
Übung zu Betriebssystembau
Zeitscheibenscheduling
06. Januar 2025

Alexander Krause

Arbeitsgruppe Systemsoftware
Technische Universität Dortmund
(Mit Material vom Lehrstuhl 4 der FAU)

Arbeitsgruppe
Systemsoftware



Evaluation

Lehre-Evaluation Wintersemester 25/26

Bitte nehmt teil und füllt die Umfrage aus!

ak Übung zu Betriebssystembau – Zeitscheibenscheduling 1/22



Kooperative Ablaufplanung

1 int i = 0;
2 while (true){
3 {
4 Guarded _;
5 kout << i++ << endl;
6 }
7 scheduler.resume();
8 }

ak Motivation 2/22



Unterbrechende Ablaufplanung

1 int i = 0;
2 while (true){
3 {
4 Guarded _;
5 kout << i++ << endl;
6 }
7

8 }

Aufgabe: Präemptives Scheduling mittels Timer.

ak Motivation 3/22



Unterbrechende Ablaufplanung

1 int i = 0;
2 while (true){
3 {
4 Guarded _;
5 kout << i++ << endl;
6 }
7

8 }

� Scheduler Interrupt

Aufgabe: Präemptives Scheduling mittels Timer.

ak Motivation 3/22



Unterbrechende Ablaufplanung

1 int i = 0;
2 while (true){
3 {
4 Guarded _;
5 kout << i++ << endl;
6 }
7

8 }

� Scheduler Interrupt

Aufgabe: Präemptives Scheduling mittels Timer.

ak Motivation 3/22



Programmable Interval Timer (PIT)

Standardtimer seit 1981 (IBM-PC, Intel 8253/8254)
ca. 1 193 182 Hz (= 1

3 NTSC-Freq.)
: Genauigkeit: 838 ns

drei Kanäle mit je einen 16 bit Zähler
Kanal 0 löst standardmäßig alle 54, 9254ms IRQ 0 aus
Kanal 1 früher für Arbeitsspeicher
Kanal 2 für PC Speaker (Tonfrequenz)

via PIC bzw. I/O APIC (relativ) langsam
ausreichend für frühere BSB-Varianten, geht aber besser.
machine/pit.h

Interruptleitung CPUPIC 8259A APIC-Bus
CPU 1

local
APIC

… CPU N

local
APIC

I/O-APIC

PIT
Timer 1
Timer 2
Timer 3

Arbeitsspeicher

Systemlautsprecher

ak Zeitgeber 4/22



Programmable Interval Timer (PIT)

Standardtimer seit 1981 (IBM-PC, Intel 8253/8254)
ca. 1 193 182 Hz (= 1

3 NTSC-Freq.)
: Genauigkeit: 838 ns

drei Kanäle mit je einen 16 bit Zähler
Kanal 0 löst standardmäßig alle 54, 9254ms IRQ 0 aus
Kanal 1 früher für Arbeitsspeicher
Kanal 2 für PC Speaker (Tonfrequenz)

via PIC bzw. I/O APIC (relativ) langsam
ausreichend für frühere BSB-Varianten, geht aber besser.
machine/pit.h

Interruptleitung CPUPIC 8259A

APIC-Bus
CPU 1

local
APIC

… CPU N

local
APIC

I/O-APIC

PIT
Timer 1
Timer 2
Timer 3

Arbeitsspeicher

Systemlautsprecher

ak Zeitgeber 4/22



Programmable Interval Timer (PIT)

Standardtimer seit 1981 (IBM-PC, Intel 8253/8254)
ca. 1 193 182 Hz (= 1

3 NTSC-Freq.)
: Genauigkeit: 838 ns

drei Kanäle mit je einen 16 bit Zähler
Kanal 0 löst standardmäßig alle 54, 9254ms IRQ 0 aus
Kanal 1 früher für Arbeitsspeicher
Kanal 2 für PC Speaker (Tonfrequenz)

via PIC bzw. I/O APIC (relativ) langsam
ausreichend für frühere BSB-Varianten, geht aber besser.
machine/pit.h

Interruptleitung CPUPIC 8259A

APIC-Bus
CPU 1

local
APIC

… CPU N

local
APIC

I/O-APIC

PIT
Timer 1
Timer 2
Timer 3

Arbeitsspeicher

Systemlautsprecher

ak Zeitgeber 4/22



Programmable Interval Timer (PIT)

Standardtimer seit 1981 (IBM-PC, Intel 8253/8254)
ca. 1 193 182 Hz (= 1

3 NTSC-Freq.)
: Genauigkeit: 838 ns

drei Kanäle mit je einen 16 bit Zähler
Kanal 0 löst standardmäßig alle 54, 9254ms IRQ 0 aus
Kanal 1 früher für Arbeitsspeicher
Kanal 2 für PC Speaker (Tonfrequenz)

via PIC bzw. I/O APIC : (relativ) langsam

ausreichend für frühere BSB-Varianten, geht aber besser.
machine/pit.h

Interruptleitung CPUPIC 8259A

APIC-Bus
CPU 1

local
APIC

… CPU N

local
APIC

I/O-APIC

PIT
Timer 1
Timer 2
Timer 3

Arbeitsspeicher

Systemlautsprecher

ak Zeitgeber 4/22



Programmable Interval Timer (PIT)

Standardtimer seit 1981 (IBM-PC, Intel 8253/8254)
ca. 1 193 182 Hz (= 1

3 NTSC-Freq.)
: Genauigkeit: 838 ns

drei Kanäle mit je einen 16 bit Zähler
Kanal 0 löst standardmäßig alle 54, 9254ms IRQ 0 aus
Kanal 1 früher für Arbeitsspeicher
Kanal 2 für PC Speaker (Tonfrequenz)

via PIC bzw. I/O APIC : (relativ) langsam
ausreichend für frühere BSB-Varianten, geht aber besser.

