Ubung zu Betriebssystembau

Zeitscheibenscheduling

06. Januar 2025

Alexander Krause

Arbeitsgruppe Systemsoftware
Technische Universitat Dortmund

(Mit Material vom Lehrstuhl 4 der FAU)

technische universitat
dortmund

¥ 4

Arbeitsgruppe
Systemsoftware



Lehre-Evaluation Wintersemester 25/26

Bitte nehmt teil und fullt die Umfrage aus!

I ak Ubung zu Betriebssystembau - Zeitscheibenscheduling 1/22



Kooperative Ablaufplanung

1 int 1 = 0;

2 while (true)d{

3 {

4 Guarded _;

5 kout << i++ << endl;
6 }

7 scheduler.resume ();

s F

II ak Motivation 2/22



Unterbrechende Ablaufplanung

1 int 1 = 0;

2 while (true)d{

3 {

4 Guarded _;

5 kout << i++ << endl;
6 }

7

s F

II ak Motivation 3/22



Unterbrechende Ablaufplanung

1 int 1 = 0;

2 while (true)d{

3 {

4 Guarded _;

5 kout << i++ << endl;

6 }

. 4 Scheduler Interrupt
s F

II ak Motivation 3/22



Unterbrechende Ablaufplanung

1 int 1 = 0;

2 while (true)d{

3 {

4 Guarded _;

5 kout << i++ << endl;

6 }

. 4 Scheduler Interrupt
s F

Aufgabe: Praemptives Scheduling mittels Timer.

II ak Motivation 3/22



Programmable Interval Timer (PIT)

= Standardtimer seit 1981 (IBM-PC, Intel 8253/8254)
= ca. 1193182 Hz (= 1 NTSC-Freq.)

- Genauigkeit: 838 ns
® drei Kanale mit je einen 16 bit Zahler

Kanal o lost standardmaRig alle 54,9254ms IRQ 0 aus
Kanal 1 friher fiir Arbeitsspeicher
Kanal 2 fiir PC Speaker (Tonfrequenz)

II ak Zeitgeber 4/22



Programmable Interval Timer (PIT)

[P1C 82592

PIT

Arbeitsspeicher

Systemlautsprecher Timer 3

I‘I ak Zeitgeber 4/22



Programmable Interval Timer (PIT)

APIC-Bus

|/O-APIC
(T rrrTTT

PIT

Arbeitsspeicher
Systemlautsprecher

@ ak Zeitgeber 4/22




Programmable Interval Timer (PIT)

= Standardtimer seit 1981 (IBM-PC, Intel 8253/8254)
= ca. 1193182 Hz (= 1 NTSC-Freq.)
- Genauigkeit: 838 ns
® drei Kanale mit je einen 16 bit Zahler
Kanal o lost standardmaRig alle 54,9254ms IRQ 0 aus
Kanal 1 friher fiir Arbeitsspeicher
Kanal 2 fiir PC Speaker (Tonfrequenz)

= via PIC bzw. I/0 APIC - (relativ) langsam

II ak Zeitgeber 4/22



Programmable Interval Timer (PIT)

= Standardtimer seit 1981 (IBM-PC, Intel 8253/8254)
= ca. 1193182 Hz (= 1 NTSC-Freq.)

- Genauigkeit: 838 ns
® drei Kanale mit je einen 16 bit Zahler

Kanal o lost standardmaRig alle 54,9254ms IRQ 0 aus
Kanal 1 friher fiir Arbeitsspeicher
Kanal 2 fiir PC Speaker (Tonfrequenz)

= via PIC bzw. I/0 APIC - (relativ) langsam
= ausreichend fiir friihere BSB-Varianten, geht aber besser.

