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Kooperative Ablaufplanung

1 int 1 = 0;

2 while (true)d{

3 {

4 Guarded _;

5 kout << i++ << endl;
6 }

7 scheduler.resume ();

s F
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Unterbrechende Ablaufplanung

1 int 1 = 0;

2 while (true)d{

3 {

4 Guarded _;

5 kout << i++ << endl;
6 }

7

s F
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Unterbrechende Ablaufplanung

1 int 1 = 0;

2 while (true)d{

3 {

4 Guarded _;

5 kout << i++ << endl;

6 }

. 4 Scheduler Interrupt
s F
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Unterbrechende Ablaufplanung

1 int 1 = 0;

2 while (true)d{

3 {

4 Guarded _;

5 kout << i++ << endl;

6 }

. 4 Scheduler Interrupt
s F

Aufgabe: Praemptives Scheduling mittels Timer.
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Programmable Interval Timer (PIT)

= Standardtimer seit 1981 (IBM-PC, Intel 8253/8254)
= ca. 1193182 Hz (= 1 NTSC-Freq.)

- Genauigkeit: 838 ns
® drei Kanale mit je einen 16 bit Zahler

Kanal o lost standardmaRig alle 54,9254ms IRQ 0 aus
Kanal 1 friher fiir Arbeitsspeicher
Kanal 2 fiir PC Speaker (Tonfrequenz)
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Programmable Interval Timer (PIT)

[P1C 82592

PIT

Arbeitsspeicher

Systemlautsprecher Timer 3
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Programmable Interval Timer (PIT)

APIC-Bus

|/O-APIC
(T rrrTTT

PIT

Arbeitsspeicher
Systemlautsprecher
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Programmable Interval Timer (PIT)

= Standardtimer seit 1981 (IBM-PC, Intel 8253/8254)
= ca. 1193182 Hz (= 1 NTSC-Freq.)
- Genauigkeit: 838 ns
® drei Kanale mit je einen 16 bit Zahler
Kanal o lost standardmaRig alle 54,9254ms IRQ 0 aus
Kanal 1 friher fiir Arbeitsspeicher
Kanal 2 fiir PC Speaker (Tonfrequenz)

= via PIC bzw. I/0 APIC - (relativ) langsam

II ak Zeitgeber 4/22



Programmable Interval Timer (PIT)

= Standardtimer seit 1981 (IBM-PC, Intel 8253/8254)
= ca. 1193182 Hz (= 1 NTSC-Freq.)

- Genauigkeit: 838 ns
® drei Kanale mit je einen 16 bit Zahler

Kanal o lost standardmaRig alle 54,9254ms IRQ 0 aus
Kanal 1 friher fiir Arbeitsspeicher
Kanal 2 fiir PC Speaker (Tonfrequenz)

= via PIC bzw. I/0 APIC - (relativ) langsam
= ausreichend fiir friihere BSB-Varianten, geht aber besser.

- machine/pit.h
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Real Time Clock (RTC)

seit 1984 (IBM-PC/AT)
32768 Hz (= 2% Hz, Verwendung in Uhren)

- StandardmaRig Interrupts bei 1 024 Hz (fast 1 ms)
- 12 weitere Moglichkeiten von 2 bis 8 192 Hz durch Vorteiler
- IRQ 8

fur Zeit & Datum
Betrieb im ausgeschalteten Zustand mittels Batterie
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Time Stamp Counter (TSC)

= seit 1993 (Pentium)

® 64 bit, auslesbar tUber Assemblerinstruktion rdtsc
= Taktfrequenz wie CPU

- urspriinglich Erhohung mit jedem Clock-Signal

- unterschiedliche Takte abhangig vom Stromsparmodus

- bei neueren Versionen: konstante Rate entsprechend nominaler
Geschwindigkeit

= kann keinen Interrupt auslosen

- machine/tsc.h
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ACPI Power Management Timer

seit es ACPI-Mainboards gibt (1996)
3579545 Hz (= NTSC-Freq.)

