©2023 A. Lochmann (TUDO), 2022 P. Ulbrich (TUDO), 2021-16 Vir Sieh (FAU), 2016-07 D. Lohmann (LUHH), 2006 O. Spinczyk (UOS)

Betriebssystembau (BSB)

VL 13 — Interprozesskommunikation

Alexander Krause

Lehrstuhl fir Informatik 12 — Arbeitsgruppe Systemsoftware / IRB
Technische Universitat Dortmund

https://sys.cs.tu-dortmund.de/de/lehre/ws25/bsb

WS 25 - 20. Januar 2026

technische universitat l=J arbeitsgruppe
dortmund systemsoftware

https://sys.cs.tu-dortmund.de/de/lehre/ws25/bsb

Prifungen

30 min. Fachgespréach Uber Betriebssystembau
Termine

m 23. + 24. Februar
m 24. + 25. Marz
m Weitere bei Bedarf

Anmeldung

Anmeldung fir mindl. Prifung ausfillen und ausdrucken
Termin und Unterschrift von mir abholen
Wir senden den Zettel an das PA

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation — Prifungen

13-2

Uberblick: Einordnung dieser VL

Anwendung(en)

Unterbrechungs- kommunikation

synchronisation

Betriebssystementwicklung

Geratezugriff Prozessverwaltung
(Treiber)
Unterbrechungs- Kontrollfluss-
behandlung abstraktion
Hardware
L
al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation — Einordnung 13-3

Agenda

Prifungen

Einordnung

IPC Uber Speicher

IPC Uber Nachrichten
Basisabstraktionen

Trennung der Belange mit AOP
Zusammenfassung

L

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation — Einordnung 13-4

Agenda

Einordnung
Kommunikation und Synchronisation

L

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation — Einordnung 13-5

>

>

... sind durch das Kausalprinzip immer verbunden:

Wenn A eine Information von E bendtigt,
um weiterzuarbeiten, muss A solange
, bis B die Information bereitstellt.

nachrichtenbasierte Kommunikation impliziert
Synchronisation (z.B. bei send() und receive())

Synchronisationsprimitiven eignen sich als Basis fur die
Implementierung von Kommunikationsprimitiven
(z.B. Semaphore)

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation — Einordnung 13-6

Agenda

IPC Uber Speicher
Monitore
Pfadausdriicke

L

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation —IPC tber Speicher 13-7

Anwendungsfille/Voraussetzungen

ungeschiitztes System (alle Prozesse im selben Adressraum)
System mit sprachbasiertem Speicherschutz

Kommunikation zwischen Faden im selben Adressraum

gemeinsamer Speicher mit Hilfe des BS und einer MMU
(z.B. UNIX System V shared memory)

gemeinsamer Kern-Adressraum von isolierten Prozessen

Positive Eigenschaften:

= atomare Speicherzugriffe erfordern keine zusatzliche
Synchronisation

schnell: kein Kopieren

einfache IPC Anwendungen leicht zu realisieren
unsynchronisierte Kommunikationsbeziehungen maglich
M:N Kommunikation leicht méglich

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation—IPC tiber Speicher

13-8

L

Semaphore — einfache Interaktionen

gegenseitiger Ausschluss

// gem. Speicher
Semaphore mutex(1);
SomeType shared;

void process_1() {
mutex.wait(Q);
shared.access();
mutex.signalQ;

}

void process_2() {
mutex.wait();
shared.access();
mutex.signalQ;

}

einseitige Synchronisation

betriebsmittelorientierte Synchronisation

// gem. Speicher
Semaphore elem(0);
SomeQueue shared;

void producer() {
shared.put(Q);
elem.signalQ;

3

void consumer() {
elem.wait(Q);
shared.get(Q);

}

// gem. Speicher
Semaphore
SomeResource

resource(N); // N>1
shared;

sonst wie beim
gegenseitigen Ausschluss

al

Betriebssystembau (VL 13 | WS 25)

13 Interprozesskommunikation—IPC tiber Speicher

13-9

Leser/Schreiber-Problem
= Schreiber bendtigen den Speicher exklusiv
= mehrere Leser kdnnen gleichzeitig arbeiten

Anforderung (Leser)