: machine/pit.h

Interruptleitung CPUPIC 8259A

APIC-Bus
CPU 1

local
APIC

… CPU N

local
APIC

I/O-APIC

PIT
Timer 1
Timer 2
Timer 3

Arbeitsspeicher

Systemlautsprecher

ak Zeitgeber 4/22



Real Time Clock (RTC)

seit 1984 (IBM-PC/AT)
32 768 Hz (= 215 Hz, Verwendung in Uhren)
- Standardmäßig Interrupts bei 1 024 Hz (fast 1 ms)
- 12 weitere Möglichkeiten von 2 bis 8 192 Hz durch Vorteiler
- IRQ 8

für Zeit & Datum
Betrieb im ausgeschalteten Zustand mittels Batterie

ak Zeitgeber 5/22



Time Stamp Counter (TSC)

seit 1993 (Pentium)
64 bit, auslesbar über Assemblerinstruktion rdtsc
Taktfrequenz wie CPU
- ursprünglich Erhöhung mit jedem Clock-Signal
- unterschiedliche Takte abhängig vom Stromsparmodus
- bei neueren Versionen: konstante Rate entsprechend nominaler
Geschwindigkeit

kann keinen Interrupt auslösen
: machine/tsc.h

ak Zeitgeber 6/22



ACPI Power Management Timer

seit es ACPI-Mainboards gibt (1996)
3 579 545 Hz (= NTSC-Freq.)
ein 24 oder 32 bit Zähler
- besser als alte (nicht konstante) TSC
- Zugri˽ über I/O Port

kann auch keinen Interrupt auslösen

ak Zeitgeber 7/22



High Precision Event Timer (HPET)

von Intel und Microsoft 2005 als PIT- & RTC-Ersatz verö˽entlicht
≥ 10 MHz
: Genauigkeit: 100 ns oder besser

ein 64 bit Zähler
- min. drei 32 oder 64 bit breite Vergleichseinrichtungen
- koṅgurierbarer Interrupt bei Gleichheit

ak Zeitgeber 8/22



LAPIC Timer

≥ 100 MHz
: Genauigkeit: 10 ns oder besser

32 bit Zähler
verwendet Busfrequenz
- abhängig vom System
- aber unabhängig von Stromsparmodus
- Interrupt geht nur an den entsprechenden Kern
- 8 Möglichkeiten (bis 1

128 Busfrequenz) durch Vorteiler

Perfekt für unsere Bedürfnisse

ak Zeitgeber 9/22



LAPIC Timer

≥ 100 MHz
: Genauigkeit: 10 ns oder besser

32 bit Zähler
verwendet Busfrequenz
- abhängig vom System
- aber unabhängig von Stromsparmodus
- Interrupt geht nur an den entsprechenden Kern
- 8 Möglichkeiten (bis 1

