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Kooperative Ablaufplanung

1 int i = 0;
2 while (true){
3 {
4 Guarded _;
5 kout << i++ << endl;
6 }
7 scheduler.resume();
8 }
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Unterbrechende Ablaufplanung
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8 }

Aufgabe: Präemptives Scheduling mittels Timer.
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Programmable Interval Timer (PIT)

Standardtimer seit 1981 (IBM-PC, Intel 8253/8254)
ca. 1 193 182 Hz (= 1

3 NTSC-Freq.)
: Genauigkeit: 838 ns

drei Kanäle mit je einen 16 bit Zähler
Kanal 0 löst standardmäßig alle 54, 9254ms IRQ 0 aus
Kanal 1 früher für Arbeitsspeicher
Kanal 2 für PC Speaker (Tonfrequenz)

via PIC bzw. I/O APIC (relativ) langsam
ausreichend für frühere BSB-Varianten, geht aber besser.
machine/pit.h

Interruptleitung CPUPIC 8259A APIC-Bus
CPU 1

local
APIC

… CPU N

local
APIC

I/O-APIC

PIT
Timer 1
Timer 2
Timer 3

Arbeitsspeicher

Systemlautsprecher
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Real Time Clock (RTC)

seit 1984 (IBM-PC/AT)
32 768 Hz (= 215 Hz, Verwendung in Uhren)
- Standardmäßig Interrupts bei 1 024 Hz (fast 1 ms)
- 12 weitere Möglichkeiten von 2 bis 8 192 Hz durch Vorteiler
- IRQ 8

für Zeit & Datum
Betrieb im ausgeschalteten Zustand mittels Batterie
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Time Stamp Counter (TSC)

seit 1993 (Pentium)
64 bit, auslesbar über Assemblerinstruktion rdtsc
Taktfrequenz wie CPU
- ursprünglich Erhöhung mit jedem Clock-Signal
- unterschiedliche Takte abhängig vom Stromsparmodus
- bei neueren Versionen: konstante Rate entsprechend nominaler
Geschwindigkeit

kann keinen Interrupt auslösen
: machine/tsc.h
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ACPI Power Management Timer

seit es ACPI-Mainboards gibt (1996)
3 579 545 Hz (= NTSC-Freq.)
ein 24 oder 32 bit Zähler
- besser als alte (nicht konstante) TSC
- Zugri˽ über I/O Port

kann auch keinen Interrupt auslösen
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High Precision Event Timer (HPET)

von Intel und Microsoft 2005 als PIT- & RTC-Ersatz verö˽entlicht
≥ 10 MHz
: Genauigkeit: 100 ns oder besser

ein 64 bit Zähler
- min. drei 32 oder 64 bit breite Vergleichseinrichtungen
- koṅgurierbarer Interrupt bei Gleichheit
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LAPIC Timer

≥ 100 MHz
: Genauigkeit: 10 ns oder besser

32 bit Zähler
verwendet Busfrequenz
- abhängig vom System
- aber unabhängig von Stromsparmodus
- Interrupt geht nur an den entsprechenden Kern
- 8 Möglichkeiten (bis 1

128 Busfrequenz) durch Vorteiler

Perfekt für unsere Bedürfnisse
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Funktionsweise des LAPIC Timers
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Divide Coṅguration Register
0xfee0 03e0

Divide Coṅguration Register
0xfee0 03e0

0xfee0 0320

Timer Control Register
0xfee0 0320

Timer Control Register

0xfee0 0380

Initial
0xfee0 0390

Current
Count Register

0xfee0 0380

Initial
0xfee0 0390

Current
Count Register

ak Zeitgeber 10/22



Funktionsweise des LAPIC Timers

CPU 1

local APIC

… CPU N

local APIC

I/O-APIC

externe Geräte

Timer

Count Register

Timer

Count Register

Vorteiler Vorteiler

In
te
rr
up
tb
ei
0

In
te
rr
up
tb
ei
0
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Divide Coṅguration Register
0xfee0 03e0

0xfee0 0320

Timer Control Register
0xfee0 0320

Timer Control Register

0xfee0 0380

Initial
0xfee0 0390

Current
Count Register

0xfee0 0380

Initial
0xfee0 0390

Current
Count Register

ak Zeitgeber 10/22



Funktionsweise des LAPIC Timers

CPU 1

local APIC

… CPU N

local APIC

I/O-APIC

externe Geräte

Timer
Count Register

Timer
Count Register

Vorteiler Vorteiler

In
te
rr
up
tb
ei
0

In
te
rr
up
tb
ei
0
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Divide Coṅguration Register
0xfee0 03e0

0xfee0 0320

Timer Control Register
0xfee0 0320

Timer Control Register

0xfee0 0380

Initial
0xfee0 0390

Current
Count Register

0xfee0 0380

Initial
0xfee0 0390

Current
Count Register

ak Zeitgeber 10/22



Funktionsweise des LAPIC Timers

CPU 1

local APIC

… CPU N

local APIC

I/O-APIC

externe Geräte

Timer
Count Register

Timer
Count Register

Vorteiler Vorteiler

In
te
rr
up
tb
ei
0

In
te
rr
up
tb
ei
0
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Aufbau des Timer Control Register Eintrags
31

