©2023 A. Lochmann (TUDO), 2022 P. Ulbrich (TUDO), 2021-16 Vir Sieh (FAU), 2016-07 D. Lohmann (LUHH), 2006 O. Spinczyk (UOS)

Betriebssystembau (BSB)

VL 14 — Zusammenfassung
und Ausblick

Alexander Krause

Lehrstuhl fur Informatik 12 — Arbeitsgruppe Systemsoftware / IRB
Technische Universitat Dortmund

https://sys.cs.tu-dortmund.de/de/lehre/ws25/bsb

WS 25 — 26. Januar 2026

technische universitat l=J arbeitsgruppe
dortmund systemsoftware

https://sys.cs.tu-dortmund.de/de/lehre/ws25/bsb

Agenda

Ziele und Zielerreichung

L

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick— Ziele und Zielerreichung 14-2

Vertiefen des Wissens Uber die interne
Funktionsweise von Betriebssystemen

= Ausgangspunkt: Systemprogrammierung
= Schwerpunkt: Nebenl&dufigkeit und Synchronisation

Entwickeln eines Betriebssystems von der Pike auf

= OOStuBS / MPStuBS Lehrbetriebssysteme
m Praktische Erfahrungen im Betriebsystembau machen

Verstehen der technologischen Hardware-Grundlagen

m PC-Technologie verstehen und einschatzen kénnen
= Schwerpunkt: Intel x86_64

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick —Ziele und Zielerreichung 14-3

Anwendung(en)

Interprozess-
kommunikation

Unterbrechungs-
synchronisation

Geratezugriff

Prozessverwaltung

(Treiber)

Unterbrechungs- Kontrollfluss-

behandlung abstraktion

Hardware

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick —Ziele und Zielerreichung 14-4

L

Was wir gemacht haben

VL,
Vi,
Vi,
VL,
Vig
Vig
VL,
Vig
Vig
VLo
VL
VLo
VLis

Einftihrung
BS-Entwicklung

IRQs (Hardware)
IRQs (Software)

IRQs (Synchronisation)
IRQs (SoftIRQ)

Intel IA-32

Koroutinen und Faden
Scheduling
Architekturen
Fadensynchronisation
Gerétetreiber

IPC

Drei inhaltliche Schwerpunkte!

al

Betriebssystembau (VL 14 | WS 25)

14 Zusammenfassung und Ausblick —Ziele und Zielerreichung 14-5

1.

LT

Was wir gemacht haben

Ein Streifzug durch die PC-Architektur

VL,
Vi,
VL,
VL,
Vig
Vig
VL,
Vig
Vig
VLo
VL
VLo
VLis

Einftihrung
BS-Entwicklung

IRQs (Hardware)
IRQs (Software)

IRQs (Synchronisation)
IRQs (SoftIRQ)

Intel IA-32
Koroutinen und Faden
Scheduling
Architekturen
Fadensynchronisation
Gerétetreiber

IPC

Drei inhaltliche Schwerpunkte!

al

Betriebssystembau (VL 14 | WS 25)

14 Zusammenfassung und Ausblick —Ziele und Zielerreichung 14-5

Was wir gemacht haben

Drei inhaltliche Schwerpunkte!

1. Ein Streifzug durch die PC-Architektur

L

Die APIC Architektur

= ein APIC Interrupt-System besteht aus lokalen APICs auf

jeder CPU und einem 1/0 APIC

Pentium Pentium lokale
(primér) a Unterbrechungen
LNTOM M Tokaler || “ Tokaler N
APIC-Bus . H
o Apic Jf AR APIC_jeLN IA-32: Adressierungsarten
Unterbrechungen
= Effektive Adressen (EA) werden nach einem
einfachen Schema gebildet
= alle Viel: gi koénnen dabei glei ig verwendet werden
Unterbrechungsanforderungen .
ﬁ‘ 8 Bit Wert
-l o wLawss) o — 32 Bit Wert
» Beispiel: MOV EAX, Feld[ESI * 4]
= Lesen aus Feld mit 4 Byte groBen Elementen und ESI als Index
al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick —Ziele und Zielerreichung 14-5

2. Kontrollflisse und ihre Interaktionen

LT

Was wir gemacht haben

VLy Einfihrung

VL, BS-Entwicklung

VL; IRQs (Hardware)

VL, IRQs (Software)

VLs IRQ@s (Synchronisation)
VLs IRQs (SoftIRQ)

VL; Intel IA-32

VLg Koroutinen und Fiaden
VLy; Scheduling

VLo Architekturen

VL, Fadensynchronisation
VL, Gerdtetreiber

VL3 IPC

Drei inhaltliche Schwerpunkte!

