©2023 A. Lochmann (TUDO), 2022 P. Ulbrich (TUDO), 2021-16 Vir Sieh (FAU), 2016-07 D. Lohmann (LUHH), 2006 O. Spinczyk (UOS)

Betriebssystembau (BSB)

VL 12 — Geratetreiber

Alexander Krause

Lehrstuhl fir Informatik 12 — Arbeitsgruppe Systemsoftware / IRB
Technische Universitat Dortmund

https://sys.cs.tu-dortmund.de/de/lehre/ws25/bsb

WS 25 - 13. Januar 2025

technische universitat
dortmund

5

arbeitsgruppe
systemsoftware

https://sys.cs.tu-dortmund.de/de/lehre/ws25/bsb

Lehre-Evaluation Wintersemester 25/26

Bitte nehmt teil und fallt die Umfrage aus!

a

Betriebssystembau (VL 12 | WS 25) 12 Treiber—Evaluation

12-2

https://evaluation.tu-dortmund.de/evasys/online.php?pswd=3XRMK

Geratezugriff

(Treiber)

a Betriebssystembau (VL 12 | WS 25) 12 Treiber—Einordnung 12-3

Agenda

L

Evaluation

Einordnung
Anforderungen an das BS
Struktur des E/A-Systems
Zusammenfassung

al Betriebssystembau (VL 12 | WS 25) 12 Treiber — Einordnung

12-4

Agenda

Einordnung
Bedeutung von Gerétetreibern

L

al Betriebssystembau (VL 12 | WS 25) 12 Treiber —Einordnung 12-5

Ll

Bedeutung von Geratetreibern (1)

Anteil Treiber-Sourcen in Linux-5.10.3:

4.2M

6.2M
11M
34M
41M
43M
43M
47M
53M
134M
670M

linux-5.10.3> du -skh x | sort -n

mm
lib

kernel

net

sound

fs

tools

include
Documentation
arch

drivers

al

Betriebssystembau (VL 12 | WS 25)

12 Treiber—Einordnung

12-6

Bedeutung von Geratetreibern (1)

= Anteil an Treibercode in Linux 3.2.1

/sound
Jinclude 5o

s
6%

al Betriebssystembau (VL 12 | WS 25) 12 Treiber —Einordnung 12-7

in Linux (3.2.1) ist der Treibercode (ohne ./arch) etwa
50 mal so groR wie der Code des Kernels

= und wachst rasant!
— bei V2.6.32 waren es "nur" 25 mal mehr
— bei V2.6.11 waren es "nur" 10 mal mehr

= Windows unterstiitzt noch deutlich mehr Gerate ...

Treiberunterstitzung ist flr die Akzeptanz eines Betriebssystems
ein
= warum sonst ware Linux weiter verbreitet als andere freie UNIXe?

in Geratetreibern steckt eine erhebliche Arbeitsleistung
der Entwurf des E/A Subsystems erfordert viel Geschick

= moglichst viele wiederverwendbare Funktionen in eine
verlagern

= klare Vorgaben bzgl. Treiberstruktur, -verhalten und -schnittstellen,
d.h. ein

al Betriebssystembau (VL 12 | WS 25) 12 Treiber—Einordnung 12-8

Agenda

Anforderungen an das BS
Einheitlicher Zugriff
Spezifischer Zugriff

L

al Betriebssystembau (VL 12 | WS 25) 12 Treiber— Anforderungen an das BS 12-9

Ressourcenschonender Umgang mit Geraten
= schnell arbeiten

= Energie sparen

m Speicher, Ports und Interrupt-Vektoren sparen

= Aktivierung und Deaktivierung zur Laufzeit

= Generische Power Management Schnittstelle

Einheitlicher Zugriffsmechanismus
= minimaler Satz von Operationen fiir verschiedene Geratetypen
= machtige Operationen flr vielfaltige Typen von Anwendungen

auch geratespezifische Zugriffsfunktionen

al Betriebssystembau (VL 12 | WS 25) 12 Treiber—Anforderungen an das BS 12-10

echo "Hallo, Welt" > /dev/ttySO

Gerate sind Uber Namen im Dateisystem ansprechbar

Vorteile:

= Systemaufrufe fiir Dateizugriff (open, read, write, close)
kénnen auch fir sonstige E/A verwendet werden

m Zugriffsrechte kénnen Uber die Mechanismen des
Dateisystems gesteuert werden

= Anwendungen sehen keinen Unterschied zwischen
Dateien und "Geratedateien"

Probleme:
= blockorientierte Gerate missen in Byte-Strom verwandelt werden

= manche Gerate lassen sich nur schwer in dieses Schema pressen
— Beispiel: 3D Graphikkarte

al Betriebssystembau (VL 12 | WS 25) 12 Treiber—Anforderungen an das BS 12-11

blockierende Ein-/Ausgabe (Normalfall)
= read: Prozess blockiert bis die angeforderten Daten da sind
= write: Prozess blockiert bis Schreiben maoglich ist

nicht-blockierende Ein-/Ausgabe

= open/read/write mit dem Zusatz-Flag O_NONBLOCK

= statt zu blockieren kehren read und write so mit ~-EAGAIN zurlick
= der Aufrufer kann/muss die Operation spater wiederholen

nebenlaufige Ein-/Ausgabe
= neu: aio_(read|write|...) (POSIX 1003.1-2003)

= indirekt mittels Kindprozess (fork/join)
= select, pol1 Systemaufrufe

al Betriebssystembau (VL 12 | WS 25) 12 Treiber—Anforderungen an das BS 12-12

Windows — einheitlicher Zugriff (1)

m Gerate sind Kern-Objekte der Executive

NtCreateFile
NtReadFile

NtWriteFile

NtCreateFile

NtReadFile e /\ y

native NtWriteFile Device 2?GLOBAL
Anwendung | /pevice/Serial0 Serial0 <& COM!1
Seriall <& COM2

Harddisk 1«

Win32 PCB
DosDevices: DOS-kompatible cop1-
/?2?GLOBAL) COM1: Geritenamen COM2:
P < C:D:)
. CreateFile)
Win32 ReadFile
Anwendung WriteFile
—

NT-Kernobjekte

.., 17?GLOBAL

??GLOBAL/COM1

al Betriebssystembau (VL 12 | WS 25) 12 Treiber— Anforderungen an das BS

12-13

synchrone oder asynchrone Ein-/Ausgabe

BOOL ReadFile(BOOL GetOverlappedResult(
HANDLE hFile, HANDLE hFile,
LPVOID TpBuffer, LPOVERLAPPED 1pOverlapped,
DWORD nNumberOfBytesToRead, LPDWORD 1pNumberOfBytesTransferred,
LPDWORD 1pNumberOfBytesRead, BOOL bwait
LPOVERLAPPED TpOverlapped)5 \
) true: auf Ende warten
NULL: synchrones false: Status erfragen
Lesen

weitere Moglichkeiten:

= E/A mit Timeout

WaitForMultipleObjects — warten auf 1-N Kernobjekte
— Datei-Handles, Semaphore, Mutex, Thread-Handle, ...

I/O Completion Ports
— Aktivierung eines wartenden Threads nach 1/O Operation

al Betriebssystembau (VL 12 | WS 25) 12 Treiber—Anforderungen an das BS 12-14

L

Linux — geratespez. Funktionen (1)

spezielle Gerateeigenschaften werden (klassisch) Gber
ioctl angesprochen:

IOCTL(2) Linux Programmer's Manual IOCTL(2)

NAME
ioct]l - control device

SYNOPSIS
#include <sys/ioctl.h>

int ioctl(int d, int request, ...);

Schnittstelle generisch und Semantik geratespezifisch:

CONFORMING TO
No single standard. Arguments, returns, and semantics of
joct1(2) vary according to the device driver in question
(the call is used as a catch-all for operations that
don't cleanly fit the Unix stream I/0 model). The ioctl
function call appeared in Version 7 AT&T Unix.

al Betriebssystembau (VL 12 | WS 25) 12 Treiber—Anforderungen an das BS 12-15

Linux — geratespez. Funktionen (2)

