
arbeitsgruppe
systemsoftware

Betriebssystembau (BSB)

VL 14 – Zusammenfassung
und Ausblick

Alexander Krause

Lehrstuhl für Informatik 12 – Arbeitsgruppe Systemsoftware / IRB
Technische Universität Dortmund

https://sys.cs.tu-dortmund.de/de/lehre/ws25/bsb

[
20

23
A

.L
oc

hm
an

n
(T

U
D

O
),

20
22

P.
U

lb
ri

ch
(T

U
D

O
),

20
21

-1
6

V.
r

S
ie

h
(F

A
U

),
20

16
-0

7
D

.L
oh

m
an

n
(L

U
H

H
),

20
06

O
.S

pi
nc

zy
k

(U
O

S
)

WS 25 – 26. Januar 2026

https://sys.cs.tu-dortmund.de/de/lehre/ws25/bsb


Agenda

Ziele und Zielerreichung
Betriebssystemforschung
SS 2026 am Lehrstuhl - VSS
Prüfung (A)
Abschlusssarbeiten
Ausblick
Referenzen

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Ziele und Zielerreichung 14 – 2



Lernziele ;VL 1

Vertiefen des Wissens über die interne

Funktionsweise von Betriebssystemen

Ausgangspunkt: Systemprogrammierung

Schwerpunkt: Nebenläufigkeit und Synchronisation

Entwickeln eines Betriebssystems von der Pike auf

OOStuBS / MPStuBS Lehrbetriebssysteme

Praktische Erfahrungen im Betriebsystembau machen

Verstehen der technologischen Hardware-Grundlagen

PC-Technologie verstehen und einschätzen können

Schwerpunkt: Intel x86_64

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Ziele und Zielerreichung 14 – 3



Überblick Vorlesungen

Hardware

Anwendung(en)

Gerätezugriff
(Treiber)

Unterbrechungs-
behandlung

Interprozess-
kommunikation

Kontrollfluss-
abstraktion

Unterbrechungs-
synchronisation

Prozessverwaltung

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Ziele und Zielerreichung 14 – 4



Was wir gemacht haben
Drei inhaltliche Schwerpunkte!

VL1 Einführung

VL2 BS-Entwicklung

VL3 IRQs (Hardware)

VL4 IRQs (Software)

VL5 IRQs (Synchronisation)

VL6 IRQs (SoftIRQ)

VL7 Intel IA-32

VL8 Koroutinen und Fäden

VL9 Scheduling

VL10 Architekturen

VL11 Fadensynchronisation

VL12 Gerätetreiber

VL13 IPC

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Ziele und Zielerreichung 14 – 5



Was wir gemacht haben
Drei inhaltliche Schwerpunkte!

1. Ein Streifzug durch die PC-Architektur

VL1 Einführung

VL2 BS-Entwicklung

VL3 IRQs (Hardware)

VL4 IRQs (Software)

VL5 IRQs (Synchronisation)

VL6 IRQs (SoftIRQ)

VL7 Intel IA-32

VL8 Koroutinen und Fäden

VL9 Scheduling

VL10 Architekturen

VL11 Fadensynchronisation

VL12 Gerätetreiber

VL13 IPC

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Ziele und Zielerreichung 14 – 5



Was wir gemacht haben
Drei inhaltliche Schwerpunkte!

1. Ein Streifzug durch die PC-Architektur

Die APIC Architektur

■ ein APIC Interrupt-System besteht aus lokalen APICs auf 
jeder CPU und einem I/O APIC

Pentium

(primär)

lokaler

APIC

I/O-APIC

8259A

Unterbrechungsanforderungen

Pentium

(sekundär)

lokaler

APIC
APIC-Bus

ein Pentium

Dualprozessor-

system mit

verteiltem APIC

Interrupt-System

LINT0

LINT1

LINT0

LINT1

lokale

Unterbrechungen

lokale

Unterbrechungen

al Betriebssystembau (VL 3 | WS 25) 3 Unterbrechungen, Hardware – Hardware-Architekturen 3 – 36

IA-32: Adressierungsarten

■ Effektive Adressen (EA) werden nach einem 
einfachen Schema gebildet
■ alle Vielzweckregister können dabei gleichwertig verwendet werden

■ Beispiel: MOV EAX, Feld[ESI * 4]
■ Lesen aus Feld mit 4 Byte großen Elementen und ESI als Index

EA = Basis-Reg. + (Index-Reg. * Scale) + Displacement

EAX

EBX

ECX

EDX

ESP

EBP

ESI

EDI

EAX

EBX

ECX

EDX

---

EBP

ESI

EDI

1

2

4

8

---

8 Bit Wert

32 Bit Wert

EA

al Betriebssystembau (VL 7 | WS 25) 7 IA-32 – Die 32-Bit Intel-Architektur 7 – 19

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Ziele und Zielerreichung 14 – 5



Was wir gemacht haben
Drei inhaltliche Schwerpunkte!