128 Busfrequenz) durch Vorteiler

Perfekt für unsere Bedürfnisse

ak Zeitgeber 9/22



Funktionsweise des LAPIC Timers

APIC-Bus

CPU 1

local APIC

… CPU N

local APIC

I/O-APIC

externe Geräte

Timer

Count Register

Timer

Count Register

Vorteiler Vorteiler

In
te
rr
up
tb
ei
0

In
te
rr
up
tb
ei
0

Divide Coṅguration Register
0xfee0 03e0

Divide Coṅguration Register
0xfee0 03e0

0xfee0 0320

Timer Control Register
0xfee0 0320

Timer Control Register

0xfee0 0380

Initial
0xfee0 0390

Current
Count Register

0xfee0 0380

Initial
0xfee0 0390

Current
Count Register

ak Zeitgeber 10/22



Funktionsweise des LAPIC Timers

CPU 1

local APIC

… CPU N

local APIC

I/O-APIC

externe Geräte

Timer

Count Register

Timer

Count Register

Vorteiler Vorteiler

In
te
rr
up
tb
ei
0

In
te
rr
up
tb
ei
0

Divide Coṅguration Register
0xfee0 03e0

Divide Coṅguration Register
0xfee0 03e0

0xfee0 0320

Timer Control Register
0xfee0 0320

Timer Control Register

0xfee0 0380

Initial
0xfee0 0390

Current
Count Register

0xfee0 0380

Initial
0xfee0 0390

Current
Count Register

ak Zeitgeber 10/22



Funktionsweise des LAPIC Timers

CPU 1

local APIC

… CPU N

local APIC

I/O-APIC

externe Geräte

Timer

Count Register

Timer

Count Register

Vorteiler Vorteiler

In
te
rr
up
tb
ei
0

In
te
rr
up
tb
ei
0

Divide Coṅguration Register
0xfee0 03e0

Divide Coṅguration Register
0xfee0 03e0

0xfee0 0320

Timer Control Register
0xfee0 0320

Timer Control Register

0xfee0 0380

Initial
0xfee0 0390

Current
Count Register

0xfee0 0380

Initial
0xfee0 0390

Current
Count Register

ak Zeitgeber 10/22



Funktionsweise des LAPIC Timers

CPU 1

local APIC

… CPU N

local APIC

I/O-APIC

externe Geräte

Timer

Count Register

Timer

Count Register

Vorteiler Vorteiler

In
te
rr
up
tb
ei
0

In
te
rr
up
tb
ei
0

Divide Coṅguration Register
0xfee0 03e0

Divide Coṅguration Register
0xfee0 03e0

0xfee0 0320

Timer Control Register
0xfee0 0320

Timer Control Register

0xfee0 0380

Initial
0xfee0 0390

Current
Count Register

0xfee0 0380

Initial
0xfee0 0390

Current
Count Register

ak Zeitgeber 10/22



Funktionsweise des LAPIC Timers

CPU 1

local APIC

… CPU N

local APIC

I/O-APIC

externe Geräte

Timer

Count Register

Timer

Count Register

Vorteiler Vorteiler

In
te
rr
up
tb
ei
0

In
te
rr
up
tb
ei
0

Divide Coṅguration Register
0xfee0 03e0

Divide Coṅguration Register
0xfee0 03e0

0xfee0 0320

Timer Control Register
0xfee0 0320

Timer Control Register

0xfee0 0380

Initial
0xfee0 0390

Current
Count Register

0xfee0 0380

Initial
0xfee0 0390

Current
Count Register

ak Zeitgeber 10/22



Funktionsweise des LAPIC Timers

CPU 1

local APIC

… CPU N

local APIC

I/O-APIC

externe Geräte

Timer

Count Register

Timer

Count Register

Vorteiler Vorteiler

In
te
rr
up
tb
ei
0

In
te
rr
up
tb
ei
0

Divide Coṅguration Register
0xfee0 03e0

Divide Coṅguration Register
0xfee0 03e0

0xfee0 0320

Timer Control Register
0xfee0 0320

Timer Control Register

0xfee0 0380

Initial
0xfee0 0390

Current
Count Register

0xfee0 0380

Initial
0xfee0 0390

Current
Count Register

ak Zeitgeber 10/22



Funktionsweise des LAPIC Timers

CPU 1

local APIC

… CPU N

local APIC

I/O-APIC

externe Geräte

Timer

Count Register

Timer

Count Register

Vorteiler Vorteiler

In
te
rr
up
tb
ei
0

In
te
rr
up
tb
ei
0

Divide Coṅguration Register
0xfee0 03e0

Divide Coṅguration Register
0xfee0 03e0

0xfee0 0320

Timer Control Register
0xfee0 0320

Timer Control Register

0xfee0 0380

Initial
0xfee0 0390

Current
Count Register

0xfee0 0380

Initial
0xfee0 0390

Current
Count Register

ak Zeitgeber 10/22



Funktionsweise des LAPIC Timers

CPU 1

local APIC

… CPU N

local APIC

I/O-APIC

externe Geräte

Timer
Count Register

Timer
Count Register

Vorteiler Vorteiler

In
te
rr
up
tb
ei
0

In
te
rr
up
tb
ei
0

Divide Coṅguration Register
0xfee0 03e0

Divide Coṅguration Register
0xfee0 03e0

0xfee0 0320

Timer Control Register
0xfee0 0320

Timer Control Register

0xfee0 0380

Initial
0xfee0 0390

Current
Count Register

0xfee0 0380

Initial
0xfee0 0390

Current
Count Register

ak Zeitgeber 10/22



Funktionsweise des LAPIC Timers

CPU 1

local APIC

… CPU N

local APIC

I/O-APIC

externe Geräte

Timer
Count Register

Timer
Count Register

Vorteiler Vorteiler

In
te
rr
up
tb
ei
0

In
te
rr
up
tb
ei
0

Divide Coṅguration Register
0xfee0 03e0

Divide Coṅguration Register
0xfee0 03e0

0xfee0 0320

Timer Control Register
0xfee0 0320

Timer Control Register

0xfee0 0380

Initial
0xfee0 0390

Current
Count Register

0xfee0 0380

Initial
0xfee0 0390

Current
Count Register

ak Zeitgeber 10/22



Funktionsweise des LAPIC Timers

CPU 1

local APIC

… CPU N

local APIC

I/O-APIC

externe Geräte

Timer
Count Register

Timer
Count Register

Vorteiler Vorteiler

In
te
rr
up
tb
ei
0

In
te
rr
up
tb
ei
0

Divide Coṅguration Register
0xfee0 03e0

Divide Coṅguration Register
0xfee0 03e0

0xfee0 0320

Timer Control Register
0xfee0 0320

Timer Control Register

0xfee0 0380

Initial
0xfee0 0390

Current
Count Register

0xfee0 0380

Initial
0xfee0 0390

Current
Count Register

ak Zeitgeber 10/22



Funktionsweise des LAPIC Timers

CPU 1

local APIC

… CPU N

local APIC

I/O-APIC

externe Geräte

Timer
Count Register

Timer
Count Register

Vorteiler Vorteiler

In
te
rr
up
tb
ei
0

In
te
rr
up
tb
ei
0

Divide Coṅguration Register
0xfee0 03e0

Divide Coṅguration Register
0xfee0 03e0

0xfee0 0320

Timer Control Register
0xfee0 0320

Timer Control Register

0xfee0 0380

Initial
0xfee0 0390

Current
Count Register

0xfee0 0380

Initial
0xfee0 0390

Current
Count Register

ak Zeitgeber 10/22



Funktionsweise des LAPIC Timers

CPU 1

local APIC

… CPU N

local APIC

I/O-APIC

externe Geräte

Timer
Count Register

Timer
Count Register

Vorteiler Vorteiler

In
te
rr
up
tb
ei
0

In
te
rr
up
tb
ei
0

Divide Coṅguration Register
0xfee0 03e0

Divide Coṅguration Register
0xfee0 03e0

0xfee0 0320

Timer Control Register
0xfee0 0320

Timer Control Register

0xfee0 0380

Initial
0xfee0 0390

Current
Count Register

0xfee0 0380

Initial
0xfee0 0390

Current
Count Register

ak Zeitgeber 10/22



Aufbau des Timer Control Register Eintrags
31

19
18
17
16
15

13
12
11

8
7

0

Betriebsmodus: einmalig (0) oder periodisch (1)
Interrupt-Mask: Interrupt aktiv (0) oder inaktiv (1)

Zustellstatus Interrupt Nachricht noch unterwegs? (RO)

Interrupt Vektor: Nummer in der Vektortabelle (32-255)

ak Zeitgeber 11/22



Zusammenfassung LAPIC Timer

jede CPU hat einen eigenen 32bit Timer
Änderung am INITIAL COUNT REGISTER startet den Timer
zu Beginn wird der initiale Startzählwert aus dem INITIAL COUNT REGISTER in
das CURRENT COUNT REGISTER kopiert
welches im Bustakt

