
arbeitsgruppe
systemsoftware

Betriebssystembau (BSB)

VL 13 – Interprozesskommunikation

Alexander Krause

Lehrstuhl für Informatik 12 – Arbeitsgruppe Systemsoftware / IRB

Technische Universität Dortmund

https://sys.cs.tu-dortmund.de/de/lehre/ws25/bsb

[
2
0
2
3

A
.

L
o
c
h
m

a
n
n

(T
U

D
O

),
2
0
2
2

P
.

U
lb

ri
c
h

(T
U

D
O

),
2
0
2
1
-1

6
V
.r

S
ie

h
(F

A
U

),
2
0
1
6
-0

7
D

.
L
o
h
m

a
n
n

(L
U

H
H

),
2
0
0
6

O
.

S
p
in

c
z
y
k

(U
O

S
)

WS 25 – 20. Januar 2026

https://sys.cs.tu-dortmund.de/de/lehre/ws25/bsb

Prüfungen

30 min. Fachgespräch über Betriebssystembau

Termine

23. + 24. Februar

24. + 25. März

Weitere bei Bedarf

Anmeldung

Anmeldung für mündl. Prüfung ausfüllen und ausdrucken

Termin und Unterschrift von mir abholen

Wir senden den Zettel an das PA

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – Prüfungen 13 – 2

Gerätezugriff
(Treiber)

Überblick: Einordnung dieser VL

Unterbrechungs-
synchronisation

Unterbrechungs-
behandlung

Hardware

Anwendung(en)

Kontrollfluss-
abstraktion

Prozessverwaltung

B
e
tr

ie
b
ss

ys
te

m
e
n
tw

ic
kl

u
n

g

Hardware

Interprozess-
kommunikation

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – Einordnung 13 – 3

Agenda

Prüfungen

Einordnung

IPC über Speicher

IPC über Nachrichten

Basisabstraktionen

Trennung der Belange mit AOP

Zusammenfassung

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – Einordnung 13 – 4

Agenda

Prüfungen

Einordnung
Kommunikation und Synchronisation

IPC über Speicher

IPC über Nachrichten

Basisabstraktionen

Trennung der Belange mit AOP

Zusammenfassung

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – Einordnung 13 – 5

Kommunikation und Synchronisation

■ ... sind durch das Kausalprinzip immer verbunden:

 nachrichtenbasierte Kommunikation impliziert

Synchronisation (z.B. bei send() und receive())

 Synchronisationsprimitiven eignen sich als Basis für die
Implementierung von Kommunikationsprimitiven
(z.B. Semaphore)

Wenn A eine Information von B benötigt,

um weiterzuarbeiten, muss A solange

warten, bis B die Information bereitstellt.

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – Einordnung 13 – 6

Agenda

Prüfungen

Einordnung

IPC über Speicher
Monitore

Pfadausdrücke

IPC über Nachrichten

Basisabstraktionen

Trennung der Belange mit AOP

Zusammenfassung

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – IPC über Speicher 13 – 7

IPC über gemeinsamen Speicher

■ Anwendungsfälle/Voraussetzungen

■ ungeschütztes System (alle Prozesse im selben Adressraum)

■ System mit sprachbasiertem Speicherschutz

■ Kommunikation zwischen Fäden im selben Adressraum

■ gemeinsamer Speicher mit Hilfe des BS und einer MMU
(z.B. UNIX System V shared memory)

■ gemeinsamer Kern-Adressraum von isolierten Prozessen

■ Positive Eigenschaften:

■ atomare Speicherzugriffe erfordern keine zusätzliche
Synchronisation

■ schnell: kein Kopieren

■ einfache IPC Anwendungen leicht zu realisieren

■ unsynchronisierte Kommunikationsbeziehungen möglich

■ M:N Kommunikation leicht möglich

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – IPC über Speicher 13 – 8

Semaphore – einfache Interaktionen

■ gegenseitiger Ausschluss

■ einseitige Synchronisation

■ betriebsmittelorientierte Synchronisation

// gem. Speicher

Semaphore mutex(1);

