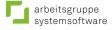
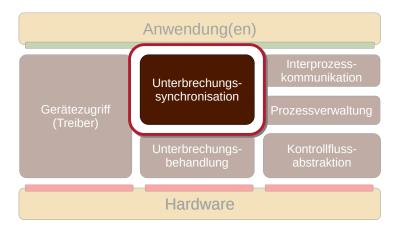
## Betriebssystembau (BSB)

### VL 5 – Unterbrechungssynchronisation


#### Alexander Krause


Lehrstuhl für Informatik 12 – Arbeitsgruppe Systemsoftware / IRB Technische Universität Dortmund

https://sys.cs.tu-dortmund.de/de/lehre/ws25/bsb

WS 25 - 04. November 2025









### Agenda

Einleitung
Prioritätsebenenmodell
Harte Synchronisation
Weiche Synchronisation
Prolog/Epilog-Modell
Zusammenfassung
Referenzen



### Agenda

Einleitung

Motivation

Erstes Fazit

Prioritätsebenenmodell Harte Synchronisation Weiche Synchronisation Prolog/Epilog-Modell Zusammenfassung Referenzen



### Motivation: Konsistenzprobleme

#### Zustandsänderungen ...

- sind Sinn und Zweck der Unterbrechungsbehandlung
  - Gerätetreiber müssen über den Abschluss einer E/A Operation informiert werden
  - der Scheduler muss erfahren, dass eine Zeitscheibe abgelaufen ist
- müssen mit Vorsicht durchgeführt werden
  - Unterbrechungen können zu ieder Zeit auftreten
  - kritisch sind Daten/Datenstrukturen, die der normale Kontrollflus
  - die Unterbrechungsbehandlung sich teilen

# Beispiele aus der letzten Vorlesung

#### Beispiel 2: Ringpuffer

char result = buf[nextout];

nextout++: nextout %= ST7F:

occupied = elements - 1:

auch die Pufferimplementierung ist kritisch ...

```
// Pufferklasse in C++
class RoundedBuffer {
 char buf[SIZE]: int occupied: int nextin, nextout:
public:
  BoundedBuffer(): occupied(0), nextin(0), nextout(0) {}
  void produce(char data) {
                                  // Unterbrechungsbehandlung:
                                  // Elementzähler merken
    int elements = occupied:
    if (elements == SIZE) return: // Flement verloren
                                  // Element schreiben
    buf[nextin] = data:
    nextin++: nextin %= SIZE:
                                  // Zeiger weitersetzen
    occupied = elements + 1:
                                  // Zähler erhöhen
  char consume() {
                                  // normaler Kontrollfluss:
    int elements = occupied:
                                  // Elementzähler merken
    if (elements == 0) return 0: // Puffer leer. kein Ergebnis
                                  // Element lesen
```





4 Hinterhrechungen Software - Zustandsänderunger

// Lesezeiger weitersetzen

// Ergebnis zurückliefern

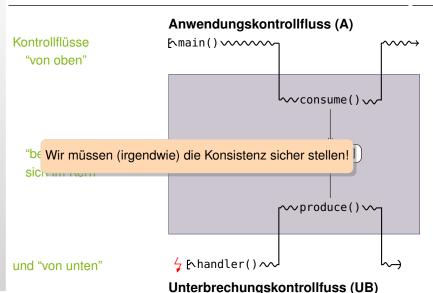
// Zähler erniedrigen



### Motivation: Ursache

Kontrollflüsse "von oben"

"begegnen" sich im Kern


und "von unten"

# Anwendungskontrollfluss (A) F\main() \www. $\mathcal{L}_{\infty}$ consume() $_{\infty}$ buf[...] **BS-Kern** $\sim$ produce() $\sim$ 4 [\handler() √

Unterbrechungskontrollfuss (UB)



#### Motivation: Ursache





### Naiver Lösungsansatz

- Zweiseitige Synchronisation
  - gegenseitiger Ausschluss durch Mutex, *Spin-Lock*, . . . (vgl. [BS])
  - wie zwischen zwei Prozessen

```
Anwendungskontrollfluss (A)
Fmain()
                            char consume() {
                              mutex.lock();
              ₩consume()
                              char result = buf[nextout++];
                              mutex.unlock();
                 buf[...]
  BS-Kern
                              return result;
                                                void produce(char data) {
                                                   mutex.lock():
              \simproduce()\sim
                                                   buf[nextin++] = data:
                                                  mutex.unlock();
4 [\handler() √
Unterbrechungskontrollfuss (UB)
```



### Naiver Lösungsansatz

- Zweiseitige Synchronisation
  - gegenseitiger Ausschluss durch Mutex, Zweiseitige Synchronisation
  - wie zwischen zwei Prozessen

funktioniert natürlich nicht!

```
Anwendungskontrollfluss (A)
Fmain()
                            char consume() {
                              mutex.lock();
              ₩consume()
                              char result = buf[nextout++];
                              mutex.unlock();
                 buf[...]
  BS-Kern
                              return result:
                                                 void produce(char data) {
                                                   mutex.lock():
               \simproduce()\sim
                                                   buf[nextin++] = data:
                                                   mutex.unlock():
4 Mandler() <</pre>
Unterbrechungskontrollfuss (UB)
```



