
arbeitsgruppe
systemsoftware

Betriebssystembau (BSB)

VL 12 – Gerätetreiber

Alexander Krause

Lehrstuhl für Informatik 12 – Arbeitsgruppe Systemsoftware / IRB

Technische Universität Dortmund

https://sys.cs.tu-dortmund.de/de/lehre/ws25/bsb

[
2
0
2
3

A
.

L
o
c
h
m

a
n
n

(T
U

D
O

),
2
0
2
2

P
.

U
lb

ri
c
h

(T
U

D
O

),
2
0
2
1
-1

6
V
.r

S
ie

h
(F

A
U

),
2
0
1
6
-0

7
D

.
L
o
h
m

a
n
n

(L
U

H
H

),
2
0
0
6

O
.

S
p
in

c
z
y
k

(U
O

S
)

WS 25 – 13. Januar 2025

https://sys.cs.tu-dortmund.de/de/lehre/ws25/bsb

Evaluation

Lehre-Evaluation Wintersemester 25/26

Bitte nehmt teil und füllt die Umfrage aus!

al Betriebssystembau (VL 12 | WS 25) 12 Treiber – Evaluation 12 – 2

https://evaluation.tu-dortmund.de/evasys/online.php?pswd=3XRMK

Überblick: Einordnung dieser VL

Unterbrechungs-
synchronisation

Unterbrechungs-
behandlung

Hardware

Anwendung(en)

Interprozess-
kommunikation

Kontrollfluss-
abstraktion

Prozessverwaltung

B
e
tr

ie
b
ss

ys
te

m
e
n
tw

ic
kl

u
n

g

Hardware

Gerätezugriff
(Treiber)

al Betriebssystembau (VL 12 | WS 25) 12 Treiber – Einordnung 12 – 3

Agenda

Evaluation

Einordnung

Anforderungen an das BS

Struktur des E/A-Systems

Zusammenfassung

al Betriebssystembau (VL 12 | WS 25) 12 Treiber – Einordnung 12 – 4

Agenda

Evaluation

Einordnung
Bedeutung von Gerätetreibern

Anforderungen an das BS

Struktur des E/A-Systems

Zusammenfassung

al Betriebssystembau (VL 12 | WS 25) 12 Treiber – Einordnung 12 – 5

Bedeutung von Gerätetreibern (1)

Anteil Treiber-Sourcen in Linux-5.10.3:

linux-5.10.3> du -skh * | sort -n
...
4.2M mm
6.2M lib
11M kernel
34M net
41M sound
43M fs
43M tools
47M include
53M Documentation
134M arch

670M drivers

s

al Betriebssystembau (VL 12 | WS 25) 12 Treiber – Einordnung 12 – 6

Bedeutung von Gerätetreibern (1)

■ Anteil an Treibercode in Linux 3.2.1

al Betriebssystembau (VL 12 | WS 25) 12 Treiber – Einordnung 12 – 7

Bedeutung von Gerätetreibern (2)
■ in Linux (3.2.1) ist der Treibercode (ohne ./arch) etwa

50 mal so groß wie der Code des Kernels
■ und wächst rasant!

─ bei V2.6.32 waren es "nur" 25 mal mehr

─ bei V2.6.11 waren es "nur" 10 mal mehr

■ Windows unterstützt noch deutlich mehr Geräte ...

■ Treiberunterstützung ist für die Akzeptanz eines Betriebssystems
ein entscheidender Faktor
■ warum sonst wäre Linux weiter verbreitet als andere freie UNIXe?

■ in Gerätetreibern steckt eine erhebliche Arbeitsleistung

 der Entwurf des E/A Subsystems erfordert viel Geschick
■ möglichst viele wiederverwendbare Funktionen in eine