- machine/pit.h

II ak Zeitgeber 4/22



Real Time Clock (RTC)

seit 1984 (IBM-PC/AT)
32768 Hz (= 2% Hz, Verwendung in Uhren)

- StandardmaRig Interrupts bei 1 024 Hz (fast 1 ms)
- 12 weitere Moglichkeiten von 2 bis 8 192 Hz durch Vorteiler
- IRQ 8

fur Zeit & Datum
Betrieb im ausgeschalteten Zustand mittels Batterie

/ A Zeitgeber 5/22



Time Stamp Counter (TSC)

= seit 1993 (Pentium)

® 64 bit, auslesbar tUber Assemblerinstruktion rdtsc
= Taktfrequenz wie CPU

- urspriinglich Erhohung mit jedem Clock-Signal

- unterschiedliche Takte abhangig vom Stromsparmodus

- bei neueren Versionen: konstante Rate entsprechend nominaler
Geschwindigkeit

= kann keinen Interrupt auslosen

- machine/tsc.h

II ak Zeitgeber 6/22



ACPI Power Management Timer

seit es ACPI-Mainboards gibt (1996)
3579545 Hz (= NTSC-Freq.)

ein 24 oder 32 bit Zahler

- besser als alte (nicht konstante) TSC
- Zugriff iiber 1/0 Port

kann auch keinen Interrupt auslosen

/ A Zeitgeber 7/22



High Precision Event Timer (HPET)

= von Intel und Microsoft 2005 als PIT- & RTC-Ersatz veroffentlicht
m >10 MHz

- Genauigkeit: 100 ns oder besser
= ein 64 bit Zahler

- min. drei 32 oder 64 bit breite Vergleichseinrichtungen
- konfigurierbarer Interrupt bei Gleichheit

II ak Zeitgeber 8/22



LAPIC Timer

= > 100 MHz
- Genauigkeit: 10 ns oder besser

= 32 bit Zahler
= verwendet Busfrequenz
- abhangig vom System
- aber unabhangig von Stromsparmodus
- Interrupt geht nur an den entsprechenden Kern

- 8 Moglichkeiten (bis %8 Busfrequenz) durch Vorteiler

II ak Zeitgeber 9/22



LAPIC Timer

= > 100 MHz
- Genauigkeit: 10 ns oder besser

= 32 bit Zahler
= verwendet Busfrequenz
- abhangig vom System
- aber unabhangig von Stromsparmodus
- Interrupt geht nur an den entsprechenden Kern

- 8 Moglichkeiten (bis %8 Busfrequenz) durch Vorteiler

Perfekt fiir unsere Bediirfnisse

II ak Zeitgeber 9/22



Funktionsweise des LAPIC Timers

CPU 1 . CPU N
APIC-Bus
local APIC local APIC

|/O-APIC

TTTTTITTITITITITIITITIT]
externe Gerate

@ ak Zeitgeber 10/22



Funktionsweise des LAPIC Timers

local APIC

I’I ak Zeitgeber 10/22



Funktionsweise des LAPIC Timers

local APIC

Timer

I’I ak Zeitgeber 10/22



Funktionsweise des LAPIC Timers

local APIC

Timer

I’I ak Zeitgeber 10/22



Funktionsweise des LAPIC Timers

Noneter]

Timer

I’I ak Zeitgeber 10/22



Funktionsweise des LAPIC Timers

I’I ak Zeitgeber 10/22



Funktionsweise des LAPIC Timers

I’I ak Zeitgeber 10/22



Funktionsweise des LAPIC Timers

(T T

Count Register =

I’I ak Zeitgeber 10/22



Funktionsweise des LAPIC Timers

(T T

Interrupt bei o

Count Register =

I’I ak Zeitgeber 10/22



Funktionsweise des LAPIC Timers

Divide Configuration Register

Oxfee0 03e0

CPU 1

Interrupt bei o

Count Register =

I’I ak Zeitgeber 10/22



Funktionsweise des LAPIC Timers

Divide Configuration Register

Oxfee0 03e0

CPU 1

Interrupt bei o

Count Register =

0xfee0 0320
Timer Control Register

I’I ak Zeitgeber 10/22




Funktionsweise des LAPIC Timers

Divide Configuration Register

Oxfee0 03e0

CPU 1

[vorgeiter U TR AR 1111 [ vorteiter ]

Interrupt bei o

I Count Register =

0xfee0 0380 0xfee0 0390
Initial Current
Count Register

0xfee0 0320

Timer Control Register

I’I ak Zeitgeber 10/22




Aufbau des Timer Control Register Eintrags

| I
19
13 - Betriebsmodus: einmalig (0) oder periodisch (1)
16 [ Interrupt-Mask: Interrupt aktiv (0) oder inaktiv (1)
15
-
12 [  Zustellstatus Interrupt Nachricht noch unterwegs? (RO)
11
8 .
7
I Interrupt Vektor: Nummer in der Vektortabelle (32-255)
0
I‘I ak Zeitgeber 11/22