- werde aktiver Leser

- warte solange aktive Schreiber
- werde ein lesender Leser

Anforderung (Schreiber)

- werde aktiver Schreiber

- warte solange lesende Leser

- werde ein schreibender Schreiber
- warte auf Schreib-Mutex

SCHREIBE |

Freigabe (Leser)

- sei kein Leser mehr

- wenn keine lesende Leser mehr
und wartende Schreiber, wecke sie

Freigabe (Schreiber)

- gib Schreib-Mutex frei

- sei kein Schreiber mehr

- wenn kein aktiver Schreiber mehr
und wartende Leser, wecke sie

al

Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation—IPC tiber Speicher 13-10

Semaphore — Leser/Schreiber-Problem

’./

// Anforderung (Leser)
mutex.pQ);
ar++; // aktive Leser
if (aw==0) {
rr++; // lesende Leser
read.vQ);

}
mutex.v(Q);
read.pQ; - ~

// Freigabe (Leser)

mutex.pQ;

ar--; rr--; ,

while (rr==0 && ww<aw) {-
WWA+; .
write.vQ; ~ 77

}

mutex.v();

// Anforderung (Schreiber)
mutex.pQ;
aw++; // aktive Schreiber
if (rr==0) {
ww++; // schreibende S.
write.v(Q);
}
mutex.v(Q);
write.pQ;

w_mutex.pQ;

// Freigabe (Schreiber)

w_mutex.v(Q);

mutex.p(Q;

aw--; ww--;

while (aw==0 && rr<ar) {
rr++;
read.v(Q);

}

mutex.v(Q);

al

Betriebssystembau (VL 13 | WS 25)

13 Interprozesskommunikation—IPC tiber Speicher

13-11

Erweiterungen

= nicht-blockierendes p()
= Timeout

= Felder von Zahlern

Fehlerquellen
= Semaphorbenutzung wird nicht erzwungen

= Abhangigkeit kooperierender Prozesse
— jeder muss die Protokolle exakt einhalten
= Aufwand bei der Implementierung

Unterstiutzung durch die Programmiersprache

= Korrekte Synchronisation wird erzwungen

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation—IPC tiber Speicher 13-12

Ansatz: Abstrakte Datentypen werden mit
Synchronisationseigenschaften gekoppelt

Prozess A

betrete Monitor-Methode 1 +—

y —t

impliziter
, —gegenseitiger
,'Il Ausschluss

Methode 1

Prozess B

gemeinsame
- %0 Methode 2 [+ | Daten

betrete Monitor-Methode 2 ’/,'I/

bedingte . .
Synchronisation © potentieller Blockierungspunkt

auf einer
Ereignisvariable

al

Betriebssystembau (VL 13 | WS 25)

13 Interprozesskommunikation—IPC tiber Speicher 13-13

kein
Monitor!

v d

void read() {

}

gemeinsame
Daten

Leser Prozess

rwMon.startRead();

|: \~resource.read();

rwMon.endRead();]

/

void startRead() {
if (aw>0)
read.wait();
rr++;
read.signalQ;

3

/

void endRead() {
rr--;
if (rr==0)
write.signal(Q);

3

{

void write(Q) |:
}

al

Schreiber Prozess

rwMon.startWrite();

~— resource.write();

rwMon.endWrite(); /]

void startWrite() {
aw++;
if (busyW||rr>0)
write.wait(Q);
busyW=true;
}

condition read,write; |

\

Betriebssystembau (VL 13 | WS 25)

13 Interprozesskommuni

RetoTT=TPC toeT Spererer

void endWrite() {
busyW=false;
aw--;
if (aw==0)
read.signalQ;
else write.signalQ);

}

int rr,aw;
bool busyW;

13-14

Monitore — Implementierung

einfache Implemen-
tierung, die nur eine
Bedingungsvariable
unterstitzt.