SomeType shared;

void process_1() {

 mutex.wait();

 shared.access();

 mutex.signal();

}

void process_2() {

 mutex.wait();

 shared.access();

 mutex.signal();

}

// gem. Speicher

Semaphore elem(0);

SomeQueue shared;

void producer() {

 shared.put();

 elem.signal();

}

void consumer() {

 elem.wait();

 shared.get();

}

// gem. Speicher

Semaphore resource(N); // N>1

SomeResource shared;

sonst wie beim

gegenseitigen Ausschluss

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – IPC über Speicher 13 – 9

Semaphore – komplexere Interaktionen

■ Leser/Schreiber-Problem
■ Schreiber benötigen den Speicher exklusiv

■ mehrere Leser können gleichzeitig arbeiten

Anforderung (Leser)

- werde aktiver Leser

- warte solange aktive Schreiber

- werde ein lesender Leser

Freigabe (Leser)

- sei kein Leser mehr

- wenn keine lesende Leser mehr

 und wartende Schreiber, wecke sie

LESE

Anforderung (Schreiber)

- werde aktiver Schreiber

- warte solange lesende Leser

- werde ein schreibender Schreiber

- warte auf Schreib-Mutex

Freigabe (Schreiber)

- gib Schreib-Mutex frei

- sei kein Schreiber mehr

- wenn kein aktiver Schreiber mehr

 und wartende Leser, wecke sie

SCHREIBE
gem.

Speicher

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – IPC über Speicher 13 – 10

Semaphore – Leser/Schreiber-Problem

// Anforderung (Leser)

mutex.p();

ar++; // aktive Leser

if (aw==0) {

 rr++; // lesende Leser

 read.v();

}

mutex.v();

read.p();

// Freigabe (Leser)

mutex.p();

ar--; rr--;

while (rr==0 && ww<aw) {

 ww++;

 write.v();

}

mutex.v();

// Anforderung (Schreiber)

mutex.p();

aw++; // aktive Schreiber

if (rr==0) {

 ww++; // schreibende S.

 write.v();

}

mutex.v();

write.p();

w_mutex.p();

// Freigabe (Schreiber)

w_mutex.v();

mutex.p();

aw--; ww--;

while (aw==0 && rr<ar) {

 rr++;

 read.v();

}

mutex.v();

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – IPC über Speicher 13 – 11

Semaphore – Diskussion

■ Erweiterungen

■ nicht-blockierendes p()

■ Timeout

■ Felder von Zählern

■ Fehlerquellen

■ Semaphorbenutzung wird nicht erzwungen

■ Abhängigkeit kooperierender Prozesse

─ jeder muss die Protokolle exakt einhalten

■ Aufwand bei der Implementierung

 Unterstützung durch die Programmiersprache

■ Korrekte Synchronisation wird erzwungen

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – IPC über Speicher 13 – 12

Monitore – synchronisierte ADTs [1]

■ Ansatz: Abstrakte Datentypen werden mit
Synchronisationseigenschaften gekoppelt

Prozess A

betrete Monitor-Methode 1

gemeinsame

DatenMethode 2

Methode 1

..
.