ein 24 oder 32 bit Zahler

- besser als alte (nicht konstante) TSC
- Zugriff iiber 1/0 Port

kann auch keinen Interrupt auslosen
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High Precision Event Timer (HPET)

= von Intel und Microsoft 2005 als PIT- & RTC-Ersatz veroffentlicht
m >10 MHz

- Genauigkeit: 100 ns oder besser
= ein 64 bit Zahler

- min. drei 32 oder 64 bit breite Vergleichseinrichtungen
- konfigurierbarer Interrupt bei Gleichheit
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LAPIC Timer

= > 100 MHz
- Genauigkeit: 10 ns oder besser

= 32 bit Zahler
= verwendet Busfrequenz
- abhangig vom System
- aber unabhangig von Stromsparmodus
- Interrupt geht nur an den entsprechenden Kern

- 8 Moglichkeiten (bis %8 Busfrequenz) durch Vorteiler
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LAPIC Timer

= > 100 MHz
- Genauigkeit: 10 ns oder besser

= 32 bit Zahler
= verwendet Busfrequenz
- abhangig vom System
- aber unabhangig von Stromsparmodus
- Interrupt geht nur an den entsprechenden Kern

- 8 Moglichkeiten (bis %8 Busfrequenz) durch Vorteiler

Perfekt fiir unsere Bediirfnisse
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Funktionsweise des LAPIC Timers

CPU 1 . CPU N
APIC-Bus
local APIC local APIC

|/O-APIC

TTTTTITTITITITITIITITIT]
externe Gerate
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Funktionsweise des LAPIC Timers

local APIC
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Funktionsweise des LAPIC Timers

local APIC

Timer
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Funktionsweise des LAPIC Timers

local APIC

Timer
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Funktionsweise des LAPIC Timers

Noneter]

Timer
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Funktionsweise des LAPIC Timers

I’I ak Zeitgeber 10/22



Funktionsweise des LAPIC Timers
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Funktionsweise des LAPIC Timers

(T T

Count Register =
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Funktionsweise des LAPIC Timers

(T T

Interrupt bei o

Count Register =
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Funktionsweise des LAPIC Timers

Divide Configuration Register

Oxfee0 03e0

CPU 1

Interrupt bei o

Count Register =
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Funktionsweise des LAPIC Timers

Divide Configuration Register

Oxfee0 03e0

CPU 1

Interrupt bei o

Count Register =

0xfee0 0320
Timer Control Register
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Funktionsweise des LAPIC Timers

Divide Configuration Register

Oxfee0 03e0

CPU 1

[vorgeiter U TR AR 1111 [ vorteiter ]

Interrupt bei o

I Count Register =

0xfee0 0380 0xfee0 0390
Initial Current
Count Register

0xfee0 0320

Timer Control Register
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Aufbau des Timer Control Register Eintrags

| I
19
13 - Betriebsmodus: einmalig (0) oder periodisch (1)
16 [ Interrupt-Mask: Interrupt aktiv (0) oder inaktiv (1)
15
-
12 [  Zustellstatus Interrupt Nachricht noch unterwegs? (RO)
11
8 .
7
I Interrupt Vektor: Nummer in der Vektortabelle (32-255)
0
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Zusammenfassung LAPIC Timer

jede CPU hat einen eigenen 32bit Timer

Anderung am INITIAL COUNT REGISTER startet den Timer

zu Beginn wird der initiale Startzahlwert aus dem INITIAL COUNT REGISTER in

das CURRENT COUNT REGISTER kopiert

Bustakt

Voreeller dekrementiert wird

welches im

bei o wird - sofern aktiviert — ein Interrupt ausgelost

je nach Betriebsmodus wird gestoppt oder wieder neu begonnen
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windup stellt das Unterbrechungsintervall ein
(z.B. alle 1000 Mikrosekunden)

activate setzt den Timer und aktiviert Interrupts

prologue fordert Epilog an
(und kann zu Testzwecken eine Ausgabe tatigen)

epilogue wechselt die Anwendung mittels scheduler.resume ()
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LAPIC-Timer einstellen

