Thread foo: 666ms — ty.y = 643ms
2. Thread bar: 23ms

o—(zms[bar] ) (643ms]foo] )

I ak Zeitgesteuertes Warten 12/19



Effiziente Variante (Optional!)

= Verwendung der relativen Delta-Zeit

= Es wird nur die Zeitdifferenz zum Vorganger gespeichert
= Vorganger des ersten Elements hat Zeit tg = Oms

= Neue Threads nach Schlafdauer einordnen (O(n))
= Nachfolgendes Element muss angepasst werden (O(1))

Beispiel:
1. Thread foo: 643ms
2. Thread bar: 23ms

oz [ bar | #}——{ 43mz]foo | )

I ak Zeitgesteuertes Warten 12/19



Effiziente Variante (Optional!)

= Verwendung der relativen Delta-Zeit
= Es wird nur die Zeitdifferenz zum Vorganger gespeichert
= Vorganger des ersten Elements hat Zeit t; = Oms

= Neue Threads nach Schlafdauer einordnen (O(n))
= Nachfolgendes Element muss angepasst werden (O(1))

Beispiel:
1. Thread foo: 643ms
2. Thread bar: 23ms
3. Thread baz: 42ms

o—{zams | bar | #}—— 43mz]foo | )

I ak Zeitgesteuertes Warten 12/19



Effiziente Variante (Optional!)

= Verwendung der relativen Delta-Zeit
= Es wird nur die Zeitdifferenz zum Vorganger gespeichert
= Vorganger des ersten Elements hat Zeit t; = Oms

= Neue Threads nach Schlafdauer einordnen (O(n))
= Nachfolgendes Element muss angepasst werden (O(1))

Beispiel:
1. Thread foo: 643ms
2. Thread bar: 23ms
3. Thread baz: 42ms

(2 bar | o—{ 64 [foo | ) (4zms]baz] )

I ak Zeitgesteuertes Warten 12/19



Effiziente Variante (Optional!)

= Verwendung der relativen Delta-Zeit
= Es wird nur die Zeitdifferenz zum Vorganger gespeichert
= Vorganger des ersten Elements hat Zeit t; = Oms

= Neue Threads nach Schlafdauer einordnen (O(n))
= Nachfolgendes Element muss angepasst werden (O(1))

Beispiel:
1. Thread foo: 643ms
2. Thread bar: 23ms
3. Thread baz: 42ms - tq = 42ms

(2 bar | o—{ 64 [foo | ) (4zms]baz] )

I ak Zeitgesteuertes Warten 12/19



Effiziente Variante (Optional!)

= Verwendung der relativen Delta-Zeit
= Es wird nur die Zeitdifferenz zum Vorganger gespeichert
= Vorganger des ersten Elements hat Zeit t; = Oms

= Neue Threads nach Schlafdauer einordnen (O(n))
= Nachfolgendes Element muss angepasst werden (O(1))

Beispiel:
1. Thread foo: 643ms
2. Thread bar: 23ms
3. Thread baz: 42ms — ty = 42ms > tpar

(2 bar | o—{ 6aams[foo| ) (4zms]baz] )

I ak Zeitgesteuertes Warten 12/19



Effiziente Variante (Optional!)

= Verwendung der relativen Delta-Zeit
= Es wird nur die Zeitdifferenz zum Vorganger gespeichert
= Vorganger des ersten Elements hat Zeit t; = Oms

= Neue Threads nach Schlafdauer einordnen (O(n))
= Nachfolgendes Element muss angepasst werden (O(1))

Beispiel:
1. Thread foo: 643ms
2. Thread bar: 23ms
3. Thread baz: 42ms — tg — tpar = 19ms

+—(zims | bar | o—{ 643 [ foo | ) [ 1sms]baz] )

I ak Zeitgesteuertes Warten 12/19



Effiziente Variante (Optional!)

= Verwendung der relativen Delta-Zeit
= Es wird nur die Zeitdifferenz zum Vorganger gespeichert
= Vorganger des ersten Elements hat Zeit t; = Oms

= Neue Threads nach Schlafdauer einordnen (O(n))
= Nachfolgendes Element muss angepasst werden (O(1))

Beispiel:
1. Thread foo: 643ms
2. Thread bar: 23ms
3. Thread baz: 19ms

—{zams | bar [ #}——{(1oma [baz] ] (64am [foo] )

I ak Zeitgesteuertes Warten 12/19



Effiziente Variante (Optional!)