Zusammenfassung LAPIC Timer

jede CPU hat einen eigenen 32bit Timer

Anderung am INITIAL COUNT REGISTER startet den Timer

zu Beginn wird der initiale Startzahlwert aus dem INITIAL COUNT REGISTER in

das CURRENT COUNT REGISTER kopiert

Bustakt

Voreeller dekrementiert wird

welches im

bei o wird - sofern aktiviert — ein Interrupt ausgelost

je nach Betriebsmodus wird gestoppt oder wieder neu begonnen

/ A Zeitgeber 12/22



windup stellt das Unterbrechungsintervall ein
(z.B. alle 1000 Mikrosekunden)

activate setzt den Timer und aktiviert Interrupts

prologue fordert Epilog an
(und kann zu Testzwecken eine Ausgabe tatigen)

epilogue wechselt die Anwendung mittels scheduler.resume ()

II ak Umsetzung 13/22



LAPIC-Timer einstellen

1. LAPIC-Timer kalibrieren

II ak Umsetzung 14/22



LAPIC-Timer einstellen

1. LAPIC-Timer kalibrieren

® in der Funktion LAPIC: : Timer: :ticks
(Funktion gibt die Anzahl der Ticks in einer Millisekunde zuriick)

II ak Umsetzung 14/22



LAPIC-Timer einstellen

1. LAPIC-Timer kalibrieren

® in der Funktion LAPIC: : Timer: :ticks
(Funktion gibt die Anzahl der Ticks in einer Millisekunde zuriick)
= benotigt zur Konfiguration die Funktion LAPIC: : Timer: :set, Aufruf mit

= maximalem Wert fuir den LAPIC-Zahler,
= als ONE_SHOT und
= ohne Unterbrechungen

II ak Umsetzung 14/22



LAPIC-Timer einstellen

1. LAPIC-Timer kalibrieren

® in der Funktion LAPIC: : Timer: : ticks
(Funktion gibt die Anzahl der Ticks in einer Millisekunde zuriick)
= benotigt zur Konfiguration die Funktion LAPIC: : Timer: :set, Aufruf mit
= maximalem Wert fiir den LAPIC-Zahler,
= als ONE_SHOT und
= ohne Unterbrechungen
= unter Verwendung des PIT

= Wartezeit von mehreren MS einstellen: PIT: :set
= mittels PIT: :waitForTimeout warten
= Start- und Endwert des LAPIC-Zahlerregisters merken

II ak Umsetzung 14/22



LAPIC-Timer einstellen

1. LAPIC-Timer kalibrieren

® in der Funktion LAPIC: : Timer: : ticks
(Funktion gibt die Anzahl der Ticks in einer Millisekunde zuriick)
= benotigt zur Konfiguration die Funktion LAPIC: : Timer: :set, Aufruf mit
= maximalem Wert fiir den LAPIC-Zahler,
= als ONE_SHOT und
= ohne Unterbrechungen
= unter Verwendung des PIT

= Wartezeit von mehreren MS einstellen: PIT: :set
= mittels PIT: :waitForTimeout warten
= Start- und Endwert des LAPIC-Zahlerregisters merken

m Hilfsstrukturen in lapic_timer.cc & lapic_registers.h

II ak Umsetzung 14/22



LAPIC-Timer einstellen

2. Initialen Wert und Vorteiler korrekt setzen

II ak Umsetzung 14/22



LAPIC-Timer einstellen

2. Initialen Wert und Vorteiler korrekt setzen

= Interrupt soll alle n Mikrosekunden ausgelost werden

II ak Umsetzung 14/22



LAPIC-Timer einstellen

2. Initialen Wert und Vorteiler korrekt setzen

= Interrupt soll alle n Mikrosekunden ausgelost werden

= . .+ 1 _ n-LAPIC::Timer::ticks()
= Startwertzahler initial = Veasiier 3000 berechnen,

dabei gilt Vorteiler = 2* mit x€ {0,...,7}

II ak Umsetzung 14/22



LAPIC-Timer einstellen

2. Initialen Wert und Vorteiler korrekt setzen

= Interrupt soll alle n Mikrosekunden ausgelost werden

= Startwertzahler initial = 7-IAPIC Tiner: i ticksO) harechnen,
dabei gilt Vorteiler = 2* mit x€ {0,...,7}
= Moglichst kleiner Vorteiler, aber kein Uberlauf (32 bit!)