1. LAPIC-Timer kalibrieren
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LAPIC-Timer einstellen

1. LAPIC-Timer kalibrieren

® in der Funktion LAPIC: : Timer: :ticks
(Funktion gibt die Anzahl der Ticks in einer Millisekunde zuriick)
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LAPIC-Timer einstellen

1. LAPIC-Timer kalibrieren

® in der Funktion LAPIC: : Timer: :ticks
(Funktion gibt die Anzahl der Ticks in einer Millisekunde zuriick)
= benotigt zur Konfiguration die Funktion LAPIC: : Timer: :set, Aufruf mit

= maximalem Wert fuir den LAPIC-Zahler,
= als ONE_SHOT und
= ohne Unterbrechungen
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LAPIC-Timer einstellen

1. LAPIC-Timer kalibrieren

® in der Funktion LAPIC: : Timer: : ticks
(Funktion gibt die Anzahl der Ticks in einer Millisekunde zuriick)
= benotigt zur Konfiguration die Funktion LAPIC: : Timer: :set, Aufruf mit
= maximalem Wert fiir den LAPIC-Zahler,
= als ONE_SHOT und
= ohne Unterbrechungen
= unter Verwendung des PIT

= Wartezeit von mehreren MS einstellen: PIT: :set
= mittels PIT: :waitForTimeout warten
= Start- und Endwert des LAPIC-Zahlerregisters merken
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LAPIC-Timer einstellen

1. LAPIC-Timer kalibrieren

® in der Funktion LAPIC: : Timer: : ticks
(Funktion gibt die Anzahl der Ticks in einer Millisekunde zuriick)
= benotigt zur Konfiguration die Funktion LAPIC: : Timer: :set, Aufruf mit
= maximalem Wert fiir den LAPIC-Zahler,
= als ONE_SHOT und
= ohne Unterbrechungen
= unter Verwendung des PIT

= Wartezeit von mehreren MS einstellen: PIT: :set
= mittels PIT: :waitForTimeout warten
= Start- und Endwert des LAPIC-Zahlerregisters merken

m Hilfsstrukturen in lapic_timer.cc & lapic_registers.h
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LAPIC-Timer einstellen

2. Initialen Wert und Vorteiler korrekt setzen
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LAPIC-Timer einstellen

2. Initialen Wert und Vorteiler korrekt setzen

= Interrupt soll alle n Mikrosekunden ausgelost werden
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LAPIC-Timer einstellen

2. Initialen Wert und Vorteiler korrekt setzen

= Interrupt soll alle n Mikrosekunden ausgelost werden

= . .+ 1 _ n-LAPIC::Timer::ticks()
= Startwertzahler initial = Veasiier 3000 berechnen,

dabei gilt Vorteiler = 2* mit x€ {0,...,7}
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LAPIC-Timer einstellen

2. Initialen Wert und Vorteiler korrekt setzen

= Interrupt soll alle n Mikrosekunden ausgelost werden

= Startwertzahler initial = 7-IAPIC Tiner: i ticksO) harechnen,
dabei gilt Vorteiler = 2* mit x€ {0,...,7}
= Moglichst kleiner Vorteiler, aber kein Uberlauf (32 bit!)
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LAPIC-Timer einstellen

2. Initialen Wert und Vorteiler korrekt setzen

= Interrupt soll alle n Mikrosekunden ausgelost werden

= Startwertzéhler initial = 2-LARIC: :Tiner :ticksO harechnen,
‘orteiler - 1000

dabei gilt Vorteiler = 2* mit x€ {0,...,7}
= Moglichst kleiner Vorteiler, aber kein Uberlauf (32 bit!)

m Beispiel: watch.windup (5000000) ;
n 5000000 JS =55
LAPIC: :Timer::ticks 1000000 ms~!
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LAPIC-Timer einstellen

2. Initialen Wert und Vorteiler korrekt setzen

= Interrupt soll alle n Mikrosekunden ausgelost werden

= Startwertzéhler initial = 2-LARIC: :Tiner :ticksO harechnen,
‘orteiler - 1000

dabei gilt Vorteiler = 2* mit x€ {0,...,7}
= Moglichst kleiner Vorteiler, aber kein Uberlauf (32 bit!)