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick —Ziele und Zielerreichung 14-5

Was wir gemacht haben

Drei inhaltliche Schwerpunkte!

2. Kontrollflisse und ihre Interaktionen

Prioritatsebenenmodell
= Kontrollflisse kdnnen die Ebene wechseln
= Mit cli wechselt ein Ey-Kontrollfluss explizit auf E,
~ er st ab dann nicht mehr unterbrechbar
~ andere E,-Kontrollfiisse werden verzogert (< Sequentialisierung)
= Mit sti wechselt ein E;-Kontrollfluss explizit auf Ey
~ erist ab dann (wieder) unterbrechbar
~ anhéngige E,-Kontrollfiiisse ,schlagen durch’ (¢ Erweitertes Prioritatsebenenmodell
cli sti
EOEV‘MMMN """" ™M | S = Kontrollflisse auf E; werden
(unterbrechbar) 5 % 1. jederzeit unterbrochen durch Kontrollflisse von E,,, (firm> 1)
g g 2. nie unterbrochen durch Kontrollfliisse von E, (fark < 1)
Ay
= s 3. jederzeit verdrangt durch Kontrollfiisse von E; (far 1=0)
E4 [
(nicht unterbrechbar)
r t— g B .
[T Eo
amll o Soviobssystombau (VL5 | Ws25) 5 ortdts od (unarrocnon widdhgdgnebene iisse der E,
E sind verdrangbar.
1/2
% "mfgy'lﬂﬂ?‘?e"e Fir die Konsistenzssicherung auf
dieser Ebene brauchen wir zusatzli-
Eq Uma,b,echungsm,]e che Mechanismen zur
(vt unerbrechbar, it vorarangoa) F
q

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick - Ziele und Zle\errelchung 14-5

Was wir gemacht haben

Drei inhaltliche Schwerpunkte!

2. Kontrollflisse und ihre Interaktionen

VL; Einfihrung

VL, BS-Entwicklung U, Ein-/Ausgabe
VL; IRQs (Hardware)

VL, IRQs (Software)

VLs IRQs (Synchronisation)
VLs IRQs (SoftiIRQ)

VL, Intel IA-32

U, IRQ-Behandlung

U; IRQ-Synchronisation
VLg Koroutinen und Fiden
VLg Scheduling

VL, Architekturen

U, Fadenumschaltung
VL Fadensynchronisation Us Zeitscheiben-Scheduling
VL, Gerétetreiber

VLiz IPC

I | l U, “Eine Anwendung” (opt.)

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick —Ziele und Zielerreichung 14-5

2

Us Fadensynchronisation

Was wir gemacht haben

Drei inhaltliche Schwerpunkte!

2. Kontrollflisse und ihre Interaktionen

machine [

cPu Key]—o[Keymam,cﬂmmuey] [LAPIC PIT i

Spinlock i i CGAScreen i| ! IOAPIC i i Plugbox

—
Chain
Queue
object 3 guard
{ Keyboard) | Panic | L waeh
3] 0
tL- ccAsteam !
device
syscall
user
Generalization (“is a"): —
Dependency (“uses —
I . Aggregation (“part of”): —
J al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick —Ziele und Zielerreichung 14-5

Was wir gemacht haben

Drei inhaltliche Schwerpunkte!

3. BS-Konzept allgemein und am Beispiel (Windows/Linux)

LT

VL,
VL,
Vi,
VL,
VL,
Vig
VL,
Vi,
VL,
VLio
VL4
VLip
VL3

Einftihrung
BS-Entwicklung

IRQs (Hardware)

IRQs (Software)

IRQs (Synchronisation)
IRQs (SoftIRQ)

Intel IA-32

Koroutinen und Faden
Scheduling
Architekturen
Fadensynchronisation
Gerétetreiber

IPC

al

Betriebssystembau (VL 14 | WS 25)

14 Zusammenfassung und Ausblick —Ziele und Zielerreichung 14-5

Was wir gemacht haben

Drei inhaltliche Schwerpunkte!