LT

... auf Basis von Semaphoren

Semaphore mutex(1);
Semaphore s_signal(0);
Semaphore s_wait(0);
int c_signal = 0;

int c_wait = 0;

Monitor

void op() {
mutex.pQ);
// original op()

cond.waitQ);
cond.signal(Q);-----

// ende
if (c_signal>0)
s_signal.vQ;
else
mutex.v(Q);

al Betriebssystembau (VL 13 | WS 25)

3

void Cond::wait() {
c_wait++;
if (c_signal>0)
s_signal.vQ;
else
mutex.v(Q);
s_wait.pQ;
c_wait--;

}

void Cond::signal(Q {
if (c_wait>0) {
c_signal++;
s_wait.vQ;
s_signal.pQ;
c_signal--;

13 Interprozesskommunikation—IPC tiber Speicher

13-15

Einschrankung der Nebenlaufigkeit auf vollstandigen
gegenseitigen Ausschluss.

= in Java daher 'synchronized' auch fur einzelne Methoden

Kopplung von logischer Struktur und Synchronisation
ist jedoch nicht immer natirlich.

= siehe Leser/Schreiber Beispiel

= gleiches Problem wie beim Semaphor:
Programmierer missen ein Protokoll einhalten

Die Synchronisation sollte von der Organisation der Daten
und Methoden besser getrennt werden.

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation—IPC tiber Speicher 13-16

Idee: flexible Ausdriicke beschreiben erlaubte Reihenfolgen und
den Grad der Nebenlaufigkeit

path name1, name2, name3 end
= bel. Reihenfolge und bel. nebenlaufige Ausfiihrung von name1-3

path name1; name2 end
= vor jeder Ausflilhrung von name2 mindestens einmal name1

path name1 + name2 end
= alternative Ausfiihrung: entweder name1 oder name?2

path 2:(Pfadausdruck) end
= max. 2 Kontrollflisse dirfen gleichzeitig im Pfadausdruck sein

path N:(1:(insert); 1:(remove)) end

= z.B. Synchronisation eines N-elementigen Puffers
— gegenseitiger Ausschluss wahrend insert und remove
— vor jedem remove muss mindestens ein insert erfolgt sein
— nie mehr als N abgeschlossene insert-Operationen

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation—IPC tiber Speicher 13-17

L

Pfadausdricke — Implementierung (1)

Transformation in Zustandsautomaten

m Zustandsanderung bei Ein-/Austritt in die/aus der Operation
Beispiel:

fur jedes 'X:(..)' und
"' wird ein Zahler

eingefihrt.

c2

seq1

N:(1:(insert) ; 1:(remove))

c3

cl

int cl1=0;
int c2=0;
int c3=0;
int
seql=0;

bool mayInsert () {
return cl<N && c2<1;
}

void startInsert () {
Cl++; C2++;

}

void endInsert () {
c2--; seql++;

}

bool mayRemove () {
return cl<N && seql>0 && c3<1;

3

void startRemove () {
c3++; seql--;

3

void endRemove () {
c3--; cl--;

}

al

Betriebssystembau (VL 13 | WS 25)

13 Interprozesskommunikation—IPC tiber Speicher

13-18

LT

Pfadausdricke — Implementierung (2)

Transformation der Operationen

fir jede Operation
wird ein
Semaphor

und ein Zahler
eingefiihrt.

Semaphore mutex(1);
int cseml=0;
Semaphore seml1(0);
int csem2=0;
Semaphore sem2(0);

sem1/csem1

N:(1:(insert) ; 1:(remove))

sem2/csem?2

void Insert() {

mutex.pQ;

if (ImayInsert()) {
cseml++;
mutex.v(Q);
seml.wait(Q);

}

startInsert();

mutex.v(Q);

// original insert-Code

mutex.pQ;

endInsert();

if (lwakeup())
mutex.v(Q);

bool wakeup() {
if (cseml>0 &&
mayInsert()) {
cseml--;
seml.v(Q);
return true;

}

if (csem2>0 &&
mayRemove()) {
csem2--;
sem2.v(Q);
return true;

}

return false;

}

al

Betriebssystembau (VL 13 | WS 25)

13 Interprozesskommunikation—IPC tiber Speicher

13-19

Vorteile
= komplexere Interaktionsmuster als mit Monitoren moglich

— read + 1: write

= Einhaltung der Interaktionsprotokolle wird erzwungen
— weniger Fehler!