II ak Umsetzung 14/22



LAPIC-Timer einstellen

2. Initialen Wert und Vorteiler korrekt setzen

= Interrupt soll alle n Mikrosekunden ausgelost werden

= Startwertzéhler initial = 2-LARIC: :Tiner :ticksO harechnen,
‘orteiler - 1000

dabei gilt Vorteiler = 2* mit x€ {0,...,7}
= Moglichst kleiner Vorteiler, aber kein Uberlauf (32 bit!)

m Beispiel: watch.windup (5000000) ;
n 5000000 JS =55
LAPIC: :Timer::ticks 1000000 ms~!

II ak Umsetzung 14/22



LAPIC-Timer einstellen

2. Initialen Wert und Vorteiler korrekt setzen

= Interrupt soll alle n Mikrosekunden ausgelost werden

= Startwertzéhler initial = 2-LARIC: :Tiner :ticksO harechnen,
‘orteiler - 1000

dabei gilt Vorteiler = 2* mit x€ {0,...,7}
= Moglichst kleiner Vorteiler, aber kein Uberlauf (32 bit!)

m Beispiel: watch.windup (5000000) ;
n 5000000 JS =55
LAPIC: :Timer::ticks 1000000 ms™*
Vorteiler 1 =20

II ak Umsetzung 14/22



LAPIC-Timer einstellen

2. Initialen Wert und Vorteiler korrekt setzen

= Interrupt soll alle n Mikrosekunden ausgelost werden

= Startwertzéhler initial = 2-LARIC: :Tiner :ticksO harechnen,
‘orteiler - 1000

dabei gilt Vorteiler = 2* mit x€ {0,...,7}
= Moglichst kleiner Vorteiler, aber kein Uberlauf (32 bit!)

m Beispiel: watch.windup (5000000) ;
n 5000000 S =5S
LAPIC: :Timer::ticks 1000000 ms™*
Vorteiler 1 =20
initial 5000000 000

II ak Umsetzung 14/22



LAPIC-Timer einstellen

2. Initialen Wert und Vorteiler korrekt setzen

= Interrupt soll alle n Mikrosekunden ausgelost werden

= . .+ 1 _ n-LAPIC::Timer::ticks()
= Startwertzahler initial = Veasiier 3000 berechnen,

dabei gilt Vorteiler = 2* mit x€ {0,...,7}
= Moglichst kleiner Vorteiler, aber kein Uberlauf (32 bit!)

m Beispiel: watch.windup (5000000) ;
n 5000000 S =5S
LAPIC: :Timer::ticks 1000000 ms™*
Vorteiler 1 =20
initial 5000000 000 %

I‘I ak Umsetzung 14/22



LAPIC-Timer einstellen

2. Initialen Wert und Vorteiler korrekt setzen

= Interrupt soll alle n Mikrosekunden ausgelost werden

= Startwertzéhler initial = 2-LARIC: :Tiner :ticksO harechnen,
‘orteiler - 1000

dabei gilt Vorteiler = 2* mit x€ {0,...,7}
= Moglichst kleiner Vorteiler, aber kein Uberlauf (32 bit!)

m Beispiel: watch.windup (5000000) ;
n 5000000 S =5S
LAPIC: :Timer::ticks 1000000 ms™*
Vorteiler 2 =21
initial

II ak Umsetzung 14/22



LAPIC-Timer einstellen

2. Initialen Wert und Vorteiler korrekt setzen

= Interrupt soll alle n Mikrosekunden ausgelost werden

= Startwertzéhler initial = 2-LARIC: :Tiner :ticksO harechnen,
‘orteiler - 1000

dabei gilt Vorteiler = 2* mit x€ {0,...,7}
= Moglichst kleiner Vorteiler, aber kein Uberlauf (32 bit!)

m Beispiel: watch.windup (5000000) ;
n 5000000 S =5S
LAPIC: :Timer::ticks 1000000 ms™?
Vorteiler 2 =21
initial 2 500000 000