m Beispiel: watch.windup (5000000) ;
n 5000000 JS =55
LAPIC: :Timer::ticks 1000000 ms™*
Vorteiler 1 =20
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LAPIC-Timer einstellen

2. Initialen Wert und Vorteiler korrekt setzen

= Interrupt soll alle n Mikrosekunden ausgelost werden

= Startwertzéhler initial = 2-LARIC: :Tiner :ticksO harechnen,
‘orteiler - 1000

dabei gilt Vorteiler = 2* mit x€ {0,...,7}
= Moglichst kleiner Vorteiler, aber kein Uberlauf (32 bit!)

m Beispiel: watch.windup (5000000) ;
n 5000000 S =5S
LAPIC: :Timer::ticks 1000000 ms™*
Vorteiler 1 =20
initial 5000000 000
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LAPIC-Timer einstellen

2. Initialen Wert und Vorteiler korrekt setzen

= Interrupt soll alle n Mikrosekunden ausgelost werden

= . .+ 1 _ n-LAPIC::Timer::ticks()
= Startwertzahler initial = Veasiier 3000 berechnen,

dabei gilt Vorteiler = 2* mit x€ {0,...,7}
= Moglichst kleiner Vorteiler, aber kein Uberlauf (32 bit!)

m Beispiel: watch.windup (5000000) ;
n 5000000 S =5S
LAPIC: :Timer::ticks 1000000 ms™*
Vorteiler 1 =20
initial 5000000 000 %
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LAPIC-Timer einstellen

2. Initialen Wert und Vorteiler korrekt setzen

= Interrupt soll alle n Mikrosekunden ausgelost werden

= Startwertzéhler initial = 2-LARIC: :Tiner :ticksO harechnen,
‘orteiler - 1000

dabei gilt Vorteiler = 2* mit x€ {0,...,7}
= Moglichst kleiner Vorteiler, aber kein Uberlauf (32 bit!)

m Beispiel: watch.windup (5000000) ;
n 5000000 S =5S
LAPIC: :Timer::ticks 1000000 ms™*
Vorteiler 2 =21
initial

II ak Umsetzung 14/22



LAPIC-Timer einstellen

2. Initialen Wert und Vorteiler korrekt setzen

= Interrupt soll alle n Mikrosekunden ausgelost werden

= Startwertzéhler initial = 2-LARIC: :Tiner :ticksO harechnen,
‘orteiler - 1000

dabei gilt Vorteiler = 2* mit x€ {0,...,7}
= Moglichst kleiner Vorteiler, aber kein Uberlauf (32 bit!)

m Beispiel: watch.windup (5000000) ;
n 5000000 S =5S
LAPIC: :Timer::ticks 1000000 ms™?
Vorteiler 2 =21
initial 2 500000 000
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LAPIC-Timer einstellen

2. Initialen Wert und Vorteiler korrekt setzen

= Interrupt soll alle n Mikrosekunden ausgelost werden

= Startwertzéhler initial = 2-LARIC: :Tiner :ticksO harechnen,
‘orteiler - 1000

dabei gilt Vorteiler = 2* mit x€ {0,...,7}
= Moglichst kleiner Vorteiler, aber kein Uberlauf (32 bit!)

m Beispiel: watch.windup (5000000) ;
n 5000000 S =5S
LAPIC: :Timer::ticks 1000000 ms™?
Vorteiler 2 =21
initial 2 500000 000 v
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Ablaufbeispiel (Standardfall)

appl
A AANANANNANANANANA~

EO (Anwendung)

E1 (piog)
2

E1 (IRQ/Prolog)
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Ablaufbeispiel (Standardfall)
E’

appl
A ANAANANANNANANANAN~

EO (Anwendung)

E1 (piog)
2

E1 (IRQ/Prolog)
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Ablaufbeispiel (Standardfall)
E’

appl
A AAANNANANANNNA— - - - -

EO (Anwendung)