Treiber-Infrastruktur verlagern

■ klare Vorgaben bzgl. Treiberstruktur, -verhalten und -schnittstellen,
d.h. ein Treibermodell

al Betriebssystembau (VL 12 | WS 25) 12 Treiber – Einordnung 12 – 8

Agenda

Evaluation

Einordnung

Anforderungen an das BS
Einheitlicher Zugriff

Spezifischer Zugriff

Struktur des E/A-Systems

Zusammenfassung

al Betriebssystembau (VL 12 | WS 25) 12 Treiber – Anforderungen an das BS 12 – 9

Anforderungen an Betriebssysteme

■ Ressourcenschonender Umgang mit Geräten

■ schnell arbeiten

■ Energie sparen

■ Speicher, Ports und Interrupt-Vektoren sparen

■ Aktivierung und Deaktivierung zur Laufzeit

■ Generische Power Management Schnittstelle

■ Einheitlicher Zugriffsmechanismus

■ minimaler Satz von Operationen für verschiedene Gerätetypen

■ mächtige Operationen für vielfältige Typen von Anwendungen

■ auch gerätespezifische Zugriffsfunktionen

al Betriebssystembau (VL 12 | WS 25) 12 Treiber – Anforderungen an das BS 12 – 10

Linux – einheitlicher Zugriff (1)

■ Geräte sind über Namen im Dateisystem ansprechbar

■ Vorteile:

■ Systemaufrufe für Dateizugriff (open, read, write, close)
können auch für sonstige E/A verwendet werden

■ Zugriffsrechte können über die Mechanismen des
Dateisystems gesteuert werden

■ Anwendungen sehen keinen Unterschied zwischen
Dateien und "Gerätedateien"

■ Probleme:

■ blockorientierte Geräte müssen in Byte-Strom verwandelt werden

■ manche Geräte lassen sich nur schwer in dieses Schema pressen
─ Beispiel: 3D Graphikkarte

echo "Hallo, Welt" > /dev/ttyS0

al Betriebssystembau (VL 12 | WS 25) 12 Treiber – Anforderungen an das BS 12 – 11

Linux – einheitlicher Zugriff (2)

■ blockierende Ein-/Ausgabe (Normalfall)

■ read: Prozess blockiert bis die angeforderten Daten da sind

■ write: Prozess blockiert bis Schreiben möglich ist

■ nicht-blockierende Ein-/Ausgabe

■ open/read/write mit dem Zusatz-Flag O_NONBLOCK

■ statt zu blockieren kehren read und write so mit -EAGAIN zurück

■ der Aufrufer kann/muss die Operation später wiederholen

■ nebenläufige Ein-/Ausgabe
■ neu: aio_(read|write|...) (POSIX 1003.1-2003)

■ indirekt mittels Kindprozess (fork/join)

■ select, poll Systemaufrufe

al Betriebssystembau (VL 12 | WS 25) 12 Treiber – Anforderungen an das BS 12 – 12

Executive

Windows – einheitlicher Zugriff (1)

■ Geräte sind Kern-Objekte der Executive

NT-Kernobjekte
/

??GLOBALDevice

COM1

COM2

C

Serial0

Serial1

Harddisk1

Win32 Subsystem

DOS-kompatible

Gerätenamen
COM1:

COM2:

C: D:

native

Anwendung

Win32

Anwendung

Win32 PCB

DosDevices:

 /??GLOBAL

CreateFile

ReadFile

WriteFile

NtCreateFile

NtReadFile

NtWriteFile

/??GLOBAL

/??GLOBAL/COM1

COM1:

/Device/Serial0

NtCreateFile

NtReadFile

NtWriteFile

al Betriebssystembau (VL 12 | WS 25) 12 Treiber – Anforderungen an das BS 12 – 13

Windows – einheitlicher Zugriff (2)

■ synchrone oder asynchrone Ein-/Ausgabe

■ weitere Möglichkeiten:
■ E/A mit Timeout

■ WaitForMultipleObjects – warten auf 1–N Kernobjekte
─ Datei-Handles, Semaphore, Mutex, Thread-Handle, ...