II ak Umsetzung 14/22



LAPIC-Timer einstellen

2. Initialen Wert und Vorteiler korrekt setzen

= Interrupt soll alle n Mikrosekunden ausgelost werden

= Startwertzéhler initial = 2-LARIC: :Tiner :ticksO harechnen,
‘orteiler - 1000

dabei gilt Vorteiler = 2* mit x€ {0,...,7}
= Moglichst kleiner Vorteiler, aber kein Uberlauf (32 bit!)

m Beispiel: watch.windup (5000000) ;
n 5000000 S =5S
LAPIC: :Timer::ticks 1000000 ms™?
Vorteiler 2 =21
initial 2 500000 000 v

II ak Umsetzung 14/22



Ablaufbeispiel (Standardfall)

appl
A AANANANNANANANANA~

EO (Anwendung)

E1 (piog)
2

E1 (IRQ/Prolog)

II ak

Umsetzung 15/22



Ablaufbeispiel (Standardfall)
E’

appl
A ANAANANANNANANANAN~

EO (Anwendung)

E1 (piog)
2

E1 (IRQ/Prolog)

II ak

Umsetzung 15/22



Ablaufbeispiel (Standardfall)
E’

appl
A AAANNANANANNNA— - - - -

EO (Anwendung)

E1 (piog)
2

E1 (IRQ/Prolog)

II ak

Umsetzung 15/22



Ablaufbeispiel (Standardfall)

appl

EO (Anwendung)

resume ()
E1 (piog) ’(\%
2
1
E]_ (IRQ/Prolog) o

II ak

Umsetzung 15/22



Ablaufbeispiel (Standardfall)

7
appl app2
MAANANNNANANANNNNA - - - - - - — - - -
EO (Anwendung)
resume ()
NN
El (Epilog) teave
2
1
E]_ (IRQ/Prolog) o

II ak

Umsetzung 15/22



Ablaufbeispiel (Standardfall)

appl app2
MAAAAANANANANANAA = = = — m — - — - - - AAANNNNANNANANNNANANNNANNNNA
EO (Anwendung)
resume ()
NN
El (Epilog) teave
2
1
E]_ (IRQ/Prolog) o

II ak

Umsetzung 15/22



Ablaufbeispiel (Standardfall)

g %
appl app2
NAANANANANANANANAA = = = = = o e e - ANNNANNNNNANNNNNNNNNANNNA-
EO (Anwendung)
resume ()
El (Epilog) teave
2
E]_ (IRQ/Prolog) e

II ak

Umsetzung 15/22



Ablaufbeispiel (Standardfall)

g %
appl app2
MAAAAANANANANANAA = = = — m — - — - - - ANANANNNNNANANNNNNNNNNNNN = = = =
EO (Anwendung)
resume ()
El (Epilog) teave
2
V\/\/V\J AN~
E]_ (IRQ/Prolog) e

II ak

Umsetzung 15/22



Ablaufbeispiel (Standardfall)

appl app2
MANAANANNANANANANA = = e - - - o ANNANNNNANNNNNNNNANANNNNN = = = = == = o
EO (Anwendung)
resume () resume ()
El (Epilog) leave
2
1
E]_ (IRQ/Prolog) o

relay

II ak

Umsetzung 15/22



Ablaufbeispiel (Standardfall)

appl app2 appl

MAANANANANANNNANANA— - - - m - - — - ANNNNANNNNANNNANNNNNNNNNNA = = = = m— o — =
EO (Anwendung)

resume () restme-’(\)/\/\_|
El (Epilog) leave leave
2
relay

E1 (IRQ/Prolog)

relay

II ak

Umsetzung 15/22



Ablaufbeispiel (Standardfall)

appl app2 appl

MANAANANNANANANANA = = e - - - o ANNANNANNANNNNNNNNNANNNNN = = = = = oo o o ANNNNA
EO (Anwendung)

resume () restme-’(\)/\/\_|
El (Epilog) leave leave
2
relay

E1 (IRQ/Prolog)

relay

II ak

Umsetzung 15/22



Ablaufbeispiel bei Faden in Systemebene

appl

EO (Anwendung)

E1 (piog)
2

E1 (IRQ/Prolog)

“':"' ak

Umsetzung

16/22



Ablaufbeispiel bei Faden in Systemebene

appl enter

EO (Anwendung)

E1 (piog)
2

E1 (IRQ/Prolog)

II ak Umsetzung

16/22



Ablaufbeispiel bei Faden in Systemebene

appl enter

EO (Anwendung)

o

E1 (piog)
2

E1 (IRQ/Prolog)