3. BS-Konzept allgemein und am Beispiel (Windows/Linux)

Completely Fair Scheduler (CFS)

Ansatz: Ablaufbereite Tasks bekommen die Rechenzeit

gleichmaRig ("fair") zugeteilt
= bei n Tasks jeweils 1/n-tel der CPU-Leistung
= hierarchische Zuteilung durch scheduling groups

CFS lauft nur bei SCHED_NORMAL
= Echtzeittask (SCHED_RR und SCHED_FIFO) wie bi
= ansonsten: Task mit geringster CPU-Zeit hat héchste

Planungskriterium ist die bislang zugeteilte CPU-Z
= Ready-Liste als Rot-Schwarz-Baum, sortiert nach de
= Komplexitat O(log N)

(in der Praxis trotzdem effizienter als alter O(1)-Sche

= Prioritaten (im Sinne von nice) werden durch
"schnellere/langsamere” Uhren abgebildet

Al Botriobssystombau (VL9 | WS25) 9 Fadonverwaltung - Ablaufplanung

Windows — Treiberstruktur

Das E/A-System steuert den Treiber mit Hilfe der

Initialisierungsroutine/Entladeroutine

= wird nach/vor dem Laden/Entladen des Treibers ausgefiihrt

Routine zum Hinzufiigen von Geraten

= PnP Manager hat ein neues Gerat fiir den Treiber

"Verteilerroutinen"

= Offnen, SchlieRen, Lesen, Schreiben und gerétespezifische
Oper.

Interrupt Service Routine

= wird von der zentralen Interrupt-Verteilungsroutine aufgerufen

DPC-Routine

= "Epilog" der Unterbrechungsbehandlung

E/A-Komplettierungs- und -Abbruchroutine

= Informationen Uber den Ausgang weitergeleiteter E/A-Auftrage

al

fay—

bau (VL 12| WS25) 12 Treber

o dos E/A-Systoms 12-20

Betriebssystembau (VL 14 | WS 25)

14 Zusammenfassung und Ausblick —Ziele und Zielerreichung

Zusammen eine ganze Menge!

[Anwendung(en) }

Interprozess-
kommunikation

Geratezugriff < < 7 ’rozessverwaltung

(Treiber)

Kontrollfluss-
abstraktion

Hardware

Betriebssystembau

Betriebssystementwicklung

L

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick— Ziele und Zielerreichung 14-6

Realitatscheck: MPStuBS «— ,richtiges BS*

Es fehlt noch eine ganze Menge!

Adressraumverwaltung und Prozesskonzept ~ [BST]
Dateisystem und Programmlader

Netzwerk und TCP/IP

LT

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick— Ziele und Zielerreichung 14-7

Realitatscheck: MPStuBS «— richtiges BS*

Es fehlt noch eine ganze Menge!
Adressraumverwaltung und Prozesskonzept
Dateisystem und Programmlader

Netzwerk und TCP/IP

Beispiel Linux [10]
Aug 91 Linux 0.01: bash, Dateisystem
Jan 92 Linux 0.12: Virtueller Speicher (Paging)

~ [BST]

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick —Ziele und Zielerreichung

14-7

Realitatscheck: MPStuBS «— richtiges BS*

Es fehlt noch eine ganze Menge!

Adressraumverwaltung und Prozesskonzept ~ [BST]

Dateisystem und Programmlader
Netzwerk und TCP/IP

Beispiel Linux [10]

Aug 91 Linux 0.01:
Jan 92 Linux 0.12:
Mar 92 Linux 0.95:

bash, Dateisystem
Virtueller Speicher (Paging)

X-Windows, Unix Domain Sockets
(jetzt fehlte nur noch Netzwerk!)

al

Betriebssystembau (VL 14 | WS 25)

14 Zusammenfassung und Ausblick —Ziele und Zielerreichung 14-7

Realitatscheck: MPStuBS «— richtiges BS*

Es fehlt noch eine ganze Menge!

Adressraumverwaltung und Prozesskonzept ~ [BST]

Dateisystem und Programmlader
Netzwerk und TCP/IP

Beispiel Linux [10]

Aug 91 Linux 0.01:
Jan 92 Linux 0.12:
Mar 92 Linux 0.95:

Mar 94 Linux 1.00:

bash, Dateisystem
Virtueller Speicher (Paging)

X-Windows, Unix Domain Sockets
(jetzt fehlte nur noch Netzwerk!)

Netzwerk und TCP/IP

al

Betriebssystembau (VL 14 | WS 25)

14 Zusammenfassung und Ausblick —Ziele und Zielerreichung 14-7

Agenda

Betriebssystemforschung

L

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick — Betriebssystemforschung 14-8

Betriebssysteme — ausgeforscht?