Monitor

Prozess B

betrete Monitor-Methode 2

potentieller Blockierungspunkt

impliziter

gegenseitiger

Ausschluss

bedingte

Synchronisation

auf einer

Ereignisvariable

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – IPC über Speicher 13 – 13

Monitore – Leser/Schreiber-Problem

c
o
n
d

it
io

n
 r

e
a
d
,w

ri
te

;

void startRead() {

 if (aw>0)

 read.wait();

 rr++;

 read.signal();

}

Monitor

rwMon;

void endRead() {

 rr--;

 if (rr==0)

 write.signal();

}

void startWrite() {

 aw++;

 if (busyW||rr>0)

 write.wait();

 busyW=true;

}

void endWrite() {

 busyW=false;

 aw--;

 if (aw==0)

 read.signal();

 else write.signal();

}

in
t
rr

,a
w

;

b
o
o
l
b
u
s
y
W

;

Leser Prozess

rwMon.startRead();

resource.read();

rwMon.endRead();

Schreiber Prozess

rwMon.startWrite();

resource.write();

rwMon.endWrite();

SomeType

resource;

gemeinsame

Daten

void read() {

 ...

}

void write()

{

 ...

}

kein

Monitor!

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – IPC über Speicher 13 – 14

Monitore – Implementierung

■ ... auf Basis von Semaphoren

void op() {

 mutex.p();

 // original op()

 ...

 cond.wait();

 ...

 cond.signal();

 ...

 // ende

 if (c_signal>0)

 s_signal.v();

 else

 mutex.v();

}

MonitorSemaphore mutex(1);

Semaphore s_signal(0);

Semaphore s_wait(0);

int c_signal = 0;

int c_wait = 0;

void Cond::wait() {

 c_wait++;

 if (c_signal>0)

 s_signal.v();

 else

 mutex.v();

 s_wait.p();

 c_wait--;

}

void Cond::signal() {

 if (c_wait>0) {

 c_signal++;

 s_wait.v();

 s_signal.p();

 c_signal--;

 }

}

einfache Implemen-

tierung, die nur eine

Bedingungsvariable

unterstützt.

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – IPC über Speicher 13 – 15

Monitore – Diskussion

■ Einschränkung der Nebenläufigkeit auf vollständigen
gegenseitigen Ausschluss.

■ in Java daher 'synchronized' auch für einzelne Methoden

■ Kopplung von logischer Struktur und Synchronisation
ist jedoch nicht immer natürlich.

■ siehe Leser/Schreiber Beispiel

■ gleiches Problem wie beim Semaphor:
Programmierer müssen ein Protokoll einhalten

 Die Synchronisation sollte von der Organisation der Daten
und Methoden besser getrennt werden.

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – IPC über Speicher 13 – 16

Pfadausdrücke [2]

■ Idee: flexible Ausdrücke beschreiben erlaubte Reihenfolgen und
den Grad der Nebenläufigkeit

■ path name1, name2, name3 end
■ bel. Reihenfolge und bel. nebenläufige Ausführung von name1-3

■ path name1; name2 end
■ vor jeder Ausführung von name2 mindestens einmal name1

■ path name1 + name2 end
■ alternative Ausführung: entweder name1 oder name2

■ path 2:(Pfadausdruck) end
■ max. 2 Kontrollflüsse dürfen gleichzeitig im Pfadausdruck sein

■ path N:(1:(insert); 1:(remove)) end
■ z.B. Synchronisation eines N-elementigen Puffers

─ gegenseitiger Ausschluss während insert und remove

─ vor jedem remove muss mindestens ein insert erfolgt sein

─ nie mehr als N abgeschlossene insert-Operationen

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – IPC über Speicher 13 – 17

Pfadausdrücke – Implementierung (1)

■ Transformation in Zustandsautomaten
■ Zustandsänderung bei Ein-/Austritt in die/aus der Operation

■ Beispiel:

bool mayInsert () {

 return c1<N && c2<1;

}

void startInsert () {

 c1++; c2++;

}

void endInsert () {

 c2--; seq1++;

}

N:(1:(insert) ; 1:(remove))

c2 c3

c1

seq1

für jedes 'X:(..)' und

';' wird ein Zähler

eingeführt.

bool mayRemove () {

 return c1<N && seq1>0 && c3<1;

}

void startRemove () {

 c3++; seq1--;

}

void endRemove () {

 c3--; c1--;

}

int c1=0;

int c2=0;

int c3=0;

int

seq1=0;