II ak Umsetzung

16/22



Ablaufbeispiel bei Faden in Systemebene

appl enter

EO (Anwendung)

oo

E1 (piog)
2

E1 (IRQ/Prolog)

II ak Umsetzung

16/22



Ablaufbeispiel bei Faden in Systemebene

appl enter

EO (Anwendung)

e

E1 (piog)
2

relay

E1 (IRQ/Prolog)

II ak Umsetzung

16/22



Ablaufbeispiel bei Faden in Systemebene

appl enter

EO (Anwendung)

E1 (piog)
2

enqueue

relay

E1 (IRQ/Prolog)

II ak Umsetzung

16/22



Ablaufbeispiel bei Faden in Systemebene

appl enter
EO (Anwendung)
El (Epilog) teave
2

enqueue

relay

E1 (IRQ/Prolog)

II ak Umsetzung

16/22



Ablaufbeispiel bei Faden in Systemebene

appl enter
EO (Anwendung)
\/\/\/\/\' resume ()
El (Epilog) teave
2

enqueue

relay

E1 (IRQ/Prolog)

II ak Umsetzung 16/22



Ablaufbeispiel bei Faden in Systemebene

appl enter app2
EO (Anwendung)
resume ()
““J\J\/\fr\/\/\r
leave
El (Epilog) teave
2

enqueue

relay

E1 (IRQ/Prolog)

II ak Umsetzung

16/22



Ablaufbeispiel bei Faden in Systemebene

appl enter app2

resume ()
““J\J\/\fr\/\/\r
leave

El (Epilog) teave
2

EO (Anwendung)

enqueue

relay

E1 (IRQ/Prolog)

II ak Umsetzung 16/22



Ablaufbeispiel bei Faden in Systemebene

appl enter app2

resume ()
““J\J\/\fr\/\/\r
leave

El (Epilog) teave
2

EO (Anwendung)

enqueue

relay

E1 (IRQ/Prolog)

II ak Umsetzung 16/22



Ablaufbeispiel bei Faden in Systemebene

appl enter app2

resume ()
““J\J\/\fr\/\/\r
leave

El (Epilog) teave
2

EO (Anwendung)

enqueue

relay

E1 (IRQ/Prolog)

II ak Umsetzung 16/22



Ablaufbeispiel bei Faden in Systemebene

appl enter app2

resume ()
2% %
leave resume ()

EO (Anwendung)

El (Epilog) teave
2

enqueue

relay relay

E1 (IRQ/Prolog)

II ak Umsetzung 16/22



Ablaufbeispiel bei Faden in Systemebene

appl enter app2

resume ()
2% %
leave resume ()
_______ NN

El (Epilog) leave leave
2

EO (Anwendung)

enqueue

relay relay

E1 (IRQ/Prolog)

II ak Umsetzung 16/22



Ablaufbeispiel bei Faden in Systemebene

appl enter app2 appl

resume ()
2% %
leave resume ()

El (Epilog) leave leave
2

Eo (Anwendung)

enqueue

relay relay

E1 (IRQ/Prolog)

II ak Umsetzung 16/22



Ablaufbeispiel mit neuem Thread

appl

EO (Anwendung)

E1 (piog)
2

E1 (IRQ/Prolog)

II ak Umsetzung 17/22



Ablaufbeispiel mit neuem Thread

appl enter

EO (Anwendung)

E1 (piog)
2

E1 (IRQ/Prolog)

II ak Umsetzung 17/22



Ablaufbeispiel mit neuem Thread

appl enter

ready (&app2)

EO (Anwendung)

E1 (piog)
2

E1 (IRQ/Prolog)

II ak Umsetzung 17/22



Ablaufbeispiel mit neuem Thread

appl enter

ready (&app2)

El (Epilog) Leave
2

EO (Anwendung)

E1 (IRQ/Prolog)

II ak Umsetzung 17/22



Ablaufbeispiel mit neuem Thread

GuardedScheduler

appl enter

EO (Anwendung) M

El (Epilog) teave
2

E1 (IRQ/Prolog)

II ak Umsetzung 17/22



Ablaufbeispiel mit neuem Thread

g

GuardedScheduler

appl enter

EO (Anwendung) W

El (Epilog) teave
2

E1 (IRQ/Prolog)