■ I/O Completion Ports
─ Aktivierung eines wartenden Threads nach I/O Operation

BOOL GetOverlappedResult(

 HANDLE hFile,

 LPOVERLAPPED lpOverlapped,

 LPDWORD lpNumberOfBytesTransferred,

 BOOL bWait

);

BOOL ReadFile(

 HANDLE hFile,

 LPVOID lpBuffer,

 DWORD nNumberOfBytesToRead,

 LPDWORD lpNumberOfBytesRead,

 LPOVERLAPPED lpOverlapped

);

NULL: synchrones

Lesen

true: auf Ende warten

false: Status erfragen

al Betriebssystembau (VL 12 | WS 25) 12 Treiber – Anforderungen an das BS 12 – 14

Linux – gerätespez. Funktionen (1)

■ spezielle Geräteeigenschaften werden (klassisch) über
ioctl angesprochen:

■ Schnittstelle generisch und Semantik gerätespezifisch:

IOCTL(2) Linux Programmer's Manual IOCTL(2)

NAME

 ioctl - control device

SYNOPSIS

 #include <sys/ioctl.h>

 int ioctl(int d, int request, ...);

CONFORMING TO

 No single standard. Arguments, returns, and semantics of

 ioctl(2) vary according to the device driver in question

 (the call is used as a catch-all for operations that

 don't cleanly fit the Unix stream I/O model). The ioctl

 function call appeared in Version 7 AT&T Unix.

al Betriebssystembau (VL 12 | WS 25) 12 Treiber – Anforderungen an das BS 12 – 15

Linux – gerätespez. Funktionen (2)

Linux 2.6 – das Gerätemodell im sys-Dateisystem

virtuelle Dateien

repräsentieren die

Geräte- bzw.

Treiber-Attribute.

Geräte sind virtuelle

Verzeichnisse

Symbolische

Links ermöglichen

unterschiedliche

Sortierkriterien

Quelle:

http://www.linux-magazin.de/

Artikel/ausgabe/2004/01/094_kerntechnik6/kerntechnik6.html
al Betriebssystembau (VL 12 | WS 25) 12 Treiber – Anforderungen an das BS 12 – 16

Linux – gerätespez. Funktionen (2)

Linux 2.6 – das Gerätemodell im sys-Dateisystem

virtuelle Dateien

repräsentieren die

Geräte- bzw.

Treiber-Attribute.

Geräte sind virtuelle

Verzeichnisse

Symbolische

Links ermöglichen

unterschiedliche

Sortierkriterien

Quelle:

http://www.linux-magazin.de/

Artikel/ausgabe/2004/01/094_kerntechnik6/kerntechnik6.html

Das Gerätemodell erlaubt Kern- und Anwendungsfunktionen, die

Rechnerhardware zu erforschen. Beispielsweise kann eine

Power-Management-Funktion abhängige Geräte in der richtigen

Reihenfolge stoppen und starten.

al Betriebssystembau (VL 12 | WS 25) 12 Treiber – Anforderungen an das BS 12 – 17

Windows – gerätespez. Funktionen

■ DeviceIoControl entspricht dem UNIX ioctl:

■ und was sonst?
■ alle Geräte und Treiber werden durch Kern-Objekte repräsentiert

─ spezielle Systemaufrufe gestatten das Erforschen dieses Namensraums

■ statische Konfigurierung erfolgt über die Registry

■ dynamische Konfigurierung erfolgt z.B. über WMI
─ Windows Management Instrumentation

BOOL DeviceIoControl(

 HANDLE hDevice,

 DWORD dwIoControlCode,

 LPVOID lpInBuffer,

 DWORD nInBufferSize,

 LPVOID lpOutBuffer,

 DWORD nOutBufferSize,

 LPDWORD lpBytesReturned,

 LPOVERLAPPED lpOverlapped

);

Kommunikation über

untypisierte Puffer direkt

mit dem Treiber

auch asynchron möglich

al Betriebssystembau (VL 12 | WS 25) 12 Treiber – Anforderungen an das BS 12 – 18

Agenda

Evaluation

Einordnung

Anforderungen an das BS

Struktur des E/A-Systems
Treibermodell

Linux

Windows

Zusammenfassung

al Betriebssystembau (VL 12 | WS 25) 12 Treiber – Struktur des E/A-Systems 12 – 19

Struktur des E/A Systems (1)

■ Treiber mit unterschiedlicher Schnittstelle ...

■ erlauben die volle Ausnutzung aller Geräteeigenschaften

■ erfordern eine Erweiterung des E/A Systems für jeden Treiber
─ enormer Aufwand bei der heutigen Gerätevielfalt

─ unrealistisch, da erst das BS und dann die Treiber entstehen

Hardwarezugriffsfunktionen

geräteunabhängige E/A Funktionen
E/A Anforderungen

E/A Beendingung

Unterbrechung

Zugriff auf

Hardware-

Ressourcen

Treiber

Festplatte Drucker Tastatur

E
/A

 S
y

s
te

m

al Betriebssystembau (VL 12 | WS 25) 12 Treiber – Struktur des E/A-Systems 12 – 20

Struktur des E/A Systems (2)

■ Treiber mit uniformer Schnittstelle ...