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – IPC über Speicher 13 – 18

Pfadausdrücke – Implementierung (2)

■ Transformation der Operationen

void Insert() {

 mutex.p();

 if (!mayInsert()) {

 csem1++;

 mutex.v();

 sem1.wait();

 }

 startInsert();

 mutex.v();

 // original insert-Code

 mutex.p();

 endInsert();

 if (!wakeup())

 mutex.v();

}

N:(1:(insert) ; 1:(remove))

sem1/csem1 sem2/csem2

für jede Operation

wird ein

Semaphor

und ein Zähler

eingeführt.

Semaphore mutex(1);

int csem1=0;

Semaphore sem1(0);

int csem2=0;

Semaphore sem2(0);

bool wakeup() {

 if (csem1>0 &&

 mayInsert()) {

 csem1--;

 sem1.v();

 return true;

 }

 if (csem2>0 &&

 mayRemove()) {

 csem2--;

 sem2.v();

 return true;

 }

 return false;

}

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – IPC über Speicher 13 – 19

Pfadausdrücke – Diskussion

■ Vorteile

■ komplexere Interaktionsmuster als mit Monitoren möglich

─ read + 1: write

■ Einhaltung der Interaktionsprotokolle wird erzwungen

─ weniger Fehler!

■ Nachteile

■ Synchronisationsverhalten kann nicht von Zustandsvariablen oder
Parametern abhängen
─ Erweiterung: Pfadausdrücke mit Prädikaten

■ Synchronisation des Zustandsautomaten kann Flaschenhals werden

■ keine Unterstützung für Pfadausdrücke in gebräuchlichen
Programmiersprachen

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – IPC über Speicher 13 – 20

Agenda

Prüfungen

Einordnung

IPC über Speicher

IPC über Nachrichten

Basisabstraktionen

Trennung der Belange mit AOP

Zusammenfassung

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – IPC über Nachrichten 13 – 21

IPC über Nachrichten

■ Anwendungsfälle/Voraussetzungen

■ IPC über Rechnergrenzen

■ Interaktion isolierter Prozesse

■ positive Eigenschaften:

■ einheitliches Paradigma für IPC mit
lokalen und entfernten Prozessen

■ ggf. Pufferung und Synchronisation

■ Indirektion erlaubt transparente Protokollerweiterungen

─ Verschlüsselung, Fehlerkorrektur, ...

■ Hochsprachenmechanismen wie OO-Nachrichten oder
Prozeduraufrufe lassen sich gut auf IPC über Nachrichten
abbilden (RPC, RMI)

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – IPC über Nachrichten 13 – 22

Nachrichtenbasierte Kommunikation

■ Bekannt (aus BS):

Variationen von send() und receive()

■ synchron/asynchron (blockierend/nicht blockierend)

■ gepuffert/ungepuffert

■ direkt/indirekt

■ feste Nachrichtengröße/variable Größe

■ symmetrische/asymmetrische Kommunikation

■ mit/ohne Timeout

■ Broadcast/Multicast

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – IPC über Nachrichten 13 – 23

Agenda

Prüfungen

Einordnung

IPC über Speicher

IPC über Nachrichten

Basisabstraktionen
Windows/Unix/...

Dualität der Konzepte

Trennung der Belange mit AOP

Zusammenfassung

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – Basisabstraktionen 13 – 24

Basisabstraktionen

■ Welche IPC-Basisabstraktionen bieten Betriebssysteme?

■ UNIX-Systeme: Sockets, System V Semaphore,
Messages, Shared Memory

■ Windows NT/2000/XP: Shared Memory, Events, Semaphore,
Mutant (Mutex), Sockets, Pipes, Named Pipes, Mailslots, ...

■ Mach: Nachrichten an Ports und Shared Memory
(mit Copy on Write)

■ Welche Mechanismen nutzen die Systeme i.d.R. intern?