19
18
17
16
15

13
12
11

8
7

0

Betriebsmodus: einmalig (0) oder periodisch (1)
Interrupt-Mask: Interrupt aktiv (0) oder inaktiv (1)

Zustellstatus Interrupt Nachricht noch unterwegs? (RO)

Interrupt Vektor: Nummer in der Vektortabelle (32-255)
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Zusammenfassung LAPIC Timer

jede CPU hat einen eigenen 32bit Timer
Änderung am INITIAL COUNT REGISTER startet den Timer
zu Beginn wird der initiale Startzählwert aus dem INITIAL COUNT REGISTER in
das CURRENT COUNT REGISTER kopiert
welches im Bustakt

Vorteiler dekrementiert wird
bei 0 wird – sofern aktiviert – ein Interrupt ausgelöst
je nach Betriebsmodus wird gestoppt oder wieder neu begonnen
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Watch

windup stellt das Unterbrechungsintervall ein
(z.B. alle 1000 Mikrosekunden)

activate setzt den Timer und aktiviert Interrupts
prologue fordert Epilog an

(und kann zu Testzwecken eine Ausgabe tätigen)

epilogue wechselt die Anwendung mittels scheduler.resume()

ak Umsetzung 13/22



LAPIC-Timer einstellen

1. LAPIC-Timer kalibrieren

in der Funktion LAPIC::Timer::ticks
(Funktion gibt die Anzahl der Ticks in einer Millisekunde zurück)
benötigt zur Koṅguration die Funktion LAPIC::Timer::set, Aufruf mit

maximalem Wert für den LAPIC-Zähler,
als ONE_SHOT und
ohne Unterbrechungen

unter Verwendung des PIT
Wartezeit von mehreren MS einstellen: PIT::set
mittels PIT::waitForTimeout warten
Start- und Endwert des LAPIC-Zählerregisters merken

Hilfsstrukturen in lapic_timer.cc & lapic_registers.h
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LAPIC-Timer einstellen

2. Initialen Wert und Vorteiler korrekt setzen

Interrupt soll alle n Mikrosekunden ausgelöst werden
Startwertzähler initial n LAPIC::Timer::ticks()

Vorteiler 1000 berechnen,
dabei gilt Vorteiler 2x mit x 0 7
Möglichst kleiner Vorteiler, aber kein Überlauf (32 bit!)
Beispiel: watch.windup(5000000);

n 5000000 µs = 5 s
LAPIC::Timer::ticks 1000000 ms 1

Vorteiler
initial
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LAPIC-Timer einstellen

2. Initialen Wert und Vorteiler korrekt setzen

Interrupt soll alle n Mikrosekunden ausgelöst werden
Startwertzähler initial = n ⋅ LAPIC::Timer::ticks()

Vorteiler ⋅ 1000 berechnen,
dabei gilt Vorteiler = 2x mit x ∈ {0, . . . , 7}
Möglichst kleiner Vorteiler, aber kein Überlauf (32 bit!)
Beispiel: watch.windup(5000000);
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Ablaufbeispiel mit neuem Thread
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Anwendungsfaden beenden

Präemptives Beenden mittels Scheduler::kill(Thread&)

OOStuBS keine Änderung

: aus der Ready-Liste entfernen
bzw. Kill-Flag setzen und bei resume prüfen

MPStuBS der Anwendungsfaden kann gerade auf einer anderen CPU laufen

Kill-Flag setzen (wie gehabt)
falls er nicht in der Ready-Liste ist, läuft er wohl gerade auf
einer anderen CPU
diese andere CPU muss benachrichtigt werden

INTER PROCESSOR INTERRUPT (IPI)

die angesprochene CPU muss dann das Kill-Flag des aktuellen
Prozesses prüfen
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Inter Processor Interrupt

APIC-Bus
CPU 1

local
APIC #1

… CPU 2

local
APIC #2

I/O-APIC

destination = APIC::getLAPICID(cpu);

LAPIC::IPI::send(destination, vector);
Empfänger Interrupt
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Der Teufel steckt im Detail

Was kann hier schon schief gehen?

1 lock[Core::getID()] = true;

Viel - diese Zeile wird nicht atomar ausgeführt:

1 ; Array lock an Adresse 0x2000
2 call <Core::getID()>
3 mov [rax+0x2000], 0x1

Was passiert nun, wenn der Anwendungsfaden anschließend auf einer anderen
CPU eingeplant wird?
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Fragen über Fragen

Kann nun eine fehlerhafte Anwendung unser Betriebssystem blockieren?

Unter welchen Umständen wäre es e˾zienter, den Timer abzuschalten
(Stichwort tickless)?
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Gibt es noch Fragen?

Abgabe der Aufgabe
bis Mittwoch, den 21. Januar
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