2. Kontrollflüsse und ihre Interaktionen

VL1 Einführung

VL2 BS-Entwicklung

VL3 IRQs (Hardware)

VL4 IRQs (Software)

VL5 IRQs (Synchronisation)

VL6 IRQs (SoftIRQ)

VL7 Intel IA-32

VL8 Koroutinen und Fäden

VL9 Scheduling

VL10 Architekturen

VL11 Fadensynchronisation

VL12 Gerätetreiber

VL13 IPC

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Ziele und Zielerreichung 14 – 5



Was wir gemacht haben
Drei inhaltliche Schwerpunkte!

2. Kontrollflüsse und ihre Interaktionen

Prioritätsebenenmodell

Kontrollflüsse können die Ebene wechseln

Mit cli wechselt ein E0-Kontrollfluss explizit auf E1

er ist ab dann nicht mehr unterbrechbar

andere E1-Kontrollflüsse werden verzögert (←- Sequentialisierung)

Mit sti wechselt ein E1-Kontrollfluss explizit auf E0

er ist ab dann (wieder) unterbrechbar

anhängige E1-Kontrollflüsse „schlagen durch“ (←- Sequentialisierung)

E1
(nicht unterbrechbar)

E0
(unterbrechbar)

t1 t2 t3 t4 t5 t6
� �t

cli sti

u
n
te

rb
ri

c
h
t

u
n
te

rb
ri

c
h
t

v
e
rz

ö
g
e
rt

u
n
te

rb
ri

c
h
t
(i

m
p

li
z
it

)

k
a
n
n

v
e
rz

ö
g
e
rn

(e
x
p

liz
it)

al Betriebssystembau (VL 5 | WS 25) 5 Unterbrechnungssynchronisation – Prioritätsebenenmodell 5 – 13

Erweitertes Prioritätsebenenmodell

Kontrollflüsse auf El werden

1. jederzeit unterbrochen durch Kontrollflüsse von Em
(für m > l)

2. nie unterbrochen durch Kontrollflüsse von Ek
(für k ≤ l)

3. jederzeit verdrängt durch Kontrollflüsse von El
(für l = 0)

E1
(nicht unterbrechbar, nicht verdrängbar)

E1/2

(unterbrechbar, nicht verdrängbar)

E0
(unterbrechbar, verdrängbar)

7→ Fadenebene

7→ Epilogebene

7→ Unterbrechungsebene

Kontrollflüsse der E0 (Fadenebene)

sind verdrängbar.

Für die Konsistenzssicherung auf

dieser Ebene brauchen wir zusätzli-

che Mechanismen zur

Fadensynchronisation.

al Betriebssystembau (VL 11 | WS 25) 11 Fadensynchronisation – Prioritätsebenenmodell mit Fäden 11 – 10

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Ziele und Zielerreichung 14 – 5



Was wir gemacht haben
Drei inhaltliche Schwerpunkte!

2. Kontrollflüsse und ihre Interaktionen

VL1 Einführung

VL2 BS-Entwicklung Ü1 Ein-/Ausgabe

VL3 IRQs (Hardware)

VL4 IRQs (Software)

VL5 IRQs (Synchronisation) Ü2 IRQ-Behandlung

VL6 IRQs (SoftIRQ)

VL7 Intel IA-32 Ü3 IRQ-Synchronisation

VL8 Koroutinen und Fäden

VL9 Scheduling Ü4 Fadenumschaltung

VL10 Architekturen

VL11 Fadensynchronisation Ü5 Zeitscheiben-Scheduling

VL12 Gerätetreiber

VL13 IPC Ü6 Fadensynchronisation

Ü7 “Eine Anwendung” (opt.)

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Ziele und Zielerreichung 14 – 5



Was wir gemacht haben
Drei inhaltliche Schwerpunkte!

2. Kontrollflüsse und ihre Interaktionen

user

syscall

thread meeting

object guard

device

machine
nix CPU nix Key Keyboard Controller LAPIC PIT

IO Port toc nix Spinlock CGA Screen IOAPIC Plugbox

Dispatcher Thread nix Chain nix Locker nix

Scheduler nix Queue nix nix Guard nix

nix nix nix Stringbuffer nix Secure nix

nix nix nix O Stream nix Gate nix

nix nix Bellringer nix Keyboard Panic Watch

nix nix Waitingroom Bell CGA Stream nix nix

nix nix Semaphore nix nix nix nix

Guarded Scheduler nix Guarded Semaphore Guarded Bell nix Guarded Keyboard nix

nix Application nix nix nix nix nix

Generalization (“is a”):

Dependency (“uses a”):

Aggregation (“part of”):

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Ziele und Zielerreichung 14 – 5



Was wir gemacht haben
Drei inhaltliche Schwerpunkte!

3. BS-Konzept allgemein und am Beispiel (Windows/Linux)

VL1 Einführung

VL2 BS-Entwicklung

VL3 IRQs (Hardware)

VL4 IRQs (Software)

VL5 IRQs (Synchronisation)

VL6 IRQs (SoftIRQ)

VL7 Intel IA-32

VL8 Koroutinen und Fäden

VL9 Scheduling

VL10 Architekturen

VL11 Fadensynchronisation

VL12 Gerätetreiber

VL13 IPC

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Ziele und Zielerreichung 14 – 5



Was wir gemacht haben
Drei inhaltliche Schwerpunkte!