■ ermöglichen ein (dynamisch) erweiterbares E/A System

■ erlauben flexibles "Stapeln" von Gerätetreibern
─ virtuelle Geräte

─ Filter

Hardwarezugriffsfunktionen

geräteunabhängige E/A Funktionen
E/A Anforderungen

Unterbrechung

Zugriff auf

Hardware-

Ressourcen

Treiber

Festplatte Drucker Tastatur

E
/A

 S
y

s
te

m

E/A Beendingung

al Betriebssystembau (VL 12 | WS 25) 12 Treiber – Struktur des E/A-Systems 12 – 21

Das Treibermodell umfasst ...

■ die Liste der erwarteten Treiber-Funktionen

■ Festlegung optionaler und obligatorischer Funktionen

■ die Funktionen, die ein Treiber nutzen darf

■ Interaktionsprotokolle

■ Synchronisationsschema und Funktionen

■ Festlegung von Treiberklassen falls mehrere
Schnittstellentypen unvermeidbar sind

"detaillierte Vorgaben für die Treiber-Entwicklung"

al Betriebssystembau (VL 12 | WS 25) 12 Treiber – Struktur des E/A-Systems 12 – 22

Anforderungen an Gerätetreiber

■ Zuordnung zu Gerätedateien erlauben

■ Verwaltung mehrerer Geräteinstanzen

■ Operationen:
■ Hardware-Erkennung

■ Initialisierung und Beendigung

■ Lesen und Schreiben von Daten
─ ggf. auch Scatter/Gather

■ Steueroperationen und Gerätestatus
─ z.B. über ioctl oder virtuelles Dateisystem

■ Energieverwaltung

■ intern zu bewältigen:
■ Synchronisation

■ Pufferung

■ Anforderung benötigter Systemressourcen

al Betriebssystembau (VL 12 | WS 25) 12 Treiber – Struktur des E/A-Systems 12 – 23

Linux – Treibergerüst: Registrierung

MODULE_AUTHOR("B.S. Student");

MODULE_LICENSE("GPL");

MODULE_DESCRIPTION("Dummy Treiber.");

MODULE_SUPPORTED_DEVICE("none");

static struct file_operations fops;

// ... Initialisierung von fops (Funktionszeiger)

static int __init mod_init(void){

 if(register_chrdev(240,"DummyDriver",&fops)==0)

 return 0; // Treiber erfolgreich angemeldet

 return -EIO; // Anmeldung beim Kernel fehlgeschlagen

}

static void __exit mod_exit(void){

 unregister_chrdev(240,"DummyDriver");

}

module_init(mod_init);

module_exit(mod_exit);

 Metainformation,

anzufragen mit

'modinfo'

Registrierung für

das char-Device

mit der Major-

Number 240

mod_init und

mod_exit

werden beim

Laden bzw.

Entladen

ausgeführt.

al Betriebssystembau (VL 12 | WS 25) 12 Treiber – Struktur des E/A-Systems 12 – 24

Linux – Treibergerüst: Operationen
static char hello_world[]="Hello World\n";

static int dummy_open(struct inode *geraete_datei,

 struct file *instanz) {

 printk("driver_open called\n"); return 0;

}

static int dummy_close(struct inode *geraete_datei,

 struct file *instanz) {

 printk("driver_close called\n"); return 0;

}

static ssize_t dummy_read(struct file *instanz,

 char *user, size_t count, loff_t *offset) {

 int not_copied, to_copy;

 to_copy = strlen(hello_world)+1;

 if(to_copy > count) to_copy = count;

 not_copied=copy_to_user(user,hello_world,to_copy);

 return to_copy-not_copied;