II ak Umsetzung 17/22



Ablaufbeispiel mit neuem Thread

g

GuardedScheduler

appl enter

EO (Anwendung) M

El (Epilog) teave
2

E1 (IRQ/Prolog)

II ak Umsetzung 17/22



Ablaufbeispiel mit neuem Thread

appl

EO (Anwendung)

GuardedScheduler

enter

E1 (piog)
2

ready (&app2)

leave

resume ()

=

E1 (IRQ/Prolog)

relay

II ak

Umsetzung 17/22



Ablaufbeispiel mit neuem Thread

GuardedScheduler
appl enter
EO (Anwendung)
W resume () kickoff
ANNNNNA
El (Epilog) teave ’(\m
2

relay

E1 (IRQ/Prolog)

II ak Umsetzung 17/22



Ablaufbeispiel mit neuem Thread

GuardedScheduler

appl

Eo (Anwendung)

enter

app2

E1 (piog)
2

ready (&app2)

leave

resume()  kickoff

leave

E1 (IRQ/Prolog)

relay

II ak

Umsetzung 17/22



Anwendungsfaden beenden

Praemptives Beenden mittels Scheduler: :kill (Thread&)

I ak Besonderheiten 18/22



Anwendungsfaden beenden

Praemptives Beenden mittels Scheduler: :kill (Thread&)

0O0StuBS keine Anderung

I ak Besonderheiten 18/22



Anwendungsfaden beenden

Praemptives Beenden mittels Scheduler: :kill (Thread&)

00StuBS keine Anderung: aus der Ready-Liste entfernen
bzw. Kill-Flag setzen und bei resume prifen

I ak Besonderheiten 18/22



Anwendungsfaden beenden

Praemptives Beenden mittels Scheduler: :kill (Thread&)

00StuBS keine Anderung: aus der Ready-Liste entfernen
bzw. Kill-Flag setzen und bei resume prifen

MPStuBS der Anwendungsfaden kann gerade auf einer anderen CPU laufen

I ak Besonderheiten 18/22



Anwendungsfaden beenden

Praemptives Beenden mittels Scheduler: :kill (Thread&)

00StuBS keine Anderung: aus der Ready-Liste entfernen
bzw. Kill-Flag setzen und bei resume prifen

MPStuBS der Anwendungsfaden kann gerade auf einer anderen CPU laufen
= Kill-Flag setzen (wie gehabt)

I ak Besonderheiten 18/22



Anwendungsfaden beenden

Praemptives Beenden mittels Scheduler: :kill (Thread&)

00StuBS keine Anderung: aus der Ready-Liste entfernen
bzw. Kill-Flag setzen und bei resume prifen
MPStuBS der Anwendungsfaden kann gerade auf einer anderen CPU laufen
= Kill-Flag setzen (wie gehabt)
= falls er nicht in der Ready-Liste ist, lauft er wohl gerade auf
einer anderen CPU

I ak Besonderheiten 18/22



Anwendungsfaden beenden

Praemptives Beenden mittels Scheduler: :kill (Thread&)

00StuBS keine Anderung: aus der Ready-Liste entfernen
bzw. Kill-Flag setzen und bei resume prifen

MPStuBS der Anwendungsfaden kann gerade auf einer anderen CPU laufen

= Kill-Flag setzen (wie gehabt)

= falls er nicht in der Ready-Liste ist, lauft er wohl gerade auf
einer anderen CPU

= diese andere CPU muss benachrichtigt werden

I ak Besonderheiten 18/22



Anwendungsfaden beenden

Praemptives Beenden mittels Scheduler: :kill (Thread&)

00StuBS keine Anderung: aus der Ready-Liste entfernen
bzw. Kill-Flag setzen und bei resume prifen
MPStuBS der Anwendungsfaden kann gerade auf einer anderen CPU laufen
= Kill-Flag setzen (wie gehabt)
= falls er nicht in der Ready-Liste ist, lauft er wohl gerade auf

einer anderen CPU
= diese andere CPU muss benachrichtigt werden
> INTER PROCESSOR INTERRUPT (IPI)

I ak Besonderheiten 18/22



Anwendungsfaden beenden

Praemptives Beenden mittels Scheduler: :kill (Thread&)