3. BS-Konzept allgemein und am Beispiel (Windows/Linux)

Completely Fair Scheduler (CFS)

■ Ansatz: Ablaufbereite Tasks bekommen die Rechenzeit
gleichmäßig ("fair") zugeteilt

■ bei n Tasks jeweils  1/n-tel der CPU-Leistung

■ hierarchische Zuteilung durch scheduling groups

■ CFS läuft nur bei SCHED_NORMAL

■ Echtzeittask (SCHED_RR und SCHED_FIFO) wie bisher

■ ansonsten: Task mit geringster CPU-Zeit hat höchste Priorität 

■ Planungskriterium ist die bislang zugeteilte CPU-Zeit

■ Ready-Liste als Rot-Schwarz-Baum, sortiert nach der Zeit

■ Komplexität O(log N)
(in der Praxis trotzdem effizienter als alter O(1)-Scheduler)

■ Prioritäten (im Sinne von nice) werden durch 
"schnellere/langsamere" Uhren abgebildet

al Betriebssystembau (VL 9 | WS 25) 9 Fadenverwaltung – Ablaufplanung 9 – 51

Windows  – Treiberstruktur

   Das E/A-System steuert den Treiber mit Hilfe der ...
■ Initialisierungsroutine/Entladeroutine

■ wird nach/vor dem Laden/Entladen des Treibers ausgeführt
■ Routine zum Hinzufügen von Geräten

■ PnP Manager hat ein neues Gerät für den Treiber
■ "Verteilerroutinen"

■ Öffnen, Schließen, Lesen, Schreiben und gerätespezifische 
Oper.

■ Interrupt Service Routine
■ wird von der zentralen Interrupt-Verteilungsroutine aufgerufen

■ DPC-Routine
■ "Epilog" der Unterbrechungsbehandlung

■ E/A-Komplettierungs- und -Abbruchroutine
■ Informationen über den Ausgang weitergeleiteter E/A-Aufträge

   ...

al Betriebssystembau (VL 12 | WS 25) 12 Treiber – Struktur des E/A-Systems 12 – 29

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Ziele und Zielerreichung 14 – 5



Zusammen eine ganze Menge!

Hardware

Anwendung(en)

Gerätezugriff
(Treiber)

Unterbrechungs-
behandlung

Interprozess-
kommunikation

Kontrollfluss-
abstraktion

Unterbrechungs-
synchronisation

Prozessverwaltung

B
e
tr
ie
b
s
s
y
s
te
m
e
n
tw
ic
k
lu
n
g

BetriebssystembauBetriebssystembau

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Ziele und Zielerreichung 14 – 6



Realitätscheck: MPStuBS↔ „richtiges BS“

Es fehlt noch eine ganze Menge!

Adressraumverwaltung und Prozesskonzept ; [BST]

Dateisystem und Programmlader

Netzwerk und TCP/IP

. . .

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Ziele und Zielerreichung 14 – 7



Realitätscheck: MPStuBS↔ „richtiges BS“

Es fehlt noch eine ganze Menge!

Adressraumverwaltung und Prozesskonzept ; [BST]

Dateisystem und Programmlader

Netzwerk und TCP/IP

. . .

Beispiel Linux [10]

Aug 91 Linux 0.01: bash, Dateisystem

Jan 92 Linux 0.12: Virtueller Speicher (Paging)

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Ziele und Zielerreichung 14 – 7



Realitätscheck: MPStuBS↔ „richtiges BS“

Es fehlt noch eine ganze Menge!

Adressraumverwaltung und Prozesskonzept ; [BST]

Dateisystem und Programmlader

Netzwerk und TCP/IP

. . .

Beispiel Linux [10]

Aug 91 Linux 0.01: bash, Dateisystem

Jan 92 Linux 0.12: Virtueller Speicher (Paging)

Mär 92 Linux 0.95: X-Windows, Unix Domain Sockets
(jetzt fehlte nur noch Netzwerk!)

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Ziele und Zielerreichung 14 – 7



Realitätscheck: MPStuBS↔ „richtiges BS“

Es fehlt noch eine ganze Menge!

Adressraumverwaltung und Prozesskonzept ; [BST]

Dateisystem und Programmlader

Netzwerk und TCP/IP

. . .

Beispiel Linux [10]

Aug 91 Linux 0.01: bash, Dateisystem

Jan 92 Linux 0.12: Virtueller Speicher (Paging)

Mär 92 Linux 0.95: X-Windows, Unix Domain Sockets
(jetzt fehlte nur noch Netzwerk!)

Mär 94 Linux 1.00: Netzwerk und TCP/IP

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Ziele und Zielerreichung 14 – 7



Agenda

Ziele und Zielerreichung
Betriebssystemforschung
SS 2026 am Lehrstuhl - VSS
Prüfung (A)
Abschlusssarbeiten
Ausblick
Referenzen

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Betriebssystemforschung 14 – 8



Betriebssysteme 7→ ausgeforscht?