■ Semaphore erlauben gegenseitigen Ausschluss und einseitige
Synchronisation, also sehr häufige Anwendungsfälle

─ werden praktisch immer benutzt

■ Mikrokerne und verteilte Betriebssysteme: Nachrichten

■ Monolithische Systeme: Semaphore und gemeinsamen Speicher

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – Basisabstraktionen 13 – 25

Dualität – Nachrichten in gemeinsamem Speicher

■ Auf Basis von Semaphoren und gemeinsamem Speicher
lässt sich leicht eine Mailbox-Abstraktion realisieren:

■ Nachrichten werden
nicht kopiert

■ Sender sorgt für Speicher

■ receive blockiert ggf.

■ Mailbox-Abstraktion
erlaubt M:N IPC

class Mailbox : public List {

 Semaphore mutex; // (1)

 Semaphore has_elem; // (0)

public:

 Mailbox() : mutex(1), has_elem(0) {}

 void send(Message *msg) {

 mutex.p();

 enqueue(msg); // aus List

 mutex.v();

 has_elem.v();

 }

 Message *receive() {

 has_elem.p();

 mutex.p();

 Message *result = dequeue (); // List

 mutex.v();

 return result;

 }

};

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – Basisabstraktionen 13 – 26

Prozess BProzess A

VGS

Dualität – Gemeinsamer Speicher mit Nachrichten

■ „Virtueller gemeinsamer Speicher“ (VGS [3])

a = 42

ungültig

ungültig

ungültig

b = 8

c = 15

Zugriff

OK

Zugriff

(lese b)

verboten

K
o
n
tr

o
llf

lu
s
s

K
o
n
tr

o
llf

lu
s
s

Betriebssystem

Page Fault

Handler

T
rap

Kopieren der Seite,

Umsetzen des Besitzrechts,

Neustart des Zugriffs

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – Basisabstraktionen 13 – 27

Prozess BProzess A

VGS

■ „Virtueller gemeinsamer Speicher“ (VGS [3])

a = 42

b = 8

ungültig

ungültig

ungültig

c = 15

Zugriff

OK

Zugriff

OK

K
o
n
tr

o
llf

lu
s
s

K
o
n
tr

o
llf

lu
s
s

Betriebssystem

Page Fault

Handler

Dualität – Gemeinsamer Speicher mit Nachrichten

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – Basisabstraktionen 13 – 28

Dualität – VGS Diskussion

■ Verteilter virtueller gemeinsamer Speicher ermöglicht...

■ das Programmiermodell von Multiprozessoren auf
Mehrrechnersystemen zu nutzen

■ IPC über (virtuellen) gemeinsamen Speicher
trotz getrennter Adressräume

■ Probleme:

■ Latenzen der Kommunikation und Trap-Behandlung

■ „false sharing“ - Seitengröße entspricht nicht Objektgröße

■ Lösungsansätze:

■ schwache Konsistenzmodelle, z.B.:

─ nicht jeder Zugriff führt zu einem Trap, veraltete Werte
werden in Kauf genommen

■ Änderungen asynchron per Broad-/Multicast verbreiten

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – Basisabstraktionen 13 – 29

Dualität – Aktive Objekte

■ Objekte mit Kontrollfluss

■ gut geeignet zur Zugriffssynchronisation in Systemen mit
nachrichtenbasierter IPC

class Server : public ActiveObject {

 Msg msg; // Nachrichtenpuffer

public:

 ...

 // Objekt mit Kontrollfluss!

 void action() {

 while (true) {

 receive(ANY, msg); // empfange Nachr.

 switch (msg.type()) {

 case DO_THIS: doThis(); break;

 case DO_THAT: doThat(); break;

 default: handleError();

 }

 reply(msg);

 }

 }

};

Gegenseitiger Ausschluss durch die

Verarbeitungsschleife wird garantiert.