,Systems Software Research is Irrelevant” [6] de . .
Urgestein Robert Pike (2000), einer der Entwickler von 6 .
UNIX, Inferno [5], Plan 9 [7] und UTF-8
(zur Zeit bei Google beschaftigt): > - :
= Where is the innovation? - Microsoft, mostly]
34 . .

= Every other ,new” OS ends up being UNIX
= Linux? -~ Just another copy of the same old stuff

1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999
New Operating Systems at SOSP [6]

Ll

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick — Betriebssystemforschung 14-9

Betriebssysteme +— ausgeforscht?

,Systems Software Research is Irrelevant” [6] de . .
Urgestein Robert Pike (2000), einer der Entwickler von 6 .
UNIX, Inferno [5], Plan 9 [7] und UTF-8
(zur Zeit bei Google beschiftigt): 1 : .
= Where is the innovation? -~ Microsoft, mostly]
= Every other ,new” OS ends up being UNIX 7 te
= Linux? - Just another copy of the same old stuff] ©t .
[] Ly
1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999
New Operating Systems at SOSP [6]
[T —— [T S—
MiCA H i [i
Aber dann. .. g%
=
<:> .‘:LPCIu
The Multicore =
, c:\‘/ rh:‘l’u-
Challenge!

L

al Betriebssystembau (VL 14 | WS 25)

14 Zusammenfassung und Ausblick — Betriebssystemforschung

Fallstudie: Dateideskriptortabelle in Linux

= Boyd-Wickizer u.a. (OSDI 2008) [2]
= Linux 2.6.25 auf 16-Kern AMD Opteron, 1-16 Kerne in Gebrauch
= Pro Kern ein Faden, der Dateideskriptoren anfordert und freigibt:
int f = open(...); while(1){ close(dup(f)); }

Dateideskriptortabelle: # dup/close pro Sekunde

(@)
C
-]
e
S
s
p -
LU
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Prozessorkerne
L
al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick — Betriebssystemforschung 14-10

L

Fallstudie: Dateideskriptortabelle in Linux

Boyd-Wickizer u. a. (OSDI 2008)

= Linux 2.6.25 auf 16-Kern AMD Opteron, 1—-16 Kerne in Gebrauch
= Pro Kern ein Faden, der Dateideskriptoren anfordert und freigibt:
int f = open(...); while(1){ close(dup(f)); }

Dateideskriptortabelle: # dup/close pro Sekunde

—
(0
=
S keine Verbesserung!
o
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Prozessorkerne
al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick — Betriebssystemforschung

(2]

14-10

Fallstudie: Dateideskriptortabelle in Linux

= Boyd-Wickizer u.a. (OSDI 2008)
= Linux 2.6.25 auf 16-Kern AMD Opteron, 1-16 Kerne in Gebrauch
= Pro Kern ein Faden, der Dateideskriptoren anfordert und freigibt:
int f = open(...); while(1){ close(dup(f)); }
= Ergebnis: Schon ab 2 Kernen sinkt der Gesamtdurchsatz

J al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick — Betriebssystemforschung

(2]

14-10

Fallstudie: Dateideskriptortabelle in Linux

= Boyd-Wickizer u.a. (OSDI 2008)

= Linux 2.6.25 auf 16-Kern AMD Opteron, 1—-16 Kerne in Gebrauch
m Pro Kern ein Faden, der Dateideskriptoren anfordert und freigibt:
int f = open(...); while(1){ close(dup(f)); }
= Ergebnis: Schon ab 2 Kernen sinkt der Gesamtdurchsatz
1. Grobgranulares Locking ~ false sharing

(2]

~ keine Skalierbarkeit

fd_alloc () {
lock(fd_table);
fd = get_free_fd();
set_fd_used(fd);
fix_smallest_fd();
unlock(fd_table);

1. false sharing

J al Betriebssystembau (VL 14 | WS 25)

14 Zusammenfassung und Ausblick — Betriebssystemforschung 14-10

Fallstudie: Dateideskriptortabelle in Linux

= Boyd-Wickizer u.a. (OSDI 2008) [2]
= Linux 2.6.25 auf 16-Kern AMD Opteron, 1—-16 Kerne in Gebrauch
m Pro Kern ein Faden, der Dateideskriptoren anfordert und freigibt:
int f = open(...); while(1){ close(dup(f)); }
= Ergebnis: Schon ab 2 Kernen sinkt der Gesamtdurchsatz
1. Grobgranulares Locking ~ false sharing ~ keine Skalierbarkeit
2. Geteilte Datenstruktur ~ cache trashing -~ Durchsatzabfall