„Systems Software Research is Irrelevant” [6]

Urgestein Robert Pike (2000), einer der Entwickler von
UNIX, Inferno [5], Plan 9 [7] und UTF-8
(zur Zeit bei Google beschäftigt):

Where is the innovation? ; Microsoft, mostly

Every other „new” OS ends up being UNIX

Linux? ; Just another copy of the same old stuff

. . .
1

2

3

4

5

6

7

1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999

New Operating Systems at SOSP

! !

!

!

!

!

! !

! !

!

New Operating Systems at SOSP [6]

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Betriebssystemforschung 14 – 9



Betriebssysteme 7→ ausgeforscht?

„Systems Software Research is Irrelevant” [6]

Urgestein Robert Pike (2000), einer der Entwickler von
UNIX, Inferno [5], Plan 9 [7] und UTF-8
(zur Zeit bei Google beschäftigt):

Where is the innovation? ; Microsoft, mostly

Every other „new” OS ends up being UNIX

Linux? ; Just another copy of the same old stuff

. . .
1

2

3

4

5

6

7

1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999

New Operating Systems at SOSP

! !

!

!

!

!

! !

! !

!

New Operating Systems at SOSP [6]

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Betriebssystemforschung 14 – 9

Tile GX 100 [Tilera]

Aber dann. . .

The Multicore

Challenge!



Fallstudie: Dateideskriptortabelle in Linux

Boyd-Wickizer u. a. (OSDI 2008) [2]

Linux 2.6.25 auf 16-Kern AMD Opteron, 1–16 Kerne in Gebrauch
Pro Kern ein Faden, der Dateideskriptoren anfordert und freigibt:
int f = open(...); while(1){ close( dup( f ) ); }

E
rw

ar
tu

ng

Prozessorkerne

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Dateideskriptortabelle: # dup/close pro Sekunde

Durchsatz skaliert l
inear

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Betriebssystemforschung 14 – 10



Fallstudie: Dateideskriptortabelle in Linux

Boyd-Wickizer u. a. (OSDI 2008) [2]

Linux 2.6.25 auf 16-Kern AMD Opteron, 1–16 Kerne in Gebrauch
Pro Kern ein Faden, der Dateideskriptoren anfordert und freigibt:
int f = open(...); while(1){ close( dup( f ) ); }

R
ea

lit
iä

t

Prozessorkerne

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Dateideskriptortabelle: # dup/close pro Sekunde

keine Verbesserung!

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Betriebssystemforschung 14 – 10



Fallstudie: Dateideskriptortabelle in Linux

Boyd-Wickizer u. a. (OSDI 2008) [2]

Linux 2.6.25 auf 16-Kern AMD Opteron, 1–16 Kerne in Gebrauch
Pro Kern ein Faden, der Dateideskriptoren anfordert und freigibt:
int f = open(...); while(1){ close( dup( f ) ); }

Ergebnis: Schon ab 2 Kernen sinkt der Gesamtdurchsatz

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Betriebssystemforschung 14 – 10



Fallstudie: Dateideskriptortabelle in Linux

Boyd-Wickizer u. a. (OSDI 2008) [2]

Linux 2.6.25 auf 16-Kern AMD Opteron, 1–16 Kerne in Gebrauch
Pro Kern ein Faden, der Dateideskriptoren anfordert und freigibt:
int f = open(...); while(1){ close( dup( f ) ); }

Ergebnis: Schon ab 2 Kernen sinkt der Gesamtdurchsatz

1. Grobgranulares Locking ; false sharing ; keine Skalierbarkeit

fd_alloc () {
lock(fd_table);
fd = get_free_fd();
set_fd_used(fd);
fix_smallest_fd();
unlock(fd_table);

}

1. false sharing

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Betriebssystemforschung 14 – 10



Fallstudie: Dateideskriptortabelle in Linux

Boyd-Wickizer u. a. (OSDI 2008) [2]

Linux 2.6.25 auf 16-Kern AMD Opteron, 1–16 Kerne in Gebrauch
Pro Kern ein Faden, der Dateideskriptoren anfordert und freigibt:
int f = open(...); while(1){ close( dup( f ) ); }

Ergebnis: Schon ab 2 Kernen sinkt der Gesamtdurchsatz

1. Grobgranulares Locking ; false sharing ; keine Skalierbarkeit

2. Geteilte Datenstruktur ; cache trashing ; Durchsatzabfall

fd_alloc () {
lock(fd_table);
fd = get_free_fd();
set_fd_used(fd);
fix_smallest_fd();
unlock(fd_table);

}

1. false sharing

C1

L1

3 Zyklen 121 Zyklen

L1

L3

C2

L2 L2

C2

L1

L2 L2

L3

121 Zyklen

2. cache trashing

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Betriebssystemforschung 14 – 10



Fallstudie: Dateideskriptortabelle in Linux

Boyd-Wickizer u. a. (OSDI 2008) [2]

Linux 2.6.25 auf 16-Kern AMD Opteron, 1–16 Kerne in Gebrauch
Pro Kern ein Faden, der Dateideskriptoren anfordert und freigibt:
int f = open(...); while(1){ close( dup( f ) ); }

Ergebnis: Schon ab 2 Kernen sinkt der Gesamtdurchsatz

1. Grobgranulares Locking ; false sharing ; keine Skalierbarkeit

2. Geteilte Datenstruktur ; cache trashing ; Durchsatzabfall

Multicore: POSIX (7→ UNIX) considered harmful!