}

static struct file_operations fops = {

 .owner =THIS_MODULE,

 .open =dummy_open,

 .release=dummy_close,

 .read =dummy_read,

};

 die Treiberoperationen

entsprechen den

normalen Dateioperationen

in diesem Beispiel machen

open und close nur

Debugging-Ausgaben

mit copy_to_user und

copy_from_user kann

man Daten zwischen

Kern- und Benutzer-

adressraum austauschen

es gibt noch wesentlich

mehr

Operationen, sie sind jedoch

größtenteils optional

al Betriebssystembau (VL 12 | WS 25) 12 Treiber – Struktur des E/A-Systems 12 – 25

Linux – Treibergerüst: Operationen

// Struktur zur Einbindung des Treibers in das virtuelle Dateisystem

struct file_operations {

 struct module *owner;

 loff_t (*llseek) (struct file *, loff_t, int);

 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);

 ssize_t (*aio_read) (struct kiocb *, char __user *, size_t, loff_t);

 ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);

 ssize_t (*aio_write) (struct kiocb *, const char __user *, size_t, loff_t);

 int (*readdir) (struct file *, void *, filldir_t);

 unsigned int (*poll) (struct file *, struct poll_table_struct *);

 int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);

 int (*mmap) (struct file *, struct vm_area_struct *);

 int (*open) (struct inode *, struct file *);

 int (*flush) (struct file *);

 int (*release) (struct inode *, struct file *);

 int (*fsync) (struct file *, struct dentry *, int datasync);

 int (*aio_fsync) (struct kiocb *, int datasync);

 int (*fasync) (int, struct file *, int);

 int (*lock) (struct file *, int, struct file_lock *);

 ssize_t (*readv) (struct file *, const struct iovec *, unsigned long, loff_t *);

 ssize_t (*writev) (struct file *, const struct iovec *, unsigned long, loff_t *);

 ssize_t (*sendfile) (struct file *, loff_t *, size_t, read_actor_t, void __user *);

 ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);

 unsigned long (*get_unmapped_area)(struct file *, unsigned long,

 unsigned long, unsigned long, unsigned long);

};

al Betriebssystembau (VL 12 | WS 25) 12 Treiber – Struktur des E/A-Systems 12 – 26

Linux - Treiber-Infrastruktur

■ Ressourcen reservieren
■ Speicher, Ports, IRQ-Vektoren, DMA Kanäle

■ Hardwarezugriff
■ Ports und Speicherblöcke lesen und schreiben

■ Speicher dynamisch anfordern

■ Blockieren und Wecken von Prozessen im Treiber
■ waitqueue

■ Interrupt-Handler anbinden
■ low-level

■ Tasklets für länger dauernde Aktivitäten

■ Spezielle APIs für verschiedene Treiberklassen
■ Zeichenorientierte Geräte, Blockgeräte, USB-Geräte, Netzwerktreiber

■ Einbindung in das proc oder sys Dateisystem

al Betriebssystembau (VL 12 | WS 25) 12 Treiber – Struktur des E/A-Systems 12 – 27

Setup-

Komponenten

Windows – E/A System

 NT Executive

HAL

pci.sys intelide.sys ...Treiber

E/A-

System

WDM WMI

Routinen

PnP

Manager

Energie-

verwaltung

E/A

Manager

Benutzermodus
.inf Dateien

.cat Dateien

Registry

User Mode

PnP Manager

WMI-

Dienst

Setup-

Komponenten
Setup-

Komponenten

Anwendungen
Win32-

DiensteWMI (ab Win2K)

dient der Ereignis-

und Leistungüber-

wachung

der PnP Manager

erkennt neue Geräte

und fragt ggf. mit

Hilfe des User-Mode

Teils nach einem

Treiber.

.inf und .cat

Dateien kommen

mit dem Treiber

der E/A Manager

führt die Ein- und

Ausgaben mit Hilfe

der Treiber durch

HAL ist die

Hardware-

Abstraktions-

schicht

al Betriebssystembau (VL 12 | WS 25) 12 Treiber – Struktur des E/A-Systems 12 – 28

Windows – Treiberstruktur

 Das E/A-System steuert den Treiber mit Hilfe der ...
■ Initialisierungsroutine/Entladeroutine

■ wird nach/vor dem Laden/Entladen des Treibers ausgeführt
■ Routine zum Hinzufügen von Geräten

■ PnP Manager hat ein neues Gerät für den Treiber
■ "Verteilerroutinen"

■ Öffnen, Schließen, Lesen, Schreiben und gerätespezifische
Oper.