Vorteiler dekrementiert wird
bei 0 wird – sofern aktiviert – ein Interrupt ausgelöst
je nach Betriebsmodus wird gestoppt oder wieder neu begonnen

ak Zeitgeber 12/22



Watch

windup stellt das Unterbrechungsintervall ein
(z.B. alle 1000 Mikrosekunden)

activate setzt den Timer und aktiviert Interrupts
prologue fordert Epilog an

(und kann zu Testzwecken eine Ausgabe tätigen)

epilogue wechselt die Anwendung mittels scheduler.resume()

ak Umsetzung 13/22



LAPIC-Timer einstellen

1. LAPIC-Timer kalibrieren

in der Funktion LAPIC::Timer::ticks
(Funktion gibt die Anzahl der Ticks in einer Millisekunde zurück)
benötigt zur Koṅguration die Funktion LAPIC::Timer::set, Aufruf mit

maximalem Wert für den LAPIC-Zähler,
als ONE_SHOT und
ohne Unterbrechungen

unter Verwendung des PIT
Wartezeit von mehreren MS einstellen: PIT::set
mittels PIT::waitForTimeout warten
Start- und Endwert des LAPIC-Zählerregisters merken

Hilfsstrukturen in lapic_timer.cc & lapic_registers.h

ak Umsetzung 14/22



LAPIC-Timer einstellen

1. LAPIC-Timer kalibrieren

in der Funktion LAPIC::Timer::ticks
(Funktion gibt die Anzahl der Ticks in einer Millisekunde zurück)

benötigt zur Koṅguration die Funktion LAPIC::Timer::set, Aufruf mit
maximalem Wert für den LAPIC-Zähler,
als ONE_SHOT und
ohne Unterbrechungen

unter Verwendung des PIT
Wartezeit von mehreren MS einstellen: PIT::set
mittels PIT::waitForTimeout warten
Start- und Endwert des LAPIC-Zählerregisters merken

Hilfsstrukturen in lapic_timer.cc & lapic_registers.h

ak Umsetzung 14/22



LAPIC-Timer einstellen

1. LAPIC-Timer kalibrieren

in der Funktion LAPIC::Timer::ticks
(Funktion gibt die Anzahl der Ticks in einer Millisekunde zurück)
benötigt zur Koṅguration die Funktion LAPIC::Timer::set, Aufruf mit

maximalem Wert für den LAPIC-Zähler,
als ONE_SHOT und
ohne Unterbrechungen

unter Verwendung des PIT
Wartezeit von mehreren MS einstellen: PIT::set
mittels PIT::waitForTimeout warten
Start- und Endwert des LAPIC-Zählerregisters merken

Hilfsstrukturen in lapic_timer.cc & lapic_registers.h

ak Umsetzung 14/22



LAPIC-Timer einstellen

1. LAPIC-Timer kalibrieren

in der Funktion LAPIC::Timer::ticks
(Funktion gibt die Anzahl der Ticks in einer Millisekunde zurück)
benötigt zur Koṅguration die Funktion LAPIC::Timer::set, Aufruf mit

maximalem Wert für den LAPIC-Zähler,
als ONE_SHOT und
ohne Unterbrechungen

unter Verwendung des PIT
Wartezeit von mehreren MS einstellen: PIT::set
mittels PIT::waitForTimeout warten
Start- und Endwert des LAPIC-Zählerregisters merken

Hilfsstrukturen in lapic_timer.cc & lapic_registers.h

ak Umsetzung 14/22



LAPIC-Timer einstellen

1. LAPIC-Timer kalibrieren

in der Funktion LAPIC::Timer::ticks
(Funktion gibt die Anzahl der Ticks in einer Millisekunde zurück)
benötigt zur Koṅguration die Funktion LAPIC::Timer::set, Aufruf mit

maximalem Wert für den LAPIC-Zähler,
als ONE_SHOT und
ohne Unterbrechungen

unter Verwendung des PIT
Wartezeit von mehreren MS einstellen: PIT::set
mittels PIT::waitForTimeout warten
Start- und Endwert des LAPIC-Zählerregisters merken

Hilfsstrukturen in lapic_timer.cc & lapic_registers.h

ak Umsetzung 14/22



LAPIC-Timer einstellen

2. Initialen Wert und Vorteiler korrekt setzen

Interrupt soll alle n Mikrosekunden ausgelöst werden
Startwertzähler initial n LAPIC::Timer::ticks()

Vorteiler 1000 berechnen,
dabei gilt Vorteiler 2x mit x 0 7
Möglichst kleiner Vorteiler, aber kein Überlauf (32 bit!)
Beispiel: watch.windup(5000000);

n 5000000 µs = 5 s
LAPIC::Timer::ticks 1000000 ms 1

Vorteiler
initial

ak Umsetzung 14/22



LAPIC-Timer einstellen

2. Initialen Wert und Vorteiler korrekt setzen

Interrupt soll alle n Mikrosekunden ausgelöst werden

Startwertzähler initial n LAPIC::Timer::ticks()
Vorteiler 1000 berechnen,

dabei gilt Vorteiler 2x mit x 0 7
Möglichst kleiner Vorteiler, aber kein Überlauf (32 bit!)
Beispiel: watch.windup(5000000);

n 5000000 µs = 5 s
LAPIC::Timer::ticks 1000000 ms 1

Vorteiler
initial

ak Umsetzung 14/22



LAPIC-Timer einstellen

2. Initialen Wert und Vorteiler korrekt setzen

Interrupt soll alle n Mikrosekunden ausgelöst werden
Startwertzähler initial = n ⋅ LAPIC::Timer::ticks()

Vorteiler ⋅ 1000 berechnen,
dabei gilt Vorteiler = 2x mit x ∈ {0, . . . , 7}

Möglichst kleiner Vorteiler, aber kein Überlauf (32 bit!)
Beispiel: watch.windup(5000000);

n 5000000 µs = 5 s
LAPIC::Timer::ticks 1000000 ms 1

Vorteiler
initial

ak Umsetzung 14/22



LAPIC-Timer einstellen

2. Initialen Wert und Vorteiler korrekt setzen

Interrupt soll alle n Mikrosekunden ausgelöst werden
Startwertzähler initial = n ⋅ LAPIC::Timer::ticks()

Vorteiler ⋅ 1000 berechnen,
dabei gilt Vorteiler = 2x mit x ∈ {0, . . . , 7}
Möglichst kleiner Vorteiler, aber kein Überlauf (32 bit!)