„This problem is not specific to Linux, but is due to POSIX semantics, which

require that a new file descriptor be visible to all of a process’s threads even if

only one thread uses it.” [2]

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Betriebssystemforschung 14 – 10



Folgerung: Wir brauchen neue Entwurfsansätze!

Corey MIT, OSDI 2008, Exokern-artig: [2]

Sharing unter die Kontrolle der Applikation stellen
Datenstrukturen (im Normalfall) nur von einem Kern aus bearbeiten
Anwendungen müssen angepasst werden

Barrelfish ETH/MSR, SOSP 2009, Mikrokern-artig: [1]

BS als verteiltes System von Kernen verstehen und organisieren
kein implizites Sharing, Kommunikation nur über Nachrichten

Factored OS (fos) MIT, 2009, Mikrokern-artig: [11]

BS für 100 bis 1000 Kerne ; time sharing wird zu space sharing

Letztlich ähnlicher Ansatz wie Barrelfish

TxOS UT, SOSP 2009, Monolith (Linux): [8]

Konkurrenz zulassen durch transactional syscalls (statt Locks)
Anwendungen müssen angepasst werden

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Betriebssystemforschung 14 – 11



. . . oder doch nicht?

Boyd-Wickizer u. a. (OSDI 2010) [3]

„An Analysis of Linux Scalability to Many Cores“
Skalierbarkeit von Linux 2.6.35-rc5 auf 48-Kern AMD Opteron

Ansatz: run – analyze – fix

run: sieben „systemintensive” Anwendungen

Exim, memcached, Apache, PostgreSQL, gmake, Psearchy, MapReduce

analyze: gezielte Identifizierung von Flaschenhälsen

im Linux-Kern selber (16)
im Entwurf der Anwendung
durch die ungeschickte Verwendung der Systemschnittstelle

fix: Verbesserung, überwiegend durch Standardtechniken

der parallelen Programmierung (; [PFP])

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Betriebssystemforschung 14 – 12



. . . oder doch nicht?

Clements u. a. (SOSP 2013) [4]

„The Scalable Commutativity Rule: Designing Scalable Software for Multicore
Processors“
Skalierbarkeit von Schnittstellen theoretisch und praktisch untersucht anhand
Kommutativität der (möglichen) Implementierung.

Idee: Wenn Operationen kommutativ sind, können sie (im Prinzip) auch
skalierbar implementiert werden.

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Betriebssystemforschung 14 – 13



. . . oder doch nicht?

Ergebnis: Alles nicht so schlimm. . .

„We find that we can remove most kernel bottlenecks that the applications stress

by modifying the applications or kernel slightly.

[. . . ] the results suggest that traditional kernel designs may be compatible

with achieving scalability on multicore computers.” [3]

„Finally, using sv6, we showed that it is practical to achieve a broadly scalable

implementation of POSIX by applying the rule, and that commutativity is

essential to achieving scalability and performance on real hardware. ” [4]

Fazit

Es bleibt spannend!

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Betriebssystemforschung 14 – 14



Agenda

Ziele und Zielerreichung
Betriebssystemforschung
SS 2026 am Lehrstuhl - VSS
Prüfung (A)
Abschlusssarbeiten
Ausblick
Referenzen

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – SS 2026 am Lehrstuhl - VSS 14 – 15



Verlässliche Systemsoftware – Motivation

☞ Systemsoftware (von eingebetteten Systemen) begeistert

Neue Verfahren und Architekturen zu entwickeln, ist spannend!
Mikrokerne schotten Programme räumlich voneinander ab
Verschlüsselungsalgorithmen garantieren Datensicherheit
Echtzeitsysteme erlaubten ein zeitlich vorhersagbares Verhalten

A Prioritätsorientierte Einplanung von Arbeitsaufträge

. . .

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – SS 2026 am Lehrstuhl - VSS 14 – 16



Verlässliche Systemsoftware – Motivation

☞ Systemsoftware (von eingebetteten Systemen) begeistert

Neue Verfahren und Architekturen zu entwickeln, ist spannend!
Mikrokerne schotten Programme räumlich voneinander ab
Verschlüsselungsalgorithmen garantieren Datensicherheit
Echtzeitsysteme erlaubten ein zeitlich vorhersagbares Verhalten

A Prioritätsorientierte Einplanung von Arbeitsaufträge

. . .

� Das ist jedoch nur die halbe Miete

Erfordert möglichst fehlerfreie Implementierungen
Implementierung muss mit Laufzeitfehlern umgehen können

A Verfahren und Architekturen müssen korrekt arbeiten!

☞ Wie lassen sich Fehler vermeiden bzw. behandeln?