00StuBS keine Anderung: aus der Ready-Liste entfernen
bzw. Kill-Flag setzen und bei resume priifen
MPStuBS der Anwendungsfaden kann gerade auf einer anderen CPU laufen
= Kill-Flag setzen (wie gehabt)
= falls er nicht in der Ready-Liste ist, lauft er wohl gerade auf
einer anderen CPU
= diese andere CPU muss benachrichtigt werden
> INTER PROCESSOR INTERRUPT (IPI)
= die angesprochene CPU muss dann das Kill-Flag des aktuellen
Prozesses prufen

I ak Besonderheiten 18/22



Inter Processor Interrupt

CPU 1 o CPU 2

local APIC-Bus local
APIC #1 APIC #2

|/O-APIC
FETTTTETT T rrrrrTd

@ ak Besonderheiten 19/22



Inter Processor Interrupt

CPU 2

ocal

APIC #1 APIC #2

|/O-APIC
FETTTTETT T rrrrrTd

@ ak Besonderheiten 19/22



Inter Processor Interrupt

CPU 2

lola ] BCal

APIC #1 APIC #2

|/O-APIC
FETTTTETT T rrrrrTd

LAPIC::IPI::send(destination, vector);

@ ak Besonderheiten 19/22



Inter Processor Interrupt

CPU 2

lola ] BCal

APIC #1 APIC #2

|/O-APIC
FETTTTETT T rrrrrTd

LAPIC::IPI::send(destination, vector);

-
Interrupt

@ ak Besonderheiten 19/22



Inter Processor Interrupt

CPU 2

lola ] BCal

APIC #1 APIC #2

|/O-APIC
FETTTTETT T rrrrrTd

LAPIC::IPI::send(destination, vector);

Empfanger Interrupt

@ ak Besonderheiten 19/22



Inter Processor Interrupt

CPU 2

lola ] BCal

APIC #1 APIC #2

|/O-APIC
FETTTTETT T rrrrrTd

destination = APIC::getLAPICID(cpu);

LAPIC::IPI::send(destination, vector);

Empfanger Interrupt

@ ak Besonderheiten 19/22



Der Teufel steckt im Detail

Was kann hier schon schief gehen?

1 lock[Core::getID()] = true;

/ A Besonderheiten 20/22



Der Teufel steckt im Detail

Was kann hier schon schief gehen?

1 lock[Core::getID()] = true;

Viel - diese Zeile wird nicht atomar ausgefiihrt:

1 ; Array lock an Adresse 0x2000
> call <Core::getID()>
3 mov [rax+0x2000], Ox1

/ A Besonderheiten 20/22



Der Teufel steckt im Detail

Was kann hier schon schief gehen?

1 lock[Core::getID()] = true;

Viel - diese Zeile wird nicht atomar ausgefiihrt:

1 ; Array lock an Adresse 0x2000
> call <Core::getID()>
3 mov [rax+0x2000], Ox1

4 Scheduler Interrupt

/ A Besonderheiten 20/22



Der Teufel steckt im Detail

Was kann hier schon schief gehen?

1 lock[Core::getID()] = true;

Viel - diese Zeile wird nicht atomar ausgefiihrt:

1 ; Array lock an Adresse 0x2000
> call <Core::getID()>
3 mov [rax+0x2000], Ox1

4 Scheduler Interrupt

Was passiert nun, wenn der Anwendungsfaden anschlieBend auf einer anderen
CPU eingeplant wird?

/ A Besonderheiten 20/22



Fragen uiber Fragen

= Kann nun eine fehlerhafte Anwendung unser Betriebssystem blockieren?

/ A Besonderheiten 21/22



Fragen uiber Fragen

= Kann nun eine fehlerhafte Anwendung unser Betriebssystem blockieren?

m Unter welchen Umstanden ware es effizienter, den Timer abzuschalten
(Stichwort tickless)?

/ A Besonderheiten 21/22



Fragen uiber Fragen

= Kann nun eine fehlerhafte Anwendung unser Betriebssystem blockieren?

m Unter welchen Umstanden ware es effizienter, den Timer abzuschalten
(Stichwort tickless)?

/ A Besonderheiten 21/22



Gibt es noch Fragen?

Abgabe der Aufgabe
bis Mittwoch, den 21. Januar



	Motivation
	Zeitgeber
	Umsetzung
	Besonderheiten