E1 (piog)
2

E1 (IRQ/Prolog)
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Ablaufbeispiel (Standardfall)

appl

EO (Anwendung)

resume ()
E1 (piog) ’(\%
2
1
E]_ (IRQ/Prolog) o
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Ablaufbeispiel (Standardfall)

7
appl app2
MAANANNNANANANNNNA - - - - - - — - - -
EO (Anwendung)
resume ()
NN
El (Epilog) teave
2
1
E]_ (IRQ/Prolog) o

II ak
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Ablaufbeispiel (Standardfall)

appl app2
MAAAAANANANANANAA = = = — m — - — - - - AAANNNNANNANANNNANANNNANNNNA
EO (Anwendung)
resume ()
NN
El (Epilog) teave
2
1
E]_ (IRQ/Prolog) o

II ak
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Ablaufbeispiel (Standardfall)

g %
appl app2
NAANANANANANANANAA = = = = = o e e - ANNNANNNNNANNNNNNNNNANNNA-
EO (Anwendung)
resume ()
El (Epilog) teave
2
E]_ (IRQ/Prolog) e
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Ablaufbeispiel (Standardfall)

g %
appl app2
MAAAAANANANANANAA = = = — m — - — - - - ANANANNNNNANANNNNNNNNNNNN = = = =
EO (Anwendung)
resume ()
El (Epilog) teave
2
V\/\/V\J AN~
E]_ (IRQ/Prolog) e
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Ablaufbeispiel (Standardfall)

appl app2
MANAANANNANANANANA = = e - - - o ANNANNNNANNNNNNNNANANNNNN = = = = == = o
EO (Anwendung)
resume () resume ()
El (Epilog) leave
2
1
E]_ (IRQ/Prolog) o

relay

II ak
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Ablaufbeispiel (Standardfall)

appl app2 appl

MAANANANANANNNANANA— - - - m - - — - ANNNNANNNNANNNANNNNNNNNNNA = = = = m— o — =
EO (Anwendung)

resume () restme-’(\)/\/\_|
El (Epilog) leave leave
2
relay

E1 (IRQ/Prolog)

relay
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Ablaufbeispiel (Standardfall)

appl app2 appl

MANAANANNANANANANA = = e - - - o ANNANNANNANNNNNNNNNANNNNN = = = = = oo o o ANNNNA
EO (Anwendung)

resume () restme-’(\)/\/\_|
El (Epilog) leave leave
2
relay

E1 (IRQ/Prolog)

relay
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Ablaufbeispiel bei Faden in Systemebene

appl

EO (Anwendung)

E1 (piog)
2

E1 (IRQ/Prolog)
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Ablaufbeispiel bei Faden in Systemebene

appl enter

EO (Anwendung)

E1 (piog)
2

E1 (IRQ/Prolog)
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Ablaufbeispiel bei Faden in Systemebene

appl enter

EO (Anwendung)

o

E1 (piog)
2

E1 (IRQ/Prolog)
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Ablaufbeispiel bei Faden in Systemebene

appl enter

EO (Anwendung)

oo

E1 (piog)
2

E1 (IRQ/Prolog)
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Ablaufbeispiel bei Faden in Systemebene

appl enter

EO (Anwendung)

e

E1 (piog)
2

relay

E1 (IRQ/Prolog)
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Ablaufbeispiel bei Faden in Systemebene

appl enter

EO (Anwendung)

E1 (piog)
2

enqueue

relay

E1 (IRQ/Prolog)
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Ablaufbeispiel bei Faden in Systemebene

appl enter
EO (Anwendung)
El (Epilog) teave
2

enqueue

relay

E1 (IRQ/Prolog)
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Ablaufbeispiel bei Faden in Systemebene

appl enter
EO (Anwendung)
\/\/\/\/\' resume ()
El (Epilog) teave
2

enqueue

relay

E1 (IRQ/Prolog)
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Ablaufbeispiel bei Faden in Systemebene

appl enter app2
EO (Anwendung)
resume ()
““J\J\/\fr\/\/\r
leave
El (Epilog) teave
2

enqueue

relay

E1 (IRQ/Prolog)
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Ablaufbeispiel bei Faden in Systemebene

appl enter app2

resume ()
““J\J\/\fr\/\/\r
leave

El (Epilog) teave
2

EO (Anwendung)

enqueue

relay

E1 (IRQ/Prolog)