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – SS 2026 am Lehrstuhl - VSS 14 – 16



Verlässliche Systemsoftware – Motivation

☞ Systemsoftware (von eingebetteten Systemen) begeistert

Neue Verfahren und Architekturen zu entwickeln, ist spannend!
Mikrokerne schotten Programme räumlich voneinander ab
Verschlüsselungsalgorithmen garantieren Datensicherheit
Echtzeitsysteme erlaubten ein zeitlich vorhersagbares Verhalten

A Prioritätsorientierte Einplanung von Arbeitsaufträge

. . .

� Das ist jedoch nur die halbe Miete

Erfordert möglichst fehlerfreie Implementierungen
Implementierung muss mit Laufzeitfehlern umgehen können

A Verfahren und Architekturen müssen korrekt arbeiten!

☞ Wie lassen sich Fehler vermeiden bzw. behandeln?

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – SS 2026 am Lehrstuhl - VSS 14 – 16



Verlässliche Systemsoftware – Ausrichtung

Im Fokus dieser Veranstaltung: Software

1. Zuverlässige (robuste) Software entwickeln

Robustheit gegenüber externen Fehlern (zur Laufzeit)

Wie erkenne und toleriere ich solche Fehler?

Wie testet man, ob man korrekt mit solchen Fehlern umgeht?
Hier „forschen“ wir (hoffentlich auch zusammen mit euch)

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – SS 2026 am Lehrstuhl - VSS 14 – 17



Verlässliche Systemsoftware – Ausrichtung

Im Fokus dieser Veranstaltung: Software

1. Zuverlässige (robuste) Software entwickeln

Robustheit gegenüber externen Fehlern (zur Laufzeit)

Wie erkenne und toleriere ich solche Fehler?

Wie testet man, ob man korrekt mit solchen Fehlern umgeht?
Hier „forschen“ wir (hoffentlich auch zusammen mit euch)

2. Software zuverlässig entwickeln

Wie kommt man zu einer möglichst fehlerfreien Implementierung?
Welche Werkzeuge helfen mir dabei?

Was tun diese Werkzeuge eigentlich?
Welche Grenzen haben diese Werkzeuge demzufolge?

Hier „lernen“ wir zusammen mit euch

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – SS 2026 am Lehrstuhl - VSS 14 – 17



Lernziele – Robustheit

☞ Zuverlässige (robuste) Software entwickeln

Maskieren von Fehlern durch Redundanz

A Replizierte Ausführung
Homogene und heterogene Redundanz

Härtung von Datenstrukturen und Kontrollfluss

A Informationsredundanz
In Daten mithilfe von z.B. Prüfsummen
In Berechnungen/Kontrollfluss mithilfe arithmetischer Codierung

Evaluierung von Fehlertolanzmaßnahmen

Fehlerinjektion und Testen

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – SS 2026 am Lehrstuhl - VSS 14 – 18



Lernziele – Robustheit

☞ Zuverlässige (robuste) Software entwickeln

Maskieren von Fehlern durch Redundanz

A Replizierte Ausführung
Homogene und heterogene Redundanz

Härtung von Datenstrukturen und Kontrollfluss

A Informationsredundanz
In Daten mithilfe von z.B. Prüfsummen
In Berechnungen/Kontrollfluss mithilfe arithmetischer Codierung

Evaluierung von Fehlertolanzmaßnahmen

Fehlerinjektion und Testen

☞ Anknüpfungspunkte für den praktischen Einsatz aufzeigen

Niemand braucht das 1001. Fehlertoleranzprotokoll!

Das den gegenwärtigen Stand der Kunst nicht reflektiert
Obendrein vielleicht fehlerhaft ist

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – SS 2026 am Lehrstuhl - VSS 14 – 18



Lernziele – Zuverlässigkeit

☞ Software zuverlässig entwickeln

Typische Laufzeitfehler in C/C++-Programmen suchen und finden

Nullzeiger, Ganzzahlüberläufe, nicht initialisierte Speicherstellen, . . .
A Durch Testen oder mittels statischer Analysewerkzeuge

Testüberdeckung: Wie gut hat man getestet?

die Testüberdeckung für ein gegebenes Programm messen
Gibt es Zusammenhänge zwischen der Testüberdeckung, der Testfallanzahl und
anderen Metriken?

Design-by-contract: statische, werkzeug-gestützte Verifikation

Formulierung/Verifikation von Nachbedingungen für kleine C-Programme
Mithilfe von Werzeugen (AbsInt Astrée) wie sie auch Airbus einsetzt

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – SS 2026 am Lehrstuhl - VSS 14 – 19



Lernziele – Zuverlässigkeit

☞ Software zuverlässig entwickeln

Typische Laufzeitfehler in C/C++-Programmen suchen und finden

Nullzeiger, Ganzzahlüberläufe, nicht initialisierte Speicherstellen, . . .
A Durch Testen oder mittels statischer Analysewerkzeuge

Testüberdeckung: Wie gut hat man getestet?

die Testüberdeckung für ein gegebenes Programm messen
Gibt es Zusammenhänge zwischen der Testüberdeckung, der Testfallanzahl und
anderen Metriken?