Linux 2.6 — das Geratemodell im sys-Dateisystem

class
0000:00:00.0 2;":1
Geréate sind virtuelle — Sheisad i
Verzeichnisse dev 0000:00:04.1 name
device 0000:00:04.2 —| poots
queue — 0000:00:04.3 [T
0 range 0000:00:06.0 fesgiiioe 5
Symbolische hda — | size 0000:00:06.1 z:zﬁ:x—sz:::
. PUNT] hdc stat .0 =,
Links ermdglichen ramo 0000:01:00.0 s
H H - 000001001
g ntr?.rsclz(h'lted!lche o dovices s
ortierkriterien poi ——— ——
Bemer e Niol:aqic 256
platform ok S e
drivers
pap PIIX IDE
Lsib agpoart_ali
L_| agpgart amdk?
o Ehe Lol virtuelle Dateien
Pafperting reprasentieren die
uhcihcd Gerate- bzw.
yenta candhus Treiber-Attribute.
Blockgerdte und deren Attribute
Bussysieme mit den daran angeschlossenen Gerdten
= = -

Schnittstelle fUr Firmware-Down loads

. Quelle:
I_I gy s e ‘ e v
alh §M gég)’%%ﬁ?aﬁz"i‘% Ekggnkggén%@/kemtéc%rIlrl%HﬁmA sB

US

Arti keg

Linux 2.6 — das Geratemodell im sys-Dateisystem

Gerate sind virtuelle e
Verzeichnisse dev

device

queue

- range
Symbolische | 55

:

0000:00:00.0
0000:00:01.0
0000:00:04.0
0000:00:04.1
0000:00:04.2 —
0000:00:04.3
0000:00:06.0
0000:00:06.1

class
config
device
irq
name
pools.
power
resource
subsystem_device

yendar

Links ermégl|

unterschiediil Das Geratemodell erlaubt Kern- und Anwendungsfunktionen, die
Sortierkriterid Rechnerhardware zu erforschen. Beispielsweise kann eine

Power-Management-Funktion abhangige Gerate in der richtigen
Relhenfolge stoppen und starten.

et mﬂ

_usb_host.

. Quelle:

hitp: //

a‘Amke ursla Bgy%ﬁ%}aazmdé Lkle?n ec??ngk%/kemtec% l%%hTAnmuﬂgM—da

ohcihed
parport_pc
serial

uhcihed
yenta_cardbus

virtuelie Dateien
reprasentieren die
Gerate- bzw.

addr_len
address
broadcast A |
device
driver
features
flags.
ifindex
iflink
mut
slalistics.

/ Treiber-Attribute.

Blockgerdte und deren Attribute

Bussysteme mit den daran angeschlossenen Gerdten
Zeichenorientierte Gerdte und deren Attribute
Gerdle nach Geriteklassen sortiert

‘Schaittstelle flilr Firmware-Downloads

1x_queue_len

s paSchnitistel erm Pt iR=i

entspricht dem UNIX ioctl:

BOOL DeviceIoControl(

HANDLE hDevice, Kommunikation Uber

E“;SS?D"‘%VI‘I’C;”EEM Code, untypisierte Puffer direkt
pInBuffer, . .

DWORD nInBufferSize, / mit dem Treiber

LPVOID 1pOutBuffer,

DWORD nOutBufferSize, o
LPDWORD 1pBytesReturned, A‘////’aUCh asynchronrnoghchl
LPOVERLAPPED 1pOverlapped

s

und was sonst?
= alle Gerate und Treiber werden durch Kern-Objekte reprasentiert
— spezielle Systemaufrufe gestatten das Erforschen dieses Namensraums
= statische Konfigurierung erfolgt tber die Registry
= dynamische Konfigurierung erfolgt z.B. Giber WMI
— Windows Management Instrumentation

al Betriebssystembau (VL 12 | WS 25) 12 Treiber—Anforderungen an das BS 12-18

Agenda

Struktur des E/A-Systems
Treibermodell
Linux
Windows

L

al Betriebssystembau (VL 12 | WS 25) 12 Treiber — Struktur des E/A-Systems 12-19

Struktur des E/A Systems (1)

= Treiber mit unterschiedlicher Schnittstelle ...