= Verwendung der relativen Delta-Zeit
= Es wird nur die Zeitdifferenz zum Vorganger gespeichert
= Vorganger des ersten Elements hat Zeit tg = Oms

= Neue Threads nach Schlafdauer einordnen (O(n))

= Nachfolgendes Element muss angepasst werden (O(1))
= keine Vorrangwarteschlange!

Beispiel:
1. Thread foo: 643ms
2. Thread bar: 23ms
3. Thread baz: 19ms

—{zams | bar [ #}——{(1oma [baz] ] (64am [foo] )

I ak Zeitgesteuertes Warten 12/19



Effiziente Variante (Optional!)

= Verwendung der relativen Delta-Zeit
= Es wird nur die Zeitdifferenz zum Vorganger gespeichert
= Vorganger des ersten Elements hat Zeit tg = Oms

= Neue Threads nach Schlafdauer einordnen (O(n))

= Nachfolgendes Element muss angepasst werden (O(1))
= keine Vorrangwarteschlange!

Beispiel:
1. Thread foo: 643ms — t,,, = 624ms
2. Thread bar: 23ms
3. Thread baz: 19ms

—{zams | bar [ #}——{1oma [baz] ] (62ama [foo] )

I ak Zeitgesteuertes Warten 12/19



Effiziente Variante (Optional!)

= Verwendung der relativen Delta-Zeit
= Es wird nur die Zeitdifferenz zum Vorganger gespeichert
= Vorganger des ersten Elements hat Zeit tg = Oms

= Neue Threads nach Schlafdauer einordnen (O(n))

= Nachfolgendes Element muss angepasst werden (O(1))
= keine Vorrangwarteschlange!

Beispiel:
1. Thread foo: 624ms
2. Thread bar: 23ms
3. Thread baz: 19ms

(2 bar | o3——{ 190z [ baz | #}——{ 62ams [ foo )

I ak Zeitgesteuertes Warten 12/19



Effiziente Variante (Optional!)

= Verwendung der relativen Delta-Zeit
= Es wird nur die Zeitdifferenz zum Vorganger gespeichert
= Vorganger des ersten Elements hat Zeit tg = Oms
= Neue Threads nach Schlafdauer einordnen (O(n))
= Nachfolgendes Element muss angepasst werden (O(1))
= keine Vorrangwarteschlange!

= Erstes Element wird mit jedem Tick dekrementiert

Beispiel:
1. Thread foo: 624ms
2. Thread bar: 23ms
3. Thread baz: 19ms

(2 bar  o3——{ 190z  baz [ #}——{ 62ams [ foo )

I ak Zeitgesteuertes Warten 12/19



Effiziente Variante (Optional!)

= Verwendung der relativen Delta-Zeit
= Es wird nur die Zeitdifferenz zum Vorganger gespeichert
= Vorganger des ersten Elements hat Zeit tg = Oms
= Neue Threads nach Schlafdauer einordnen (O(n))
= Nachfolgendes Element muss angepasst werden (O(1))
= keine Vorrangwarteschlange!

= Erstes Element wird mit jedem Tick dekrementiert o

Beispiel:
1. Thread foo: 624ms
2. Thread bar: 23ms
3. Thread baz: 19ms

(2223 bar  o3——{ 190z bz [ #}——{ 62ams [ foo )

I ak Zeitgesteuertes Warten 12/19



Effiziente Variante (Optional!)

= Verwendung der relativen Delta-Zeit
= Es wird nur die Zeitdifferenz zum Vorganger gespeichert
= Vorganger des ersten Elements hat Zeit tg = Oms
= Neue Threads nach Schlafdauer einordnen (O(n))
= Nachfolgendes Element muss angepasst werden (O(1))
= keine Vorrangwarteschlange!

= Erstes Element wird mit jedem Tick dekrementiert ee

Beispiel:
1. Thread foo: 624ms
2. Thread bar: 23ms
3. Thread baz: 19ms

(2123 bar  o3——{10ms  baz [ #}——{ 62ams [ foo )

I ak Zeitgesteuertes Warten 12/19



Effiziente Variante (Optional!)