Design-by-contract: statische, werkzeug-gestützte Verifikation

Formulierung/Verifikation von Nachbedingungen für kleine C-Programme
Mithilfe von Werzeugen (AbsInt Astrée) wie sie auch Airbus einsetzt

☞ Vorurteile gegenüber formalen Methoden abbauen

Keine unverwendbaren Monster mehr

Vollbringen aber auch keine Wunder
Ihre Anwendung ist noch immer mühsam, aber sie lohnt sich

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – SS 2026 am Lehrstuhl - VSS 14 – 19



Agenda

Ziele und Zielerreichung
Betriebssystemforschung
SS 2026 am Lehrstuhl - VSS
Prüfung (A)
Abschlusssarbeiten
Ausblick
Referenzen

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Prüfung (A) 14 – 20



Prüfungsablauf

30 min. Fachgespräch über Betriebssystembau

Termine

23. + 24. Februar
24. + 25. März

Anmeldung

Anmeldung für mündl. Prüfung ausfüllen und ausdrucken
Termin und Unterschrift von mir abholen
Wir senden den Zettel an das PA

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Prüfung (A) 14 – 21



Vorbereitung

Geprüft wird der Stoff der Vorlesung

ihr müsst nicht den Quellcode (auswendig) kennen
aber das Prinzip müsst ihr erklären können!
übt mit Kommilitonen, erklärt euch gegenseitig die Vorgehensweise

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Prüfung (A) 14 – 22

https://fsi.cs.fau.de/dw/pruefungen/hauptstudium/ls4/bs


Vorbereitung

Geprüft wird der Stoff der Vorlesung

ihr müsst nicht den Quellcode (auswendig) kennen
aber das Prinzip müsst ihr erklären können!
übt mit Kommilitonen, erklärt euch gegenseitig die Vorgehensweise

alte Prüfungsprotokolle online bei der FSI Informatik:
https://fsi.cs.fau.de/dw/pruefungen/hauptstudium/ls4/bs

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Prüfung (A) 14 – 22

https://fsi.cs.fau.de/dw/pruefungen/hauptstudium/ls4/bs


Vorbereitung

Geprüft wird der Stoff der Vorlesung

ihr müsst nicht den Quellcode (auswendig) kennen
aber das Prinzip müsst ihr erklären können!
übt mit Kommilitonen, erklärt euch gegenseitig die Vorgehensweise

alte Prüfungsprotokolle online bei der FSI Informatik:
https://fsi.cs.fau.de/dw/pruefungen/hauptstudium/ls4/bs

bei Prüfungsabsage: Bitte immer eine (kurze) Mail

immer. Egal wie kurzfristig.
aber je früher desto besser
ggf. auch gleich Wunschersatztermin

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Prüfung (A) 14 – 22

https://fsi.cs.fau.de/dw/pruefungen/hauptstudium/ls4/bs


Judgement Day: Präsenz

kommt [über]pünktlich

und ausgeschlafen ,

ein Prüfer und ein protokollierender Beisitzer

statt schweigend zu denken, lieber eure Überlegung aussprechen

⇒ man darf nur bepunkten, was ihr von euch gebt
(und der Prüfer kann euch auf den richtigen Weg bringen)

sollten Worte fehlen/nicht ausreichen, so habt ihr Stift und Papier

die 30 Minuten sind schnell vorbei

ihr bekommt nach weiteren 1-10 Minuten eure Note

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Prüfung (A) 14 – 23



Agenda

Ziele und Zielerreichung
Betriebssystemforschung
SS 2026 am Lehrstuhl - VSS
Prüfung (A)
Abschlusssarbeiten
Ausblick
Referenzen

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Abschlusssarbeiten 14 – 24



Abschlussarbeiten@SYS

Zur Zeit im Angebot:

(Bachelorarbeiten)

Masterarbeiten

https://sys.cs.tu-dortmund.de/de/lehre/abschlussarbeiten/

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Abschlusssarbeiten 14 – 25

https://sys.cs.tu-dortmund.de/de/lehre/abschlussarbeiten/


Abschlussarbeiten@SYS

Zur Zeit im Angebot:

(Bachelorarbeiten)

Masterarbeiten

https://sys.cs.tu-dortmund.de/de/lehre/abschlussarbeiten/

:Ist ok, aber lieber ...

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Abschlusssarbeiten 14 – 25

https://sys.cs.tu-dortmund.de/de/lehre/abschlussarbeiten/


Abschlussarbeiten@SYS

Zur Zeit im Angebot:

(Bachelorarbeiten)

Masterarbeiten

https://sys.cs.tu-dortmund.de/de/lehre/abschlussarbeiten/

:Ist ok, aber lieber ...

� ... persönlich nachfragen...! �

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Abschlusssarbeiten 14 – 25

https://sys.cs.tu-dortmund.de/de/lehre/abschlussarbeiten/


Das war’s :-)

Das BSB-Team wünscht
erfolgreiche und erholsame
„Semesterferien“

. . . und ein Wiedersehen
im Sommersemester 2026!