Nachteile

= Synchronisationsverhalten kann nicht von Zustandsvariablen oder
Parametern abhangen

— Erweiterung: Pfadausdriicke mit Pradikaten

= Synchronisation des Zustandsautomaten kann Flaschenhals werden

= keine Unterstutzung fur Pfadausdricke in gebrauchlichen
Programmiersprachen

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation—IPC tiber Speicher 13-20

Agenda

IPC Uber Nachrichten

L

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation —IPC tber Nachrichten 13-21

Anwendungsfalle/Voraussetzungen

= |PC Uber Rechnergrenzen
= Interaktion isolierter Prozesse

positive Eigenschaften:

= einheitliches Paradigma fur IPC mit
lokalen und entfernten Prozessen

ggf. Pufferung und Synchronisation

Indirektion erlaubt transparente Protokollerweiterungen
— Verschlisselung, Fehlerkorrektur, ...

Hochsprachenmechanismen wie OO-Nachrichten oder
Prozeduraufrufe lassen sich gut auf IPC Gber Nachrichten
abbilden (RPC, RMI)

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation—IPC tiber Nachrichten 13-22

Bekannt (aus BS):
Variationen von send() und receive()

synchron/asynchron (blockierend/nicht blockierend)
gepuffert/ungepuffert

direkt/indirekt

feste NachrichtengréRe/variable Grofle
symmetrische/asymmetrische Kommunikation
mit/ohne Timeout

Broadcast/Multicast

Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation—IPC tiber Nachrichten

13-23

Agenda

Basisabstraktionen
Windows/Unix/...
Dualitat der Konzepte

L

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation — Basisabstraktionen 13-24

Welche IPC-Basisabstraktionen bieten Betriebssysteme?

= UNIX-Systeme: Sockets, System V Semaphore,
Messages, Shared Memory

= Windows NT/2000/XP: Shared Memory, Events, Semaphore,
Mutant (Mutex), Sockets, Pipes, Named Pipes, Mailslots, ...

= Mach: Nachrichten an Ports und Shared Memory
(mit Copy on Write)

Welche Mechanismen nutzen die Systeme i.d.R. intern?

= Semaphore erlauben gegenseitigen Ausschluss und einseitige
Synchronisation, also sehr haufige Anwendungsfalle
— werden praktisch immer benutzt

= Mikrokerne und verteilte Betriebssysteme: Nachrichten

= Monolithische Systeme: Semaphore und gemeinsamen Speicher

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation — Basisabstraktionen 13-25

Auf Basis von Semaphoren und gemeinsamem Speicher
lasst sich leicht eine Mailbox-Abstraktion realisieren:

class Mailbox : public List {
Semaphore mutex; // (D
Semaphore has_elem; // (0)
: public:
N.aChFIChi.:en Werden Mailbox() : mutex(1l), has_elem(0) {}
nicht kOplert void send(Message *msg) {
. . mutex.pQ);
= Sender sorgt flr Speicher enqueue(msg); // aus List
mutex.v(Q);
receive blockiert ggf. , nas-eten-vO;
. . Message *receive() {
Mailbox-Abstraktion ha:—eh'gipo ;
. mutex.pQ;
erlaubt M:N IPC Message *result = dequeue (); // List
mutex.vQ);
return result;
}
s

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation — Basisabstraktionen 13-26

,Virtueller gemeinsamer Speicher* (VGS [3])

Prozess A ‘ ‘ Prozess B
[%)] ; (]
@ | Zugriff - g
é (lese b) a=42 ungliltig .,;?
£ { verboten | g
S\ ™| ungiiltig VGS b=8 | Zugriff | §
s VEREEE
ungultig c=15
2
2 | |
\ Kopieren der Seite,
Umsetzen des Besitzrechts,

h) Page Fault)/ Neustart des Zugriffs
Handler R ———

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation — Basisabstraktionen

13-27

,Virtueller gemeinsamer Speicher* (VGS [3])

Prozess A ‘ ‘ Prozess B
[%)] (]
3 N - 3
< | zugriff a=42 unguiltig =
S S
< b=8 VGS | ungiltig | Zugriff | €
s &~
ungultig c=15
QPage Fault
Handler Betriebssystem
]
al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation — Basisabstraktionen 13-28

Verteilter virtueller gemeinsamer Speicher ermdglicht...