Beispiel: watch.windup(5000000);
n 5000000 µs = 5 s

LAPIC::Timer::ticks 1000000 ms 1

Vorteiler
initial

ak Umsetzung 14/22



LAPIC-Timer einstellen

2. Initialen Wert und Vorteiler korrekt setzen

Interrupt soll alle n Mikrosekunden ausgelöst werden
Startwertzähler initial = n ⋅ LAPIC::Timer::ticks()

Vorteiler ⋅ 1000 berechnen,
dabei gilt Vorteiler = 2x mit x ∈ {0, . . . , 7}
Möglichst kleiner Vorteiler, aber kein Überlauf (32 bit!)
Beispiel: watch.windup(5000000);

n 5000000 µs = 5 s
LAPIC::Timer::ticks 1000000 ms−1

Vorteiler
initial

ak Umsetzung 14/22



LAPIC-Timer einstellen

2. Initialen Wert und Vorteiler korrekt setzen

Interrupt soll alle n Mikrosekunden ausgelöst werden
Startwertzähler initial = n ⋅ LAPIC::Timer::ticks()

Vorteiler ⋅ 1000 berechnen,
dabei gilt Vorteiler = 2x mit x ∈ {0, . . . , 7}
Möglichst kleiner Vorteiler, aber kein Überlauf (32 bit!)
Beispiel: watch.windup(5000000);

n 5000000 µs = 5 s
LAPIC::Timer::ticks 1000000 ms−1

Vorteiler 1 = 20

initial

ak Umsetzung 14/22



LAPIC-Timer einstellen

2. Initialen Wert und Vorteiler korrekt setzen

Interrupt soll alle n Mikrosekunden ausgelöst werden
Startwertzähler initial = n ⋅ LAPIC::Timer::ticks()

Vorteiler ⋅ 1000 berechnen,
dabei gilt Vorteiler = 2x mit x ∈ {0, . . . , 7}
Möglichst kleiner Vorteiler, aber kein Überlauf (32 bit!)
Beispiel: watch.windup(5000000);

n 5000000 µs = 5 s
LAPIC::Timer::ticks 1000000 ms−1

Vorteiler 1 = 20

initial 5000000000

ak Umsetzung 14/22



LAPIC-Timer einstellen

2. Initialen Wert und Vorteiler korrekt setzen

Interrupt soll alle n Mikrosekunden ausgelöst werden
Startwertzähler initial = n ⋅ LAPIC::Timer::ticks()

Vorteiler ⋅ 1000 berechnen,
dabei gilt Vorteiler = 2x mit x ∈ {0, . . . , 7}
Möglichst kleiner Vorteiler, aber kein Überlauf (32 bit!)
Beispiel: watch.windup(5000000);

n 5000000 µs = 5 s
LAPIC::Timer::ticks 1000000 ms−1

Vorteiler 1 = 20

initial 5000000000 �

ak Umsetzung 14/22



LAPIC-Timer einstellen

2. Initialen Wert und Vorteiler korrekt setzen

Interrupt soll alle n Mikrosekunden ausgelöst werden
Startwertzähler initial = n ⋅ LAPIC::Timer::ticks()

Vorteiler ⋅ 1000 berechnen,
dabei gilt Vorteiler = 2x mit x ∈ {0, . . . , 7}
Möglichst kleiner Vorteiler, aber kein Überlauf (32 bit!)
Beispiel: watch.windup(5000000);

n 5000000 µs = 5 s
LAPIC::Timer::ticks 1000000 ms−1

Vorteiler 2 = 21

initial

ak Umsetzung 14/22



LAPIC-Timer einstellen

2. Initialen Wert und Vorteiler korrekt setzen

Interrupt soll alle n Mikrosekunden ausgelöst werden
Startwertzähler initial = n ⋅ LAPIC::Timer::ticks()

Vorteiler ⋅ 1000 berechnen,
dabei gilt Vorteiler = 2x mit x ∈ {0, . . . , 7}
Möglichst kleiner Vorteiler, aber kein Überlauf (32 bit!)
Beispiel: watch.windup(5000000);

n 5000000 µs = 5 s
LAPIC::Timer::ticks 1000000 ms−1

Vorteiler 2 = 21

initial 2500000000

ak Umsetzung 14/22



LAPIC-Timer einstellen

2. Initialen Wert und Vorteiler korrekt setzen

Interrupt soll alle n Mikrosekunden ausgelöst werden
Startwertzähler initial = n ⋅ LAPIC::Timer::ticks()

Vorteiler ⋅ 1000 berechnen,
dabei gilt Vorteiler = 2x mit x ∈ {0, . . . , 7}
Möglichst kleiner Vorteiler, aber kein Überlauf (32 bit!)
Beispiel: watch.windup(5000000);

n 5000000 µs = 5 s
LAPIC::Timer::ticks 1000000 ms−1

Vorteiler 2 = 21

initial 2500000000✓

ak Umsetzung 14/22



Ablaufbeispiel (Standardfall)

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1

relay

resume()

app2

leave

relay

resume()

app1

leave

ak Umsetzung 15/22



Ablaufbeispiel (Standardfall)