Durch das synchrone send() blockiert

ein Client solange der Server noch

beschäftigt ist.

➔ genau wie ein Monitor

void client1() {

 Message msg(DO_THIS);

 send(srv, msg);

}

void client2() {

 Message msg(DO_THAT);

 send(srv, msg);

}

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – Basisabstraktionen 13 – 30

Dualität – Aktive Objekte

■ Leser/Schreiber Problem mit Nachrichtenaustausch

class RWServer : public ActiveObject {

 Msg msg; // Nachrichtenpuffer

public:

 ...

 // Kontrollfluss

 void action() {

 while (true) {

 receive(ANY, msg); // empfange N.

 switch (msg.type()) {

 case START_READ: startRead(); break;

 case DO_READ: doRead(); break;

 case END_READ: endRead(); break;

 case START_WRITE: startWrite(); break;

 case DO_WRITE: doWrite(); break;

 case END_WRITE: endWrite(); break;

 default: msg.type(ERROR); reply(msg);

 }

 }

 }

};

void reader() {

 Msg start_read(START_READ);

 send(srv, start_read);

 Msg read_msg(DO_READ);

 send(srv, read_msg);

 Msg end_read(END_READ);

 send(srv, end_read);

 // benutze Daten in 'read_msg'

}

void writer() {

 Msg start_write(START_WRITE);

 send(srv, start_write);

 // hier Nachricht füllen

 Msg write_msg(DO_WRITE);

 send(srv, write_msg);

 Msg end_write(END_WRITE);

 send(srv, end_write);

}

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – Basisabstraktionen 13 – 31

Dualität – Aktive Objekte

■ Leser/Schreiber Problem mit Nachrichtenaustausch
■ die eigentliche Lese- und Schreiboperation erfolgt

 nebenläufig durch einen Kindprozess

void RWServer::doRead() {

 Msg copy=msg;

 if (fork()==0) {

 // das eigentliche Lesen

 copy.set(...) // Antwort

 reply(copy);

 }

 else {

 } // Elternprozess: nichts

}

void RWServer::doWrite() {

 Msg copy=msg;

 if (fork()==0) {

 // das eigentlich

Schreiben

 // (benutzt 'copy')

 reply(copy);

 }

 else {

 } // Elternprozess: nichts

}

der Server-Prozess kann

sofort

wieder auf 'requests' warten

die 'request' Nachricht muss kopiert werden, da

sie während der Ausführung des Kindprozesses

überschrieben werden könnte

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – Basisabstraktionen 13 – 32

Dualität – Aktive Objekte

■ Leser/Schreiber Problem mit Nachrichtenaustausch

void RWServer::startRead() {

 ar++;

 if (aw>0)

 read.copy_enqueue(msg);

 else {

 rr++; reply(msg);

 }

}

void RWServer::endRead() {

 ar--; rr--;

 if (rr==0 && aw>0) {

 Msg wmsg=write.dequeue();

 ww++; reply(wmsg);

 }

 reply(msg);

}

void RWServer::startWrite() {

 aw++;

 if (ww>0 || rr>0)

 write.copy_enqueue(msg);

 else {

 ww++; reply(msg);

 }

}

void RWServer::endWrite() {

 aw--; ww--;

 if (aw>0) {

 Msg wmsg=write.dequeue();

 ww++; reply(wmsg);

 }

 else while (rr < ar) {

 Msg rmsg=read.dequeue();

 rr++; reply(rmsg);

 }

 reply(msg);

}

Ergebnis: Die Semantik / Parallelität

entspricht der Monitor-basierten

Implementierung.

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – Basisabstraktionen 13 – 33

Dualität – Diskussion

■ Gibt es einen fundamentalen Unterschied zwischen IPC
über gem. Speicher und IPC über Nachrichten?

■ zugespitzt: sind oder prozedurorientierte BS (Monolithen) oder
prozessorientierte BS (Mikrokerne) besser?