= das Programmiermodell von Multiprozessoren auf
Mehrrechnersystemen zu nutzen

= |PC Uber (virtuellen) gemeinsamen Speicher
trotz getrennter Adressraume

Probleme:

= Latenzen der Kommunikation und Trap-Behandlung

= false sharing” - SeitengréRRe entspricht nicht Objektgrofie
Losungsansatze:

= schwache Konsistenzmodelle, z.B.:

— nicht jeder Zugriff fihrt zu einem Trap, veraltete Werte
werden in Kauf genommen

= Anderungen asynchron per Broad-/Multicast verbreiten

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation — Basisabstraktionen

13-29

Dualitat — Aktive Objekte

Objekte mit Kontrollfluss

gut geeignet zur Zugriffssynchronisation in Systemen mit

nachrichtenbasierter IPC

void clientl() {
Message msg(DO_THIS);
send(srv, msg);

}

void client2() {
Message msg(DO_THAT);
send(srv, msg);

¥

Gegenseitiger Ausschluss durch die
Verarbeitungsschleife wird garantiert.
Durch das synchrone send () blockiert
ein Client solange der Server noch
beschaftigt ist.

> genau wie ein Monitor

class Server : public ActiveObject {
Msg msg; // Nachrichtenpuffer
public:

// Objekt mit Kontrollfluss!
void action() {
while (true) {
receive(ANY, msg); // empfange Nachr.
switch (msg.type()) {
case DO_THIS: doThis(); break;
case DO_THAT: doThat(); break;
default: handleError(Q);
}
reply(msg);

3
1

imy
rZ‘J al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation — Basisabstraktionen

13-30

Dualitat — Aktive Objekte

m Leser/Schreiber Problem mit Nachrichtenaustausch

void reader() {
Msg start_read(START_READ);
send(srv, start_read);
Msg read_msg(DO_READ) ;
send(srv, read_msg);
Msg end_read (END_READ) ;
send(srv, end_read);
// benutze Daten in 'read_msg'

class RwServer : public ActiveObject {
Msg msg; // Nachrichtenpuffer
pubTic:

// Kontrollfluss
void action() {
while (true) {
receive(ANY, msg); // empfange N.
switch (msg.type()) {

case START_READ: startRead(); break;
case DO_READ: doRead(); break;
void writer() { case END_READ: endRead(); break;
Msg start_write(START_WRITE); case START_WRITE: startWrite(); break;
send(srv, start_write); case DO_WRITE: doWrite(Q); break;
// hier Nachricht fillen case END_WRITE: endWrite(Q); break;
Msg write_msg(DO_WRITE); default: msg.type(ERROR); reply(msg);
send(srv, write_msg); }
Msg end_write(END_WRITE); }
send(srv, end_write); }
} 15
J Q al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation — Basisabstraktionen 13-31

L

Dualitat — Aktive Objekte

Leser/Schreiber Problem mit Nachrichtenaustausch
= die eigentliche Lese- und Schreiboperation erfolgt
nebenlaufig durch einen Kindprozess

die 'request' Nachricht muss kopiert werden, da
sie wahrend der Ausfiihrung des Kindprozesses

ﬁ Uiberschrieben werden kénnte

void RWServer::doRead() {
Msg copy=msg;
if (fork()==0) {
// das eigentliche Lesen
copy.set(...) // Antwort
reply(copy);

else {
} // Elternprozess: nichts

void RWServer::doWrite() {
Msg copy=msg;
if (fork()==0) {
// das eigentlich
Schreiben
// (benutzt 'copy')
reply(copy);
}

else {

N

der Server-Prozess kann

sofort

wieder auf 'requests' warten

} // Elternprozess: nichts
} j

al

Betriebssystembau (VL 13 | WS 25)

13 Interprozesskommunikation — Basisabstraktionen

13-32

Dualitat — Aktive Objekte

Leser/Schreiber Problem mit Nachrichtenaustausch

void RWServer::startRead() {

ar++;
if (aw>0)
read.copy_enqueue(msg) ;
else {
rr++; reply(msg);
}
}
void RwWServer::endRead() {
ar--; rr--;

if (rr==0 && aw>0) {
Msg wmsg=write.dequeue();
ww++; reply(wmsg);

reply(msg);

Ergebnis: Die Semantik / Parallelitat
entspricht der Monitor-basierten

" Implementierung.