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1

�

relay

resume()

app2

leave

relay

resume()

app1

leave

ak Umsetzung 15/22



Ablaufbeispiel (Standardfall)

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1

�

relay

resume()

app2

leave

relay

resume()

app1

leave

ak Umsetzung 15/22



Ablaufbeispiel (Standardfall)

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1

�

relay

resume()

app2

leave

relay

resume()

app1

leave

ak Umsetzung 15/22



Ablaufbeispiel (Standardfall)

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1

�

relay

resume()

app2

leave

relay

resume()

app1

leave

ak Umsetzung 15/22



Ablaufbeispiel (Standardfall)

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1

�

relay

resume()

app2

leave

relay

resume()

app1

leave

ak Umsetzung 15/22



Ablaufbeispiel (Standardfall)

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1

�

relay

resume()

app2

leave

�

relay

resume()

app1

leave

ak Umsetzung 15/22



Ablaufbeispiel (Standardfall)

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1

�

relay

resume()

app2

leave

�

relay

resume()

app1

leave

ak Umsetzung 15/22



Ablaufbeispiel (Standardfall)

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1

�

relay

resume()

app2

leave

�

relay

resume()

app1

leave

ak Umsetzung 15/22



Ablaufbeispiel (Standardfall)

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1

�

relay

resume()

app2

leave

�

relay

resume()

app1

leave

ak Umsetzung 15/22



Ablaufbeispiel (Standardfall)

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1

�

relay

resume()

app2

leave

�

relay

resume()

app1

leave

ak Umsetzung 15/22



Ablaufbeispiel bei Faden in Systemebene

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1

enter

relayrelay

enqueue

leaveleave

resume()

app2

leave

relay

resume()

leave

app1

ak Umsetzung 16/22



Ablaufbeispiel bei Faden in Systemebene

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1 enter

relayrelay

enqueue

leaveleave

resume()

app2

leave

relay

resume()

leave

app1

ak Umsetzung 16/22



Ablaufbeispiel bei Faden in Systemebene

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1 enter

relayrelay

enqueue

leaveleave

resume()

app2

leave

relay

resume()

leave

app1

ak Umsetzung 16/22



Ablaufbeispiel bei Faden in Systemebene

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1 enter

�

relayrelay

enqueue

leaveleave

resume()

app2

leave

relay

resume()

leave

app1

ak Umsetzung 16/22



Ablaufbeispiel bei Faden in Systemebene

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1 enter

�

relay

relay

enqueue

leaveleave

resume()

app2

leave

relay

resume()

leave

app1

ak Umsetzung 16/22



Ablaufbeispiel bei Faden in Systemebene

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1 enter

�

relay

relay

enqueue

leaveleave

resume()

app2

leave

relay

resume()

leave

app1

ak Umsetzung 16/22



Ablaufbeispiel bei Faden in Systemebene

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1 enter

�

relay

relay

enqueue

leave

leave

resume()

app2

leave

relay

resume()

leave

app1

ak Umsetzung 16/22



Ablaufbeispiel bei Faden in Systemebene

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1 enter

�

relay

relay

enqueue

leave

leave

resume()

app2

leave

relay

resume()

leave

app1

ak Umsetzung 16/22



Ablaufbeispiel bei Faden in Systemebene

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1 enter

�

relay

relay

enqueue

leave

leave

resume()

app2

leave

relay

resume()

leave

app1

ak Umsetzung 16/22



Ablaufbeispiel bei Faden in Systemebene

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1 enter

�

relay

relay

enqueue

leave

leave

resume()

app2

leave

relay

resume()

leave

app1

ak Umsetzung 16/22



Ablaufbeispiel bei Faden in Systemebene

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1 enter

�

relay

relay

enqueue

leave

leave

resume()

app2

leave

�

relay

resume()

leave

app1

ak Umsetzung 16/22



Ablaufbeispiel bei Faden in Systemebene

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1 enter

�

relay

relay

enqueue

leave

leave

resume()

app2

leave

�

relay

resume()

leave

app1

ak Umsetzung 16/22



Ablaufbeispiel bei Faden in Systemebene

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1 enter

�

relay

relay

enqueue

leave

leave

resume()

app2

leave

�

relay

resume()

leave

app1

ak Umsetzung 16/22



Ablaufbeispiel bei Faden in Systemebene

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1 enter

�

relay

relay

enqueue

leave

leave

resume()

app2

leave

�

relay

resume()

leave

app1

ak Umsetzung 16/22



Ablaufbeispiel bei Faden in Systemebene

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1 enter

�

relay

relay

enqueue

leave

leave

resume()

app2

leave

�

relay

resume()

leave

app1

ak Umsetzung 16/22



Ablaufbeispiel mit neuem Thread

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1

enter

ready(&app2)

leave

GuardedScheduler

relay

resume() kickoff

leave

app2

ak Umsetzung 17/22



Ablaufbeispiel mit neuem Thread

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1 enter

ready(&app2)

leave

GuardedScheduler

relay

resume() kickoff

leave

app2

ak Umsetzung 17/22



Ablaufbeispiel mit neuem Thread

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1 enter

ready(&app2)

leave

GuardedScheduler

relay

resume() kickoff

leave

app2

ak Umsetzung 17/22



Ablaufbeispiel mit neuem Thread

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1 enter

ready(&app2)

leave

GuardedScheduler

relay

resume() kickoff

leave

app2

ak Umsetzung 17/22



Ablaufbeispiel mit neuem Thread

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1 enter

ready(&app2)

leave

GuardedScheduler

relay

resume() kickoff

leave

app2

ak Umsetzung 17/22



Ablaufbeispiel mit neuem Thread

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1 enter

ready(&app2)

leave

GuardedScheduler

�

relay

resume() kickoff

leave

app2

ak Umsetzung 17/22



Ablaufbeispiel mit neuem Thread

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1 enter

ready(&app2)

leave

GuardedScheduler

�

relay

resume() kickoff

leave

app2

ak Umsetzung 17/22



Ablaufbeispiel mit neuem Thread

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1 enter

ready(&app2)

leave

GuardedScheduler

�

relay

resume()

kickoff

leave

app2

ak Umsetzung 17/22



Ablaufbeispiel mit neuem Thread

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1 enter

ready(&app2)

leave

GuardedScheduler

�

relay

resume() kickoff

leave

app2

ak Umsetzung 17/22



Ablaufbeispiel mit neuem Thread

E0 (Anwendung)