■ Interrupt Service Routine
■ wird von der zentralen Interrupt-Verteilungsroutine aufgerufen

■ DPC-Routine
■ "Epilog" der Unterbrechungsbehandlung

■ E/A-Komplettierungs- und -Abbruchroutine
■ Informationen über den Ausgang weitergeleiteter E/A-Aufträge

 ...

al Betriebssystembau (VL 12 | WS 25) 12 Treiber – Struktur des E/A-Systems 12 – 29

Windows – typischer E/A-Ablauf

Platten-

treiber

Platten-

treiber

Dateisystem-

treiber

Systemdienste

E/A-

Manager

1

2

4

NtWriteFile(file_handle, char_buffer)

über das Dateiobjekt wird das

Dateisystem und der Treiber

gefunden

Daten an bestimmten Byte-

Offset in Datei schreiben

Position auf Datenträger

berechnen

E/A Auftrag weitergeben

Daten an best. Byte Offset

auf Datenträger schreiben

Position in Plattennr. und

Offset umrechen

E/A Auftrag weitergeben

Daten an best. Byte Offset

auf Platte 2 schreiben

Phys. Block berechnen und

Operation initiieren

3

1

2

3

4

5

6

7

8

9

5

7

6

8

9

10 Rückkehr zum Anwendungsprozess!

al Betriebssystembau (VL 12 | WS 25) 12 Treiber – Struktur des E/A-Systems 12 – 30

Windows – typischer E/A-Ablauf

Platten-

treiber

Platten-

treiber

Dateisystem-

treiber

Systemdienste

E/A-

Manager

1

2

4

Plattencontroller signalisiert

per Unterbrechung den

Abschluss der Operation

Aufruf der ISR bzw. des DPC

Aufruf der Komplettierungs-

routine

Aufruf der Komplettierungs-

routine

weiterer (Teil-)Auftrag an den

Datenträgertreiber
3

1

2

3

4

5

5
...

Wo merkt sich das

System

den Zustand einer E/A-

Operation?

... Fortsetzung (nachdem die Platte fertig geworden ist)

al Betriebssystembau (VL 12 | WS 25) 12 Treiber – Struktur des E/A-Systems 12 – 31

Windows – E/A-Anforderungspaket

Systemdienste

E/A-Manager

Header

WRITE-

Parameter

..
.

IRP

(I/O Request Packet)

der E/A-Manager erstellt und initialisiert

für jede E/A Operation ein IRP

IRP-Stack Datei-

Objekt

Geräte-

Objekt

Treiber-

Objekt

NtWriteFile(file_handle, char_buffer)

Verteiler-

routine(n)
Start-E/A ISR

DPC-

Routine
Gerätetreiber

über die WRITE-Parameter

wird

die Verteilerroutine gefunden

jede Treiberebene

benutzt eine neue

Ebene im IRP-

Stack

al Betriebssystembau (VL 12 | WS 25) 12 Treiber – Struktur des E/A-Systems 12 – 32

Agenda

Evaluation

Einordnung

Anforderungen an das BS

Struktur des E/A-Systems

Zusammenfassung

al Betriebssystembau (VL 12 | WS 25) 12 Treiber – Zusammenfassung 12 – 33

Zusammenfassung

■ ein guter Entwurf des E/A Subsystems ist enorm wichtig

■ E/A-Schnittstelle

■ Treibermodell

■ Treiberinfrastruktur

■ Schnittstellen sollten lange stabil bleiben

■ Ziel ist die Aufwandsminimierung bei der Treibererstellung

■ Windows besitzt ein ausgereiftes E/A System

■ "alles ist ein Kern-Objekt"

■ asynchrone E/A Operationen sind die Basis

■ Linux zieht rasant nach

■ "alles ist eine Datei"

■ sysfs und asynchrone E/A sind relativ neu (seit 2.6)

al Betriebssystembau (VL 12 | WS 25) 12 Treiber – Zusammenfassung 12 – 34

	12 Treiber
	Evaluation
	Einordnung
	Anforderungen an das BS
	Struktur des E/A-Systems
	Zusammenfassung