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Ausblick 14 – 26



Referenzen

[1] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand u. a. „The multikernel: a new OS
architecture for scalable multicore systems“. In: Proceedings of the 22nd ACM Symposium

on Operating Systems Principles (SOSP ’09). ACM Press. Big Sky, MT, USA: ACM Press,
Okt. 2009, S. 29–44. isbn: 978-1-60558-752-3. doi: 10.1145/1629575.1629579.

[2] Silas Boyd-Wickizer, Haibo Chen, Rong Chen u. a. „Corey: An Operating System for Many
Cores“. In: 8th Symposium on Operating System Design and Implementation (OSDI ’08).
USENIX Association. San Diego, CA, USA: USENIX Association, Dez. 2008, S. 43–57. isbn:
978-1-931971-65-2. url:
https://www.usenix.org/legacy/event/osdi08/tech/full_papers/boyd-

wickizer/boyd_wickizer.pdf.

[3] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao u. a. „An Analysis of Linux Scalability
to Many Cores“. In: 9th Symposium on Operating System Design and Implementation (OSDI

’10). USENIX Association. Vancouver, BC, Canada: USENIX Association, Okt. 2010. isbn:
978-1-931971-79-9.

[4] Austin T. Clements, M. Frans Kaashoek, Nickolai Zeldovich u. a. „The Scalable
Commutativity Rule: Designing Scalable Software for Multicore Processors“. In: Proceedings

of the 24th ACM Symposium on Operating Systems Principles (SOSP ’13) (Farmington, PA,
USA). ACM Press. New York, NY, USA: ACM Press, 2013, S. 1–17. isbn:
978-1-4503-2388-8. doi: 10.1145/2517349.2522712.

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Referenzen 14 – 27

https://doi.org/10.1145/1629575.1629579
https://www.usenix.org/legacy/event/osdi08/tech/full_papers/boyd-wickizer/boyd_wickizer.pdf
https://www.usenix.org/legacy/event/osdi08/tech/full_papers/boyd-wickizer/boyd_wickizer.pdf
https://doi.org/10.1145/2517349.2522712


Referenzen (Forts.)

[5] Sean Dorward, Rob Pike, Dave Presotto u. a. „The Inferno Operating System“. In: Bell Labs

Technical Journal 2.1 (Winter 1997).

[PFP] Norbert Oster. Parallele und Funktionale Programmierung. Vorlesung mit Übung.
Friedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Informatik 2, 2015
(jährlich). url: https://www2.cs.fau.de/teaching/SS2015/PFP/index.html.

[6] Rob Pike. Systems Software Research is Irrelevant. Talk. CS Colloquium, Columbia
University. url: http://herpolhode.com/rob/utah2000.pdf (besucht am 09. 12. 2010).

[7] Rob Pike, Dave Presotto, Sean Dorward u. a. „Plan 9 from Bell Labs“. In: Computing

Systems 8.3 (1995), S. 221–254.

[8] Donald E. Porter, Owen S. Hofmann, Christopher J. Rossbach u. a. „Operating System
Transactions“. In: Proceedings of the 22nd ACM Symposium on Operating Systems

Principles (SOSP ’09). ACM Press. Big Sky, MT, USA: ACM Press, Okt. 2009, S. 161–176.
isbn: 978-1-60558-752-3. doi: 10.1145/1629575.1629591.

[9] Proceedings of the 22nd ACM Symposium on Operating Systems Principles (SOSP ’09).
ACM Press. Big Sky, MT, USA: ACM Press, Okt. 2009. isbn: 978-1-60558-752-3.

[10] Linus Torvalds und David Diamond. Just for Fun: The Story of an Accidental Revolutionary.
HarperCollins, 2001. isbn: 978-0066620725.

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Referenzen 14 – 28

https://www2.cs.fau.de/teaching/SS2015/PFP/index.html
http://herpolhode.com/rob/utah2000.pdf
https://doi.org/10.1145/1629575.1629591


Referenzen (Forts.)

[BST] Peter Ulbrich. Betriebssystemtechnik. Vorlesung mit Übung. Technische Universität
Dortmund, Lehrstuhl für Informatik 12, 2024 (jährlich). url:
https://sys.cs.tu-dortmund.de/de/lehre/.

[11] David Wentzlaff und Anant Agarwal. „Factored Operating Systems (fos): The Case for a
Scalable Operating System for Multicores“. In: ACM SIGOPS Operating Systems Review 43
(2 Apr. 2009), S. 76–85. issn: 0163-5980. doi: 10.1145/1531793.1531805.

al Betriebssystembau (VL 14 | WS 25) 14 Zusammenfassung und Ausblick – Referenzen 14 – 29

https://sys.cs.tu-dortmund.de/de/lehre/
https://doi.org/10.1145/1531793.1531805

	1 Zusammenfassung und Ausblick
	Ziele und Zielerreichung
	Betriebssystemforschung
	SS 2026 am Lehrstuhl - VSS
	Prüfung ()
	Abschlusssarbeiten
	Ausblick
	Referenzen