E/A Beendingung

E/A Anforderungen I ,,,,,,,, |

Treiber

Unterbrechung

Zugriff auf ~ dee
Hardware-
Ressourcen

| Festplatte Drucker Tastatur I

= erlauben die volle Ausnutzung aller Gerateeigenschaften
= erfordern eine Erweiterung des E/A Systems fir jeden Treiber
— enormer Aufwand bei der heutigen Geratevielfalt

— unrealistisch, da erst das BS und dann die Treiber entstehen

J al Betriebssystembau (VL 12 | WS 25) 12 Treiber—Struktur des E/A-Systems 12-20

Struktur des E/A Systems (2)

m Treiber mit uniformer Schnittstelle ...

E/A Beendingung

E/A Anforderungen I ,,,,,,,,

Treiber
Unterbrechung
Zugriff auf
Hardware-
Ressourcen

| Festplatte Drucker Tastatur I

= ermdglichen ein (dynamisch) erweiterbares E/A System
= erlauben flexibles "Stapeln" von Geratetreibern
— virtuelle Gerate

— Filter

J al Betriebssystembau (VL 12 | WS 25) 12 Treiber—Struktur des E/A-Systems 12-21

L

Das Treibermodell umfasst ...

"detaillierte Vorgaben fiir die Treiber-Entwicklung"

die Liste der erwarteten Treiber-Funktionen
Festlegung optionaler und obligatorischer Funktionen
die Funktionen, die ein Treiber nutzen darf
Interaktionsprotokolle

Synchronisationsschema und Funktionen

Festlegung von Treiberklassen falls mehrere
Schnittstellentypen unvermeidbar sind

al Betriebssystembau (VL 12 | WS 25) 12 Treiber— Struktur des E/A-Systems 12-22

Zuordnung zu Geratedateien erlauben
Verwaltung mehrerer Gerateinstanzen
Operationen:
= Hardware-Erkennung
= Initialisierung und Beendigung
= Lesen und Schreiben von Daten

— ggf. auch Scatter/Gather

m Steueroperationen und Geratestatus
— z.B. Uber ioctl oder virtuelles Dateisystem

= Energieverwaltung

intern zu bewaltigen:

= Synchronisation

= Pufferung

= Anforderung bendtigter Systemressourcen

al Betriebssystembau (VL 12 | WS 25) 12 Treiber— Struktur des E/A-Systems 12-23

L

Linux — Treibergerust: Registrierung

MODULE_AUTHOR("B.S. Student");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Dummy Treiber.");
MODULE_SUPPORTED_DEVICE("none");

static struct file_operations fops;
// ... Initialisierung von fops (Funktionszeiger)

static int _init mod_init(void){
if(register_chrdev (240, "DummyDriver",&fops)==0)
return 0; // Treiber erfolgreich angemeldet
return -EIO; // Anmeldung beim Kernel fehlgeschlagen
}

static void __exit mod_exit(void){
unregister_chrdev (240, "DummyDriver");

}

module_init(mod_init);
module_exit(mod_exit);

Metainformation,
anzufragen mit
'modinfo’

Registrierung fir
das char-Device
mit der Major-
Number 240

mod_init und
mod_exit
werden beim
Laden bzw.
Entladen
ausgefihrt.

al

Betriebssystembau (VL 12 | WS 25) 12 Treiber — Struktur des E/A-Systems

12-24

Linux — Treibergerust: Operationen

}

}

}

.

static char hello_world[]="Hello World\n";

static int dummy_open(struct inode *geraete_datei,
struct file *instanz) {

printk("driver_open called\n"); return 0;

static int dummy_close(struct inode *geraete_datei,
struct file *instanz) {

printk("driver_close called\n"); return 0;

static ssize_t dummy_read(struct file *instanz,

char *user, size_t count, loff_t *offset) {
int not_copied, to_copy;
to_copy = strlen(hello_world)+1;
if(to_copy > count) to_copy = count;

not_copied=copy_to_user(user,hello_world,to_copy);

return to_copy-not_copied;