CZ

fd_alloc () {
lock(fd_table); 3 Zyklen |121 Zyklen
fd = get_free_fd(); | Ui
set_fd_used(fd); x |_’_|
fix_smallest_fd(); I 5 | I 5 |
unlock(fd_table);

1. false sharing 2. cache trashing

Ll

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick — Betriebssystemforschung 14-10

Boyd-Wickizer u. a. (OSDI 2008) [2]
= Linux 2.6.25 auf 16-Kern AMD Opteron, 1—-16 Kerne in Gebrauch
m Pro Kern ein Faden, der Dateideskriptoren anfordert und freigibt:
int f = open(...); while(1){ close(dup(f)); }
Ergebnis: Schon ab 2 Kernen sinkt der Gesamtdurchsatz
Grobgranulares Locking false sharing keine Skalierbarkeit
Geteilte Datenstruktur cache trashing Durchsatzabfall

Multicore: POSIX (— UNIX) considered harmful!

, This problem is not specific to Linux, but is due to POSIX semantics, which
require that a new file descriptor be visible to all of a process’s threads even if
only one thread uses it.”[2]

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick — Betriebssystemforschung 14-10

MIT, OSDI 2008, Exokern-artig:

m Sharing unter die Kontrolle der Applikation stellen
= Datenstrukturen (im Normalfall) nur von einem Kern aus bearbeiten

Anwendungen mlssen angepasst werden

ETH/MSR, SOSP 2009, Mikrokern-artig:

= BS als verteiltes System von Kernen verstehen und organisieren
m kein implizites Sharing, Kommunikation nur ber Nachrichten

MIT, 2009, Mikrokern-artig:

BS fiir 100 bis 1000 Kerne ~- time sharing wird zu space sharing
Letztlich ahnlicher Ansatz wie Barrelfish

UT, SOSP 2009, Monolith (Linux):

Konkurrenz zulassen durch transactional syscalls (statt Locks)
Anwendungen mussen angepasst werden

Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick — Betriebssystemforschung

(2]

(1]

[11]

(8]

14-11

Boyd-Wickizer u.a. (OSDI 2010) [3]

= ,An Analysis of Linux Scalability to Many Cores”
m Skalierbarkeit von Linux 2.6.35-rc5 auf 48-Kern AMD Opteron

Ansatz: run— analyze —

= run: sieben ,systemintensive” Anwendungen

Exim, memcached, Apache, PostgreSQL, gmake, Psearchy, MapReduce
m analyze: gezielte Identifizierung von Flaschenhéalsen

im Linux-Kern selber (16)

im Entwurf der Anwendung

durch die ungeschickte Verwendung der Systemschnittstelle

m Verbesserung, Uberwiegend durch Standardtechniken
der parallelen Programmierung (~— [PFP])

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick — Betriebssystemforschung 14-12

Clements u.a. (SOSP 2013) [4]
m ,The Scalable Commutativity Rule: Designing Scalable Software for Multicore
Processors*

m Skalierbarkeit von Schnittstellen theoretisch und praktisch untersucht anhand
Kommutativitat der (mdglichen) Implementierung.

Idee: Wenn Operationen kommutativ sind, kénnen sie (im Prinzip) auch
skalierbar implementiert werden.

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick — Betriebssystemforschung 14-13

Ergebnis: Alles nicht so schlimm. ..

,We find that we can remove most kernel bottlenecks that the applications stress
by modifying the applications or kernel slightly.

[. ..] the results suggest that traditional kernel designs may be compatible
with achieving scalability on multicore computers.”[3]

LFinally, using sv6, we showed that it is practical to achieve a broadly scalable
implementation of POSIX by applying the rule, and that commutativity is
essential to achieving scalability and performance on real hardware. ”[4]

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick — Betriebssystemforschung 14-14

Agenda

SS 2026 am Lehrstuhl - VSS

L

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick—SS 2026 am Lehrstuhl - VSS 14-15

Verlassliche Systemsoftware — Motivation

Systemsoftware (von eingebetteten Systemen) begeistert
Neue Verfahren und Architekturen zu entwickeln, ist spannend!
Mikrokerne schotten Programme raumlich voneinander ab

Verschllsselungsalgorithmen garantieren Datensicherheit
Echtzeitsysteme erlaubten ein zeiilich vorhersagbares Verhalten