E 1
2

(Epilog)

E1 (IRQ/Prolog)

app1 enter

ready(&app2)

leave

GuardedScheduler

�

relay

resume() kickoff

leave

app2

ak Umsetzung 17/22



Anwendungsfaden beenden

Präemptives Beenden mittels Scheduler::kill(Thread&)

OOStuBS keine Änderung

: aus der Ready-Liste entfernen
bzw. Kill-Flag setzen und bei resume prüfen

MPStuBS der Anwendungsfaden kann gerade auf einer anderen CPU laufen

Kill-Flag setzen (wie gehabt)
falls er nicht in der Ready-Liste ist, läuft er wohl gerade auf
einer anderen CPU
diese andere CPU muss benachrichtigt werden

INTER PROCESSOR INTERRUPT (IPI)

die angesprochene CPU muss dann das Kill-Flag des aktuellen
Prozesses prüfen

ak Besonderheiten 18/22



Anwendungsfaden beenden

Präemptives Beenden mittels Scheduler::kill(Thread&)

OOStuBS keine Änderung

: aus der Ready-Liste entfernen
bzw. Kill-Flag setzen und bei resume prüfen

MPStuBS der Anwendungsfaden kann gerade auf einer anderen CPU laufen

Kill-Flag setzen (wie gehabt)
falls er nicht in der Ready-Liste ist, läuft er wohl gerade auf
einer anderen CPU
diese andere CPU muss benachrichtigt werden

INTER PROCESSOR INTERRUPT (IPI)

die angesprochene CPU muss dann das Kill-Flag des aktuellen
Prozesses prüfen

ak Besonderheiten 18/22



Anwendungsfaden beenden

Präemptives Beenden mittels Scheduler::kill(Thread&)

OOStuBS keine Änderung: aus der Ready-Liste entfernen
bzw. Kill-Flag setzen und bei resume prüfen

MPStuBS der Anwendungsfaden kann gerade auf einer anderen CPU laufen

Kill-Flag setzen (wie gehabt)
falls er nicht in der Ready-Liste ist, läuft er wohl gerade auf
einer anderen CPU
diese andere CPU muss benachrichtigt werden

INTER PROCESSOR INTERRUPT (IPI)

die angesprochene CPU muss dann das Kill-Flag des aktuellen
Prozesses prüfen

ak Besonderheiten 18/22



Anwendungsfaden beenden

Präemptives Beenden mittels Scheduler::kill(Thread&)

OOStuBS keine Änderung: aus der Ready-Liste entfernen
bzw. Kill-Flag setzen und bei resume prüfen

MPStuBS der Anwendungsfaden kann gerade auf einer anderen CPU laufen

Kill-Flag setzen (wie gehabt)
falls er nicht in der Ready-Liste ist, läuft er wohl gerade auf
einer anderen CPU
diese andere CPU muss benachrichtigt werden

INTER PROCESSOR INTERRUPT (IPI)

die angesprochene CPU muss dann das Kill-Flag des aktuellen
Prozesses prüfen

ak Besonderheiten 18/22



Anwendungsfaden beenden

Präemptives Beenden mittels Scheduler::kill(Thread&)

OOStuBS keine Änderung: aus der Ready-Liste entfernen
bzw. Kill-Flag setzen und bei resume prüfen

MPStuBS der Anwendungsfaden kann gerade auf einer anderen CPU laufen
Kill-Flag setzen (wie gehabt)

falls er nicht in der Ready-Liste ist, läuft er wohl gerade auf
einer anderen CPU
diese andere CPU muss benachrichtigt werden

INTER PROCESSOR INTERRUPT (IPI)

die angesprochene CPU muss dann das Kill-Flag des aktuellen
Prozesses prüfen

ak Besonderheiten 18/22



Anwendungsfaden beenden

Präemptives Beenden mittels Scheduler::kill(Thread&)

OOStuBS keine Änderung: aus der Ready-Liste entfernen
bzw. Kill-Flag setzen und bei resume prüfen

MPStuBS der Anwendungsfaden kann gerade auf einer anderen CPU laufen
Kill-Flag setzen (wie gehabt)
falls er nicht in der Ready-Liste ist, läuft er wohl gerade auf
einer anderen CPU

diese andere CPU muss benachrichtigt werden

INTER PROCESSOR INTERRUPT (IPI)

die angesprochene CPU muss dann das Kill-Flag des aktuellen
Prozesses prüfen

ak Besonderheiten 18/22



Anwendungsfaden beenden

Präemptives Beenden mittels Scheduler::kill(Thread&)

OOStuBS keine Änderung: aus der Ready-Liste entfernen
bzw. Kill-Flag setzen und bei resume prüfen

MPStuBS der Anwendungsfaden kann gerade auf einer anderen CPU laufen
Kill-Flag setzen (wie gehabt)
falls er nicht in der Ready-Liste ist, läuft er wohl gerade auf
einer anderen CPU
diese andere CPU muss benachrichtigt werden

INTER PROCESSOR INTERRUPT (IPI)
die angesprochene CPU muss dann das Kill-Flag des aktuellen
Prozesses prüfen

ak Besonderheiten 18/22



Anwendungsfaden beenden

Präemptives Beenden mittels Scheduler::kill(Thread&)