= Verwendung der relativen Delta-Zeit
= Es wird nur die Zeitdifferenz zum Vorganger gespeichert
= Vorganger des ersten Elements hat Zeit tg = Oms
= Neue Threads nach Schlafdauer einordnen (O(n))
= Nachfolgendes Element muss angepasst werden (O(1))
= keine Vorrangwarteschlange!

= Erstes Element wird mit jedem Tick dekrementiert eee

Beispiel:
1. Thread foo: 624ms
2. Thread bar: 23ms
3. Thread baz: 19ms

(203 bar | o3——{ 190z  az [ #}——{ 62ams [ foo )

I ak Zeitgesteuertes Warten 12/19



Effiziente Variante (Optional!)

= Verwendung der relativen Delta-Zeit
= Es wird nur die Zeitdifferenz zum Vorganger gespeichert
= Vorganger des ersten Elements hat Zeit tg = Oms
= Neue Threads nach Schlafdauer einordnen (O(n))
= Nachfolgendes Element muss angepasst werden (O(1))
= keine Vorrangwarteschlange!
= Erstes Element wird mit jedem Tick dekrementiert
und bei 0 dem Scheduler tibergeben
Beispiel:
1. Thread foo: 624ms

2. Thread bar: 23ms
3. Thread baz: 19ms

o—oms [ bar| #}—{15ms [ baz | +——{ 624ms | foo |

I ak Zeitgesteuertes Warten 12/19



Effiziente Variante (Optional!)

= Verwendung der relativen Delta-Zeit
= Es wird nur die Zeitdifferenz zum Vorganger gespeichert
= Vorganger des ersten Elements hat Zeit tg = Oms
= Neue Threads nach Schlafdauer einordnen (O(n))
= Nachfolgendes Element muss angepasst werden (O(1))
= keine Vorrangwarteschlange!
= Erstes Element wird mit jedem Tick dekrementiert
und bei 0 dem Scheduler iibergeben (O(1))
Beispiel:
1. Thread foo: 624ms

2. Thread bar: 23ms
3. Thread baz: 19ms

o—oms [ bar| #}—{15ms [ baz | +——{ 624ms | foo |

I ak Zeitgesteuertes Warten 12/19



Implementierung von Semaphoren mit passivem Warten
= Verwendung in der neuen getKey () Funktion

Zeitgesteuertes Schlafen der Threads

Leerlauf des Prozessor (falls keine Threads vorhanden)

Kapselung in Systemaufrufschnittstellen (syscall)
welche sich um den Wechsel in die Epilogebene kiimmern

/ A Umsetzung 13/19



(viel zu) viele Wartezimmer

= jede Semaphore ist gleichzeitig ein Wartezimmer

II ak Umsetzung 14/19



(viel zu) viele Wartezimmer

= jede Semaphore ist gleichzeitig ein Wartezimmer

= und jeder Wecker (bel1) ebenfalls
= auch wenn bei unseren Weckern nur je ein Faden darin weilt
- einfache Implementierung, da wir beim Wecker die neuen

Ablaufplanmethoden fiir die Semaphoren verwenden konnen.
Wirkt aber auf den ersten Blick halt komisch.

II ak Umsetzung 14/19



(viel zu) viele Wartezimmer

= jede Semaphore ist gleichzeitig ein Wartezimmer
» und jeder Wecker (bell) ebenfalls

= auch wenn bei unseren Weckern nur je ein Faden darin weilt

- einfache Implementierung, da wir beim Wecker die neuen
Ablaufplanmethoden fiir die Semaphoren verwenden konnen.
Wirkt aber auf den ersten Blick halt komisch.

= Umsetzung durch Ableitung von waitingroom

II ak Umsetzung 14/19



(viel zu) viele Wartezimmer

jede Semaphore ist gleichzeitig ein Wartezimmer

und jeder Wecker (bell) ebenfalls
= auch wenn bei unseren Weckern nur je ein Faden darin weilt
- einfache Implementierung, da wir beim Wecker die neuen

Ablaufplanmethoden fiir die Semaphoren verwenden konnen.
Wirkt aber auf den ersten Blick halt komisch.