> Prioritatsorientierte Einplanung von Arbeitsauftrage

J al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick—SS 2026 am Lehrstuhl - VSS 14-16

Verlassliche Systemsoftware — Motivation

1= Systemsoftware (von eingebetteten Systemen) begeistert
m Neue Verfahren und Architekturen zu entwickeln, ist spannend!
= Mikrokerne schotten Programme raumlich voneinander ab

= Verschlusselungsalgorithmen garantieren Datensicherheit
m Echtzeitsysteme erlaubten ein zeitlich vorhersagbares Verhalten

> Prioritatsorientierte Einplanung von Arbeitsauftrage

Das ist jedoch nur die halbe Miete

m Erfordert méglichst fehlerfreie Implementierungen
= Implementierung muss mit Laufzeitfehlern umgehen kénnen
— Verfahren und Architekturen missen korrekt arbeiten!

1= Wie lassen sich Fehler vermeiden bzw. behandeln?

-

Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick—SS 2026 am Lehrstuhl - VSS 14-16

=) s

Verlassliche Systemsoftware — Motivation

Systemsoftware (£ geistert

v 5 ; |
L] Ngue Verfahren u BOH, DIE 200M-FUNKTION | pannend!
m Mikrokerne schotl IST JR DER HAMMER! | | &erab

= Verschliisselungs B rheit
m Echtzeitsysteme ¢ 5 Verhalten

—> Prioritatsorientie

Das ist jedoch nu
= Erfordert méglich:
= |Implementierung
— Verfahren und Arc

dnnen

Wie Iassen sich Fcll:lcl...;cl ;II.GIUGII NLv. cllllueln?

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick—SS 2026 am Lehrstuhl - VSS 14-16

Verlassliche Systemsoftware — Ausrichtung

Im Fokus dieser Veranstaltung: Software

1. Zuverlassige (robuste) Software entwickeln
= Robustheit gegenlber externen Fehlern (zur Laufzeit)
- Wie erkenne und toleriere ich solche Fehler?
= Wie testet man, ob man korrekt mit solchen Fehlern umgeht?
m Hier forschen® wir (hoffentlich auch zusammen mit euch)

LT

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick—SS 2026 am Lehrstuhl - VSS 14-17

LT

Verlassliche Systemsoftware — Ausrichtung

Im Fokus dieser Veranstaltung: Software

Zuverlassige (robuste) Software entwickeln
= Robustheit gegenlber externen Fehlern (zur Laufzeit)
- Wie erkenne und toleriere ich solche Fehler?
= Wie testet man, ob man korrekt mit solchen Fehlern umgeht?
m Hier forschen® wir (hoffentlich auch zusammen mit euch)

Software zuverlassig entwickeln

= Wie kommt man zu einer méglichst fehlerfreien Implementierung?
m Welche Werkzeuge helfen mir dabei?

-~ Was tun diese Werkzeuge eigentlich?

- Welche Grenzen haben diese Werkzeuge demzufolge?

= Hier ,lernen” wir zusammen mit euch

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick—SS 2026 am Lehrstuhl - VSS

14-17

Lernziele — Robustheit

= Zuverlassige (robuste) Software entwickeln
m Maskieren von Fehlern durch Redundanz
— Replizierte Ausfiihrung
- Homogene und heterogene Redundanz
= Hartung von Datenstrukturen und Kontrollfluss
— Informationsredundanz
— In Daten mithilfe von z.B. Prifsummen
- In Berechnungen/Kontrollfluss mithilfe arithmetischer Codierung
m Evaluierung von FehlertolanzmaBnahmen
- Fehlerinjektion und Testen

Ll

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick—SS 2026 am Lehrstuhl - VSS 14-18

Ll

Lernziele — Robustheit

Zuverlassige (robuste) Software entwickeln
m Maskieren von Fehlern durch Redundanz

— Replizierte Ausfiihrung

- Homogene und heterogene Redundanz
= Hartung von Datenstrukturen und Kontrollfluss

> Informationsredundanz

— In Daten mithilfe von z.B. Prifsummen

- In Berechnungen/Kontrollfluss mithilfe arithmetischer Codierung
m Evaluierung von FehlertolanzmaBnahmen

- Fehlerinjektion und Testen

1= Anknipfungspunkte fur den praktischen Einsatz aufzeigen
= Niemand braucht das 1001. Fehlertoleranzprotokoll!