OOStuBS keine Änderung: aus der Ready-Liste entfernen
bzw. Kill-Flag setzen und bei resume prüfen

MPStuBS der Anwendungsfaden kann gerade auf einer anderen CPU laufen
Kill-Flag setzen (wie gehabt)
falls er nicht in der Ready-Liste ist, läuft er wohl gerade auf
einer anderen CPU
diese andere CPU muss benachrichtigt werden
: INTER PROCESSOR INTERRUPT (IPI)

die angesprochene CPU muss dann das Kill-Flag des aktuellen
Prozesses prüfen

ak Besonderheiten 18/22



Anwendungsfaden beenden

Präemptives Beenden mittels Scheduler::kill(Thread&)

OOStuBS keine Änderung: aus der Ready-Liste entfernen
bzw. Kill-Flag setzen und bei resume prüfen

MPStuBS der Anwendungsfaden kann gerade auf einer anderen CPU laufen
Kill-Flag setzen (wie gehabt)
falls er nicht in der Ready-Liste ist, läuft er wohl gerade auf
einer anderen CPU
diese andere CPU muss benachrichtigt werden
: INTER PROCESSOR INTERRUPT (IPI)
die angesprochene CPU muss dann das Kill-Flag des aktuellen
Prozesses prüfen

ak Besonderheiten 18/22



Inter Processor Interrupt

APIC-Bus
CPU 1

local
APIC #1

… CPU 2

local
APIC #2

I/O-APIC

destination = APIC::getLAPICID(cpu);

LAPIC::IPI::send(destination, vector);
Empfänger Interrupt

ak Besonderheiten 19/22



Inter Processor Interrupt

APIC-Bus
CPU 1

local
APIC #1

… CPU 2

local
APIC #2

I/O-APIC

destination = APIC::getLAPICID(cpu);

LAPIC::IPI::send(destination, vector);
Empfänger Interrupt

ak Besonderheiten 19/22



Inter Processor Interrupt

APIC-Bus
CPU 1

local
APIC #1

… CPU 2

local
APIC #2

I/O-APIC

destination = APIC::getLAPICID(cpu);

LAPIC::IPI::send(destination, vector);

Empfänger Interrupt

ak Besonderheiten 19/22



Inter Processor Interrupt

APIC-Bus
CPU 1

local
APIC #1

… CPU 2

local
APIC #2

I/O-APIC

destination = APIC::getLAPICID(cpu);

LAPIC::IPI::send(destination, vector);

Empfänger

Interrupt

ak Besonderheiten 19/22



Inter Processor Interrupt

APIC-Bus
CPU 1

local
APIC #1

… CPU 2

local
APIC #2

I/O-APIC

destination = APIC::getLAPICID(cpu);

LAPIC::IPI::send(destination, vector);
Empfänger Interrupt

ak Besonderheiten 19/22



Inter Processor Interrupt

APIC-Bus
CPU 1

local
APIC #1

… CPU 2

local
APIC #2

I/O-APIC

destination = APIC::getLAPICID(cpu);

LAPIC::IPI::send(destination, vector);
Empfänger Interrupt

ak Besonderheiten 19/22



Der Teufel steckt im Detail

Was kann hier schon schief gehen?

1 lock[Core::getID()] = true;

Viel - diese Zeile wird nicht atomar ausgeführt:

1 ; Array lock an Adresse 0x2000
2 call <Core::getID()>
3 mov [rax+0x2000], 0x1

Was passiert nun, wenn der Anwendungsfaden anschließend auf einer anderen
CPU eingeplant wird?

ak Besonderheiten 20/22



Der Teufel steckt im Detail

Was kann hier schon schief gehen?

1 lock[Core::getID()] = true;

Viel - diese Zeile wird nicht atomar ausgeführt:

1 ; Array lock an Adresse 0x2000
2 call <Core::getID()>
3 mov [rax+0x2000], 0x1

Was passiert nun, wenn der Anwendungsfaden anschließend auf einer anderen
CPU eingeplant wird?

ak Besonderheiten 20/22



Der Teufel steckt im Detail

Was kann hier schon schief gehen?

1 lock[Core::getID()] = true;

Viel - diese Zeile wird nicht atomar ausgeführt:

1 ; Array lock an Adresse 0x2000
2 call <Core::getID()>
3 mov [rax+0x2000], 0x1

� Scheduler Interrupt

Was passiert nun, wenn der Anwendungsfaden anschließend auf einer anderen
CPU eingeplant wird?

ak Besonderheiten 20/22



Der Teufel steckt im Detail

Was kann hier schon schief gehen?

1 lock[Core::getID()] = true;

Viel - diese Zeile wird nicht atomar ausgeführt:

1 ; Array lock an Adresse 0x2000
2 call <Core::getID()>
3 mov [rax+0x2000], 0x1

� Scheduler Interrupt

Was passiert nun, wenn der Anwendungsfaden anschließend auf einer anderen
CPU eingeplant wird?

ak Besonderheiten 20/22



Fragen über Fragen

Kann nun eine fehlerhafte Anwendung unser Betriebssystem blockieren?

Unter welchen Umständen wäre es e˾zienter, den Timer abzuschalten
(Stichwort tickless)?

ak Besonderheiten 21/22



Fragen über Fragen

Kann nun eine fehlerhafte Anwendung unser Betriebssystem blockieren?
Unter welchen Umständen wäre es e˾zienter, den Timer abzuschalten
(Stichwort tickless)?

ak Besonderheiten 21/22



Fragen über Fragen

Kann nun eine fehlerhafte Anwendung unser Betriebssystem blockieren?
Unter welchen Umständen wäre es e˾zienter, den Timer abzuschalten
(Stichwort tickless)?

ak Besonderheiten 21/22



Gibt es noch Fragen?

Abgabe der Aufgabe
bis Mittwoch, den 21. Januar


	Motivation
	Zeitgeber
	Umsetzung
	Besonderheiten