= Umsetzung durch Ableitung von waitingroom

Alle aktiven Wecker werden selbst wieder in einer verketteten Liste (vom
bellringer) verwaltet

/ A Umsetzung 14/19



Der bellringer prift regelmaRig die Wecker

= unter Verwendung des LAPIC Timers
= welcher mit windup(1000) auf Millisekundentakt gestellt wird

= es reicht, wenn eine CPU das ubernimmt

II ak Umsetzung 15/19



Problem: zu wenig Threads bereit

II ak Umsetzung 16/19



Problem: zu wenig Threads bereit
Losung: je ein IdleThread pro CPU

1 void IdleThread::action() {

2 while (true) {

3 if (!Scheduler::isEmpty ())

4 GuardedScheduler: :resume () ;
5 }

6 }

II ak Umsetzung 16/19



Problem: zu wenig Threads bereit
Losung: je ein IdleThread pro CPU

1 void IdleThread::action() {

2 while (true) {

3 if (!Scheduler::isEmpty ())

4 GuardedScheduler: :resume () ;
5 }

6 }

CPU fungiert effektiv als Heizkorper

II ak Umsetzung 16/19



Problem: zu wenig Threads bereit
Losung: je ein IdleThread pro CPU

1 void IdleThread::action() {

2 while (true) {

3 if (!Scheduler::isEmpty ())

4 GuardedScheduler: :resume () ;
5 }

6 }

CPU fungiert effektiv als Heizkorper, besser ware jedoch ein Schlafzustand
Core::idle() halt CPU bis zum nachsten Interrupt an

II ak Umsetzung 16/19



Core::idle () halt CPU bis zum nachsten Interrupt an

II ak Umsetzung 16/19



Core::idle () halt CPU bis zum nachsten Interrupt an

., void IdleThread::action() {

2 while (true) {

3 if (Scheduler::isEmpty ())

4 Core::idle();

5 else

6 GuardedScheduler::resume () ;
7 }

s }

II ak Umsetzung 16/19



Core::idle () halt CPU bis zum nachsten Interrupt an

., void IdleThread::action() {

2 while (true) {

3 if—(SchedulterisEmpty > Thread ready
4 Core::idle();

5 else

6 GuardedScheduler::resume () ;

7 }

s F

II ak Umsetzung 16/19



Core::idle () halt CPU bis zum nachsten Interrupt an

., void IdleThread::action() {

2 while (true) {

3 if—(SchedulterisEmpty > Thread ready
4 Core::idle () ;

5 else

6 GuardedScheduler::resume () ;

7 }

s F

Durch Aufwachen eines wartenden Threads (oder Neueinplanung bei MPSTUBS)
kann ein Lost-Wakeup passieren!

II ak Umsetzung 16/19



Core::idle () halt CPU bis zum nachsten Interrupt an
(mittels atomaren sti und hlt)

., void IdleThread::action() {

2 while (true) {

3 if—(SchedulterisEmpty > Thread ready
4 Core::idle () ;

5 else

6 GuardedScheduler::resume () ;

7 }

s F

Durch Aufwachen eines wartenden Threads (oder Neueinplanung bei MPSTUBS)
kann ein Lost-Wakeup passieren!

II ak Umsetzung 16/19



Core::idle () halt CPU bis zum nachsten Interrupt an
(mittels atomaren sti und hlt)

., void IdleThread::action() {

2 while (true) {

3 Core::Interrupt::disable();

4 if (Scheduler::isEmpty ())

5 Core::idle();

6 else {

7 Core::Interrupt::enable();
8 GuardedScheduler::resume () ;
9 }

10 }

11 }

II ak Umsetzung 16/19



Leerlauf mittels Core: :idle()

1 namespace Core {

2 inline void idle () {

3 asm volatile("sti\n\t"

4 "hlt\n\t"

5 ::: "memory");
6 }

7}

II ak Umsetzung 17/19



Leerlauf in MPStuBS

Problem: Sobald ein Thread bereit ist, soll eine CPU im Leerlauf sofort mit der
Abarbeitung beginnen

II ak Umsetzung 18/19



Leerlauf in MPStuBS

Problem: Sobald ein Thread bereit ist, soll eine CPU im Leerlauf sofort mit der
Abarbeitung beginnen

Losung: Aufwecken der CPU mittels IPI

II ak Umsetzung 18/19



Weitere Fragen?

Fast geschafft - dies ist die letzte Pflichtaufgabe!



	Motivation
	Semaphore
	Zeitgesteuertes Warten
	Umsetzung