II ak Umsetzung 16/22



Ablaufbeispiel bei Faden in Systemebene

appl enter app2

resume ()
““J\J\/\fr\/\/\r
leave

El (Epilog) teave
2

EO (Anwendung)

enqueue

relay

E1 (IRQ/Prolog)
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Ablaufbeispiel bei Faden in Systemebene

appl enter app2

resume ()
““J\J\/\fr\/\/\r
leave

El (Epilog) teave
2

EO (Anwendung)

enqueue

relay

E1 (IRQ/Prolog)
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Ablaufbeispiel bei Faden in Systemebene

appl enter app2

resume ()
2% %
leave resume ()

EO (Anwendung)

El (Epilog) teave
2

enqueue

relay relay

E1 (IRQ/Prolog)
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Ablaufbeispiel bei Faden in Systemebene

appl enter app2

resume ()
2% %
leave resume ()
_______ NN

El (Epilog) leave leave
2

EO (Anwendung)

enqueue

relay relay

E1 (IRQ/Prolog)

II ak Umsetzung 16/22



Ablaufbeispiel bei Faden in Systemebene

appl enter app2 appl

resume ()
2% %
leave resume ()

El (Epilog) leave leave
2

Eo (Anwendung)

enqueue

relay relay

E1 (IRQ/Prolog)
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Ablaufbeispiel mit neuem Thread

appl

EO (Anwendung)

E1 (piog)
2

E1 (IRQ/Prolog)
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Ablaufbeispiel mit neuem Thread

appl enter

EO (Anwendung)

E1 (piog)
2

E1 (IRQ/Prolog)
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Ablaufbeispiel mit neuem Thread

appl enter

ready (&app2)

EO (Anwendung)

E1 (piog)
2

E1 (IRQ/Prolog)
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Ablaufbeispiel mit neuem Thread

appl enter

ready (&app2)

El (Epilog) Leave
2

EO (Anwendung)

E1 (IRQ/Prolog)
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Ablaufbeispiel mit neuem Thread

GuardedScheduler

appl enter

EO (Anwendung) M

El (Epilog) teave
2

E1 (IRQ/Prolog)
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Ablaufbeispiel mit neuem Thread

g

GuardedScheduler

appl enter

EO (Anwendung) W

El (Epilog) teave
2

E1 (IRQ/Prolog)
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Ablaufbeispiel mit neuem Thread

g

GuardedScheduler

appl enter

EO (Anwendung) M

El (Epilog) teave
2

E1 (IRQ/Prolog)
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Ablaufbeispiel mit neuem Thread

appl

EO (Anwendung)

GuardedScheduler

enter

E1 (piog)
2

ready (&app2)

leave

resume ()

=

E1 (IRQ/Prolog)

relay
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Umsetzung 17/22



Ablaufbeispiel mit neuem Thread

GuardedScheduler
appl enter
EO (Anwendung)
W resume () kickoff
ANNNNNA
El (Epilog) teave ’(\m
2

relay

E1 (IRQ/Prolog)
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Ablaufbeispiel mit neuem Thread

GuardedScheduler

appl

Eo (Anwendung)

enter

app2

E1 (piog)
2

ready (&app2)

leave

resume()  kickoff

leave

E1 (IRQ/Prolog)

relay

II ak
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Anwendungsfaden beenden

Praemptives Beenden mittels Scheduler: :kill (Thread&)
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Anwendungsfaden beenden

Praemptives Beenden mittels Scheduler: :kill (Thread&)

0O0StuBS keine Anderung
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Anwendungsfaden beenden

Praemptives Beenden mittels Scheduler: :kill (Thread&)

00StuBS keine Anderung: aus der Ready-Liste entfernen
bzw. Kill-Flag setzen und bei resume prifen
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Anwendungsfaden beenden