.owner =THIS_MODULE,
.open =dummy_open,
.release=dummy_close,
.read =dummy_read,

static struct file_operations fops = {

die Treiberoperationen
entsprechen den
normalen Dateioperationen

in diesem Beispiel machen
open und close nur
Debugging-Ausgaben

mit copy_to_user und
copy_from_user kann
man Daten zwischen
Kern- und Benutzer-
adressraum austauschen

es gibt noch wesentlich
mehr

Operationen, sie sind jedoch
groRtenteils optional

Betriebssystembau (VL 12 | WS 25)

12 Treiber— Struktur des E/A-Systems

12-25

Linux — Treibergerust: Operationen

};

// Struktur zur Einbindung des Treibers in das virtuelle Dateisystem
struct file_operations {

struct module *owner;
Joff_t (*11seek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *, size_t, Toff_t *);
ssize_t (*aio_read) (struct kiocb *, char __user *, size_t, loff_t);
ssize_t (*write) (struct file *, const char __user *, size_t, Toff_t *);
ssize_t (*aio_write) (struct kiocb *, const char __user *, size_t, Toff_t);
int (*readdir) (struct file *, void *, filldir_t);
unsigned int (*pol1) (struct file *, struct poll_table_struct *);
int (*ioct1) (struct inode *, struct file *, unsigned int, unsigned Tong);
int (*mmap) (struct file *, struct vm_area_struct *);
int (*open) (struct inode *, struct file *);
int (*flush) (struct file *);
int (*release) (struct inode *, struct file *);
int (*fsync) (struct file *, struct dentry *, int datasync);
int (*aio_fsync) (struct kiocb *, int datasync);
int (*fasync) (int, struct file *, int);
int (*lock) (struct file *, int, struct file_lock *);
ssize_t (*readv) (struct file *, const struct jovec *, unsigned long, loff_t *);
ssize_t (*writev) (struct file *, const struct jovec *, unsigned long, loff_t *);
ssize_t (*sendfile) (struct file *, loff_t *, size_t, read_actor_t, void __user *);
ssize_t (*sendpage) (struct file *, struct page *, int, size_t, Toff_t *, int);
unsigned Tong (*get_unmapped_area)(struct file *, unsigned Tong,
unsigned Tlong, unsigned long, unsigned long);

Iaj

al Betriebssystembau (VL 12 | WS 25) 12 Treiber— Struktur des E/A-Systems

12-26

Ressourcen reservieren
= Speicher, Ports, IRQ-Vektoren, DMA Kanale

Hardwarezugriff
= Ports und Speicherblocke lesen und schreiben

Speicher dynamisch anfordern

Blockieren und Wecken von Prozessen im Treiber
= waitqueue

Interrupt-Handler anbinden
= low-level
= Tasklets fir langer dauernde Aktivitaten

Spezielle APlIs fiir verschiedene Treiberklassen
= Zeichenorientierte Gerate, Blockgerate, USB-Gerate, Netzwerktreiber

Einbindung in das proc oder sys Dateisystem

al Betriebssystembau (VL 12 | WS 25) 12 Treiber— Struktur des E/A-Systems 12-27

WMI (ab Win2K)

Anwendungen

Win32-
Dienste

.inf und .cat
Dateien kommen

dient der Ereignis- : .
und Leistungiiber- e e . mit dem Treiber
wachung WMI- User Mode .| Setup-
Dienst PnP Manager " |Komponenten
Benutzermodus
.inf Dateien
der PnP Manager \i" v 'CaRteE;?stterlyen
erkennt neue Gerate EIA worrvll eep o oA
und fragt ggf. mit = A n nergie- - A
Hilfe des User-Mode System Routinen || Manager [[verwaltung|| Manager
Teils nach einem
Treiber. t
Treiber pci.sys intelide.sys -t

HAL ist die | I | I e

der E/A Manager
Hardware- t o B g
Abstraktions- u ie Ein- unc
schicht | HAL Ausgaben mit Hilfe

der Treiber durch

NT Executive

al Betriebssystembau (VL 12 | WS 25)

12 Treiber— Struktur des E/A-Systems

12-28

Initialisierungsroutine/Entladeroutine

= wird nach/vor dem Laden/Entladen des Treibers ausgefiihrt

Routine zum Hinzufligen von Geraten

= PnP Manager hat ein neues Gerat fir den Treiber

"Verteilerroutinen"

= Offnen, SchlieBen, Lesen, Schreiben und geratespezifische
Oper.