= Das den gegenwartigen Stand der Kunst nicht reflektiert
= Obendrein vielleicht fehlerhaft ist

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick—SS 2026 am Lehrstuhl - VSS

14-18

Lernziele — Zuverlassigkeit

Software zuverlassig entwickeln
m Typische Laufzeitfehler in C/C++-Programmen suchen und finden
- Nullzeiger, GanzzahlUberlaufe, nicht initialisierte Speicherstellen, ...
—> Durch Testen oder mittels statischer Analysewerkzeuge
m Testiberdeckung: Wie gut hat man getestet?
- die Testlberdeckung fiir ein gegebenes Programm messen
- Gibt es Zusammenhénge zwischen der Testlberdeckung, der Testfallanzahl und
anderen Metriken?
m Design-by-contract: statische, werkzeug-gestiitzte Verifikation
- Formulierung/Verifikation von Nachbedingungen fiir kleine C-Programme
- Mithilfe von Werzeugen (Absint Astrée) wie sie auch Airbus einsetzt

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick—SS 2026 am Lehrstuhl - VSS 14-19

Ll

Lernziele — Zuverlassigkeit

Software zuverlassig entwickeln
m Typische Laufzeitfehler in C/C++-Programmen suchen und finden

- Nullzeiger, GanzzahlUberlaufe, nicht initialisierte Speicherstellen, ...
— Durch Testen oder mittels statischer Analysewerkzeuge

m Testiberdeckung: Wie gut hat man getestet?

- die Testlberdeckung fiir ein gegebenes Programm messen

- Gibt es Zusammenhénge zwischen der Testlberdeckung, der Testfallanzahl und
anderen Metriken?

m Design-by-contract: statische, werkzeug-gestiitzte Verifikation

- Formulierung/Verifikation von Nachbedingungen fiir kleine C-Programme
- Mithilfe von Werzeugen (Absint Astrée) wie sie auch Airbus einsetzt

1= Vorurteile gegentber formalen Methoden abbauen
= Keine unverwendbaren Monster mehr

= Vollbringen aber auch keine Wunder
= |hre Anwendung ist noch immer mihsam, aber sie lohnt sich

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick—SS 2026 am Lehrstuhl - VSS 14-19

Agenda

Priifung (&)

L

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick — Prifung (3;,) 14-20

Prifungsablauf

30 min. Fachgespréach Uber Betriebssystembau
Termine

m 23. + 24. Februar
m 24. + 25. Marz

Anmeldung

Anmeldung fir mindl. Prifung ausfillen und ausdrucken
Termin und Unterschrift von mir abholen
Wir senden den Zettel an das PA

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick — Priifung (;%)

14-21

Vorbereitung

= Geprift wird der Stoff der Vorlesung

= ihr misst nicht den Quellcode (auswendig) kennen
m aber das Prinzip misst ihr erklaren kénnen!

= (bt mit Kommilitonen, erklart euch gegenseitig die Vorgehensweise

J al Betriebssystembau (VL 14 | WS 25)

14 Zusammenfassung und Ausblick — Priifung (‘,‘%) 14-22

https://fsi.cs.fau.de/dw/pruefungen/hauptstudium/ls4/bs

Geprift wird der Stoff der Vorlesung

= ihr misst nicht den Quellcode (auswendig) kennen

m aber das Prinzip misst ihr erklaren kénnen!

= bt mit Kommilitonen, erklért euch gegenseitig die Vorgehensweise
alte Priifungsprotokolle online bei der FSI Informatik:
https://fsi.cs.fau.de/dw/pruefungen/hauptstudium/Is4/bs

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick — Priifung (;%) 14-22

https://fsi.cs.fau.de/dw/pruefungen/hauptstudium/ls4/bs

Geprift wird der Stoff der Vorlesung

= ihr misst nicht den Quellcode (auswendig) kennen

m aber das Prinzip misst ihr erklaren kénnen!

= (bt mit Kommilitonen, erklart euch gegenseitig die Vorgehensweise
alte Priifungsprotokolle online bei der FSI Informatik:
https://fsi.cs.fau.de/dw/pruefungen/hauptstudium/Is4/bs

bei Prifungsabsage: Bitte immer eine (kurze) Mail

immer. Egal wie kurzfristig.
aber je friher desto besser
ggf. auch gleich Wunschersatztermin