Praemptives Beenden mittels Scheduler: :kill (Thread&)

00StuBS keine Anderung: aus der Ready-Liste entfernen
bzw. Kill-Flag setzen und bei resume prifen

MPStuBS der Anwendungsfaden kann gerade auf einer anderen CPU laufen
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Anwendungsfaden beenden

Praemptives Beenden mittels Scheduler: :kill (Thread&)

00StuBS keine Anderung: aus der Ready-Liste entfernen
bzw. Kill-Flag setzen und bei resume prifen

MPStuBS der Anwendungsfaden kann gerade auf einer anderen CPU laufen

= Kill-Flag setzen (wie gehabt)

= falls er nicht in der Ready-Liste ist, lauft er wohl gerade auf
einer anderen CPU

= diese andere CPU muss benachrichtigt werden
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Anwendungsfaden beenden

Praemptives Beenden mittels Scheduler: :kill (Thread&)

00StuBS keine Anderung: aus der Ready-Liste entfernen
bzw. Kill-Flag setzen und bei resume prifen
MPStuBS der Anwendungsfaden kann gerade auf einer anderen CPU laufen
= Kill-Flag setzen (wie gehabt)
= falls er nicht in der Ready-Liste ist, lauft er wohl gerade auf

einer anderen CPU
= diese andere CPU muss benachrichtigt werden
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Anwendungsfaden beenden

Praemptives Beenden mittels Scheduler: :kill (Thread&)

00StuBS keine Anderung: aus der Ready-Liste entfernen
bzw. Kill-Flag setzen und bei resume priifen
MPStuBS der Anwendungsfaden kann gerade auf einer anderen CPU laufen
= Kill-Flag setzen (wie gehabt)
= falls er nicht in der Ready-Liste ist, lauft er wohl gerade auf
einer anderen CPU
= diese andere CPU muss benachrichtigt werden
> INTER PROCESSOR INTERRUPT (IPI)
= die angesprochene CPU muss dann das Kill-Flag des aktuellen
Prozesses prufen
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Inter Processor Interrupt

CPU 1 o CPU 2

local APIC-Bus local
APIC #1 APIC #2

|/O-APIC
FETTTTETT T rrrrrTd
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Inter Processor Interrupt

CPU 2

ocal

APIC #1 APIC #2

|/O-APIC
FETTTTETT T rrrrrTd
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Inter Processor Interrupt

CPU 2

lola ] BCal

APIC #1 APIC #2

|/O-APIC
FETTTTETT T rrrrrTd

LAPIC::IPI::send(destination, vector);
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Inter Processor Interrupt

CPU 2

lola ] BCal

APIC #1 APIC #2

|/O-APIC
FETTTTETT T rrrrrTd

LAPIC::IPI::send(destination, vector);

-
Interrupt
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Inter Processor Interrupt

CPU 2
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APIC #1 APIC #2

|/O-APIC
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Inter Processor Interrupt

CPU 2

lola ] BCal

APIC #1 APIC #2

|/O-APIC
FETTTTETT T rrrrrTd

destination = APIC::getLAPICID(cpu);

LAPIC::IPI::send(destination, vector);

Empfanger Interrupt
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Der Teufel steckt im Detail

Was kann hier schon schief gehen?

1 lock[Core::getID()] = true;
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Der Teufel steckt im Detail

Was kann hier schon schief gehen?

1 lock[Core::getID()] = true;

Viel - diese Zeile wird nicht atomar ausgefiihrt:

1 ; Array lock an Adresse 0x2000
> call <Core::getID()>
3 mov [rax+0x2000], Ox1

4 Scheduler Interrupt

Was passiert nun, wenn der Anwendungsfaden anschlieBend auf einer anderen
CPU eingeplant wird?
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Fragen uiber Fragen

= Kann nun eine fehlerhafte Anwendung unser Betriebssystem blockieren?
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Gibt es noch Fragen?

Abgabe der Aufgabe
bis Mittwoch, den 21. Januar
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