L

void RWServer::startWrite() {
aw++;
if (ww>0 || rr>0)
write.copy_enqueue(msg);
else {
ww++; reply(msg);
}
}

void RwServer::endWrite() {
aw--; ww--;
if (aw>0) {
Msg wmsg=write.dequeue();
ww++; reply(wmsg);

else while (rr < ar) {
Msg rmsg=read.dequeue();
rr++; reply(rmsg);

}
reply(msg);

Betriebssystembau (VL 13 | WS 25)

13 Interprozesskommunikation — Basisabstraktionen

13-33

Gibt es einen fundamentalen Unterschied zwischen IPC

uber gem. Speicher und IPC Uber Nachrichten?

= zugespitzt: sind oder prozedurorientierte BS (Monolithen) oder
prozessorientierte BS (Mikrokerne) besser?

Beispiel: Leser/Schreiber Monitor vs. Server:

= Monitor: 2 potentielle Wartepunkte
— Client wird verzogert fir gegenseitigen Ausschluss.
— Client wird ggf. wegen einer Ereignisvariablen weiter verzogert.
m Server: 2 potentielle Wartepunkte
— Reply wird verzogert, da der Server noch andere Requests bearbeitet.
— Reply wird ggf. weiter verzdgert, wenn der Request in
eine Warteschlange gehangt werden muss.

Fazit: Dualitat in Synchronisation und Nebenlaufigkeit [4]

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation — Basisabstraktionen 13-34

Agenda

Trennung der Belange mit AOP

L

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation — Trennung der Belange mit AOP 13-35

Trennung der Belange mittels AOP

~2Aspektorientierte Programmierung® erlaubt die modulare
Implementierung ,querschneidender” Belange
Beispiel in AspectC++:

// Festlegung der Monitore des Systems

pointcut monitors() = "FileTable"||"BufferCache";

// Synchronisation per Aspekt "Einfl'.'lgung".ein?s
aspect MonitorSynch { Semaphors in die

advice monitors() : slice struct { «— MonitorKlassen
Semaphore _mutex;

1

advice construction(monitors()) : before() { "Code-Advice" fiir
tjp->thatQ->_mutex.init(1l); Ereignisse im

} Programmablauf

advice execution(monitors()) : around() {
tjp->that(Q->_mutex.p(); // Monitor sperren
tjp->proceed(); // Fkt. ausfiihren
tjp->that()->_mutex.v(); // Monitor freigeben
}
};

al o T 7 13-36

Agenda

Zusammenfassung

L

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation — Zusammenfassung 13-37

Es gibt zwei Hauptklassen von IPC Mechanismen:

= |[PC Uber gemeinsamen Speicher

= nachrichtenbasierte IPC

Mechanismen beider Klassen sind in realen Betriebssystemen

anzutreffen

= Sprachmechanismen wie Monitore und Pfadausdriicke kénnen bei
der BS-Entwicklung allerdings i.d.R. nicht verwendet werden

Bzgl. des Synchronisationsverhaltens und dem Grad der

Nebenlaufigkeit zeichnet sich keine Klasse besonders aus

= Vor- und Nachteile liegen woanders

= Ausblick: mit AOP Techniken kdnnte man von den konkreten
Kommunikations- und Synchronisationsmechanismen abstrahieren

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation —Zusammenfassung 13-38

[1] C. A. R. Hoare, Monitor — An Operating System Structuring Concept, Communications
of the ACM 17, 10, S. 549-557, 1974

[2] R. H. Campbell and A. N. Habermann, The Specification of Process Synchronization
by Path Expressions, Lecture Note in Computer Science 16, Springer, 1974

[3] K. Li, Shared Virtual Memory on Loosely Coupled Multiprocessors, PhD Thesis, Yale
University, 1986

[4] Lauer, H. C. and Needham, R. M. 1979. On the duality of operating system structures.
SIGOPS Oper. Syst. Rev. 13, 2 (Apr. 1979), 3-19

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation — Zusammenfassung 13-39

	13 Interprozesskommunikation
	Prüfungen
	Einordnung
	IPC über Speicher
	IPC über Nachrichten
	Basisabstraktionen
	Trennung der Belange mit AOP
	Zusammenfassung