Interrupt Service Routine

= wird von der zentralen Interrupt-Verteilungsroutine aufgerufen

DPC-Routine

= "Epilog" der Unterbrechungsbehandlung

E/A-Komplettierungs- und -Abbruchroutine

= Informationen Uber den Ausgang weitergeleiteter E/A-Auftrage

al Betriebssystembau (VL 12 | WS 25) 12 Treiber— Struktur des E/A-Systems 12-29

Windows — typischer E/A-Ablauf

Dateisystem- 4@
@ treiber @'

@ Platten-fe——

treiber @

Platten-
treiber

¢ (D NtwriteFile(file_handle, char_buffer)

@ liber das Dateiobjekt wird das
Dateisystem und der Treiber
gefunden

@ Daten an bestimmten Byte-
Offset in Datei schreiben

(® Position auf Datentrager
berechnen

@ E/A Auftrag weitergeben

@ Daten an best. Byte Offset
auf Datentréger schreiben

@ Position in Plattennr. und
Offset umrechen

@ E/A Auftrag weitergeben

Daten an best. Byte Offset
auf Platte 2 schreiben

@ Phys. Block berechnen und
Operation initiieren

Ruckkehr zum Anwendungsprozess!

12 Treiber — Struktur des E/A-Systems 12-30

Windows — typischer E/A-Ablauf

... Fortsetzung (nachdem die Platte fertig geworden ist)

@ Plattencontroller signalisiert —
per Unterbrechung den
Abschluss der Operation
@ Aufruf der ISR bzw. des DPC Dateisystem-
@ Aufruf der Komplettierungs- treiber
routine
@ Aufruf der Komplettierungs-
routine
@ weiterer (Teil-)Auftrag an den Pla_‘tten'
Datentragertreiber treiber
Platten-
treiber
Wo merkt sich das
System
den Zustand einer E/A-
Operation?

al Betriebssystembau (VL 12 | WS 25) 12 Treiber — Struktur des E/A-Systems 12-31

Windows — E/A-Anforderungspaket

NtWriteFile(file_handle, char_buffer)

der E/A-Manager erstellt und initialisiert
fiir jede E/A Operation ein IRP

Header |/IRP tiber die WRITE-Parameter
(/0 Request Packet) wird
WRITE-

die Verteilerroutine gefunden
Parameter i 3 i
IRP-Stack Datei- | | Gerate- o | Treiber-
Objekt Objekt Objekt

jede Treiberebene

benutzt eine neue

Ebene im IRP-

Stack | 4
Verteiler- DPC- = .
T Start-E/A| ISR Routine Geritetreiber

al Betriebssystembau (VL 12 | WS 25) 12 Treiber — Struktur des E/A-Systems 12-32

Agenda

Zusammenfassung

L

al Betriebssystembau (VL 12 | WS 25) 12 Treiber —Zusammenfassung 12-33

ein guter Entwurf des E/A Subsystems ist enorm wichtig

= E/A-Schnittstelle

= Treibermodell

= Treiberinfrastruktur

= Schnittstellen sollten lange stabil bleiben

Ziel ist die Aufwandsminimierung bei der Treibererstellung

Windows besitzt ein ausgereiftes E/A System
= "alles ist ein Kern-Objekt"

= asynchrone E/A Operationen sind die Basis

Linux zieht rasant nach

= "alles ist eine Datei"

= sysfs und asynchrone E/A sind relativ neu (seit 2.6)

al Betriebssystembau (VL 12 | WS 25) 12 Treiber—Zusammenfassung 12-34

	12 Treiber
	Evaluation
	Einordnung
	Anforderungen an das BS
	Struktur des E/A-Systems
	Zusammenfassung