■ Beispiel: Leser/Schreiber Monitor vs. Server:

■ Monitor: 2 potentielle Wartepunkte

─ Client wird verzögert für gegenseitigen Ausschluss.

─ Client wird ggf. wegen einer Ereignisvariablen weiter verzögert.

■ Server: 2 potentielle Wartepunkte

─ Reply wird verzögert, da der Server noch andere Requests bearbeitet.

─ Reply wird ggf. weiter verzögert, wenn der Request in

eine Warteschlange gehängt werden muss.

■ Fazit: Dualität in Synchronisation und Nebenläufigkeit [4]

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – Basisabstraktionen 13 – 34

Agenda

Prüfungen

Einordnung

IPC über Speicher

IPC über Nachrichten

Basisabstraktionen

Trennung der Belange mit AOP

Zusammenfassung

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – Trennung der Belange mit AOP 13 – 35

Trennung der Belange mittels AOP

■ „Aspektorientierte Programmierung“ erlaubt die modulare
Implementierung „querschneidender“ Belange

■ Beispiel in AspectC++:

// Festlegung der Monitore des Systems

pointcut monitors() = "FileTable"||"BufferCache";

// Synchronisation per Aspekt

aspect MonitorSynch {

 advice monitors() : slice struct {

 Semaphore _mutex;

 };

 advice construction(monitors()) : before() {

 tjp->that()->_mutex.init(1);

 }

 advice execution(monitors()) : around() {

 tjp->that()->_mutex.p(); // Monitor sperren

 tjp->proceed(); // Fkt. ausführen

 tjp->that()->_mutex.v(); // Monitor freigeben

 }

};

"Einfügung" eines

Semaphors in die

Monitor-Klassen

"Code-Advice" für

Ereignisse im

Programmablauf

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – Trennung der Belange mit AOP 13 – 36

Agenda

Prüfungen

Einordnung

IPC über Speicher

IPC über Nachrichten

Basisabstraktionen

Trennung der Belange mit AOP

Zusammenfassung

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – Zusammenfassung 13 – 37

Zusammenfassung und Ausblick

■ Es gibt zwei Hauptklassen von IPC Mechanismen:

■ IPC über gemeinsamen Speicher

■ nachrichtenbasierte IPC

■ Mechanismen beider Klassen sind in realen Betriebssystemen
anzutreffen

■ Sprachmechanismen wie Monitore und Pfadausdrücke können bei
der BS-Entwicklung allerdings i.d.R. nicht verwendet werden

■ Bzgl. des Synchronisationsverhaltens und dem Grad der
Nebenläufigkeit zeichnet sich keine Klasse besonders aus

■ Vor- und Nachteile liegen woanders

■ Ausblick: mit AOP Techniken könnte man von den konkreten
Kommunikations- und Synchronisationsmechanismen abstrahieren

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – Zusammenfassung 13 – 38

Literatur

[1] C. A. R. Hoare, Monitor – An Operating System Structuring Concept, Communications
of the ACM 17, 10, S. 549-557, 1974

[2] R. H. Campbell and A. N. Habermann, The Specification of Process Synchronization
by Path Expressions, Lecture Note in Computer Science 16, Springer, 1974

[3] K. Li, Shared Virtual Memory on Loosely Coupled Multiprocessors, PhD Thesis, Yale
University, 1986

[4] Lauer, H. C. and Needham, R. M. 1979. On the duality of operating system structures.
SIGOPS Oper. Syst. Rev. 13, 2 (Apr. 1979), 3-19

al Betriebssystembau (VL 13 | WS 25) 13 Interprozesskommunikation – Zusammenfassung 13 – 39

	13 Interprozesskommunikation
	Prüfungen
	Einordnung
	IPC über Speicher
	IPC über Nachrichten
	Basisabstraktionen
	Trennung der Belange mit AOP
	Zusammenfassung