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick — Priifung (;%) 14-22

https://fsi.cs.fau.de/dw/pruefungen/hauptstudium/ls4/bs

kommt [Uber]pinktlich
und ausgeschlafen ®
ein Prifer und ein protokollierender Beisitzer

statt schweigend zu denken, lieber eure Uberlegung aussprechen

= man darf nur bepunkten, was ihr von euch gebt
(und der Priifer kann euch auf den richtigen Weg bringen)

sollten Worte fehlen/nicht ausreichen, so habt ihr Stift und Papier
die 30 Minuten sind schnell vorbei
ihr bekommt nach weiteren 1-10 Minuten eure Note

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick — Priifung (;%) 14-23

Agenda

Abschlusssarbeiten

L

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick — Abschlusssarbeiten 14-24

Abschlussarbeiten@SYS

Zur Zeit im Angebot:
= (Bachelorarbeiten)

® Masterarbeiten

https://sys.cs.tu-dortmund.de/de/lehre/abschlussarbeiten/

L

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick — Abschlusssarbeiten 14-25

https://sys.cs.tu-dortmund.de/de/lehre/abschlussarbeiten/

Abschlussarbeiten@SYS

Zur Zeit im Angebot:
= (Bachelorarbeiten)

® Masterarbeiten

https://sys.cs.tu-dortmund.de/de/lehre/abschlussarbeiten/
-Ist ok, aber lieber ...

L

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick — Abschlusssarbeiten 14-25

https://sys.cs.tu-dortmund.de/de/lehre/abschlussarbeiten/

Abschlussarbeiten@SYS

Zur Zeit im Angebot:
= (Bachelorarbeiten)

® Masterarbeiten

https://sys.cs.tu-dortmund.de/de/lehre/abschlussarbeiten/
-Ist ok, aber lieber ...

... personlich nachfragen...!

L

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick — Abschlusssarbeiten 14-25

https://sys.cs.tu-dortmund.de/de/lehre/abschlussarbeiten/

Das war’s :-)

Das BSB-Team wiinscht
erfolgreiche und erholsame
~Semesterferien”

...und ein Wiedersehen
im Sommersemester 2026!

L

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick — Ausblick 14-26

Referenzen

(1]

2]

(3]

4]

Andrew Baumann, Paul Barham, Pierre-Evariste Dagand u. a. ,The multikernel: a new OS
architecture for scalable multicore systems*.

Silas Boyd-Wickizer, Haibo Chen, Rong Chen u.a. ,Corey: An Operating System for Many
Cores".

Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao u. a. ,An Analysis of Linux Scalability
to Many Cores".

Austin T. Clements, M. Frans Kaashoek, Nickolai Zeldovich u. a. ,The Scalable
Commutativity Rule: Designing Scalable Software for Multicore Processors®.

Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick — Referenzen 14-27

https://doi.org/10.1145/1629575.1629579
https://www.usenix.org/legacy/event/osdi08/tech/full_papers/boyd-wickizer/boyd_wickizer.pdf
https://www.usenix.org/legacy/event/osdi08/tech/full_papers/boyd-wickizer/boyd_wickizer.pdf
https://doi.org/10.1145/2517349.2522712

Referenzen o)

[5] Sean Dorward, Rob Pike, Dave Presotto u.a. ,The Inferno Operating System®.

[PEP] Norbert Oster. Parallele und Funktionale Programmierung.

[6] Rob Pike. Systems Software Research is Irrelevant.

[7] Rob Pike, Dave Presotto, Sean Dorward u. a. ,Plan 9 from Bell Labs".

[8] Donald E. Porter, Owen S. Hofmann, Christopher J. Rossbach u. a. ,Operating System

Transactions®.

[9] Proceedings of the 22nd ACM Symposium on Operating Systems Principles (SOSP '09).

[10] Linus Torvalds und David Diamond. Just for Fun: The Story of an Accidental Revolutionary.
Ll

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick — Referenzen 14-28

https://www2.cs.fau.de/teaching/SS2015/PFP/index.html
http://herpolhode.com/rob/utah2000.pdf
https://doi.org/10.1145/1629575.1629591

Referenzen o)

[BST] Peter Ulbrich. Betriebssystemtechnik.

[11] David Wenizlaff und Anant Agarwal. ,Factored Operating Systems (fos): The Case for a
Scalable Operating System for Multicores*.

Ll

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick — Referenzen 14-29

https://sys.cs.tu-dortmund.de/de/lehre/
https://doi.org/10.1145/1531793.1531805

	1 Zusammenfassung und Ausblick
	Ziele und Zielerreichung
	Betriebssystemforschung
	SS 2026 am Lehrstuhl - VSS
	Prüfung ()
	Abschlusssarbeiten
	Ausblick
	Referenzen