### Besserer Lösungsansatz

- Einseitige Synchronisation
  - Unterdrückung der Unterbrechungsbehandlung im Verbraucher
  - Operationen disable\_interrupts() enable\_interrupts() (im Folgenden o. B. d. A. in "Intel"-Schreibweise: cli() / sti())

```
Anwendungskontrollfluss (A)
```

```
Fmain()
                            char consume() {
                              cli():
              √consume()√
                              char result = buf[nextout++];
                              sti():
                 buf[...]
  BS-Kern
                              return result:
                                                void produce(char data) {
                                                   // hier nichts zu tun
              \simproduce()\sim
                                                   buf[nextin++] = data:
                                                   //hier nichts zu tun
4 Mandler() <</pre>
Unterbrechungskontrollfuss (UB)
```



### Besserer Lösungsansatz

- Einseitige Synchronisation
  - Unterdrückung der Unterbrechungsbeh Einseitige Synchronisation
  - Operationen disable\_interrupts() funktioniert. [Warum?] (im Folgenden o. B. d. A. in "Intel"-Schreibweise: cti()/sti())

```
Anwendungskontrollfluss (A)
```

```
Fmain()
                            char consume() {
                              cli():
              √consume()√
                              char result = buf[nextout++];
                              sti():
                 buf[...]
  BS-Kern
                              return result:
                                                 void produce(char data) {
                                                   // hier nichts zu tun
              \simproduce()\sim
                                                   buf[nextin++] = data:
                                                   //hier nichts zu tun
4 Mandler() <</pre>
Unterbrechungskontrollfuss (UB)
```



#### **Erstes Fazit**

- Konsistenzsicherung zwischen
  - Anwendungskontrollfluss (A) und
  - Unterbrechungsbehandlung (UB)

muss anders erfolgen als zwischen Prozessen

- Die Beziehung zwischen A und UB ist asymmetrisch
  - Es handelt sich um "verschiedene Arten" von Kontrollflüssen
  - UB unterbricht Anwendungskontrollfluss
    - implizit, an beliebiger Stelle
    - hat immer Priorität, läuft durch (run-to-completion)
  - A kann UB unterdrücken (besser: verzögern)
    - explizit, mit cli/sti (Grundannahme 5 aus VL 4)
- Synchronisation / Konsistenzsicherung erfolgt einseitig



#### **Erstes Fazit**

- Konsistenzsicherung zwischen
  - Anwendungskontrollfluss (A) und
  - Unterbrechungsbehandlung (UB)

muss anders erfolgen als zwischen Prozessen

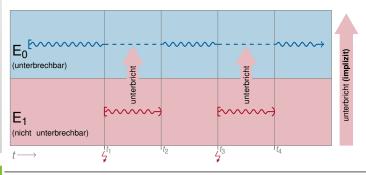
- Die Beziehung zwischen A und UB ist asymmetrisch
  - Es handelt sich um "verschiedene Arten" von Kontrollflüssen
  - UB unterbricht Anwendungskontrollfluss
    - implizit, an beliebiger Stelle
    - hat immer Priorität, läuft durch (run-to-completion)
  - A kann UB unterdrücken (besser: verzögern)
    - explizit, mit cli/sti (Grundannahme 5 aus VL 4)
- Synchronisation / Konsistenzsicherung erfolgt einseitig

#### Diese Tatsachen müssen wir beachten!

(Das heißt aber auch: Wir können sie ausnutzen)

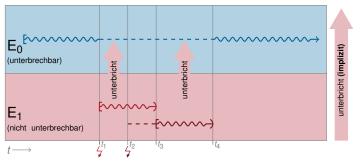


### Agenda


#### Einleitung

Prioritätsebenenmodell
Grundbegriffe
Verallgemeinerung
Konsistenzsicherung
Harte Synchronisation
Weiche Synchronisatior

Weiche Synchronisation Prolog/Epilog-Modell Zusammenfassung Referenzen

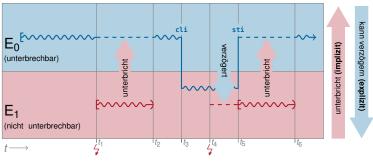



- E<sub>0</sub> sei die Anwendungskontrollfluss-Ebene (A)
  - Kontrollflüsse dieser Ebene sind jederzeit unterbrechbar (durch E<sub>1</sub>-Kontrollflüsse, implizit)
- E<sub>1</sub> sei die Unterbrechungsbehandlungs-Ebene (UB)
  - Kontrollflüsse dieser Ebene sind nicht unterbrechbar (durch E<sub>0/1</sub>-Kontrollflüsse, implizit)



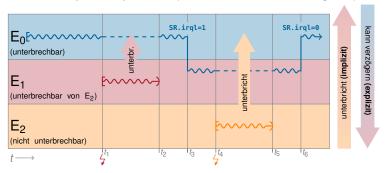


- Kontrollflüsse derselben Ebene werden sequentialisiert
  - Sind mehrere Kontrollflüsse in einer Ebene anhängig, so werden diese nacheinander abgearbeitet (run-to-completion)
    - damit ist auf jeder Ebene h\u00f6chstens ein Kontrollfluss aktiv
  - Die Sequentialisierungsstrategie selber ist dabei beliebig
    - FIFO, LIFO, nach Priorität, zufällig, ...
    - Für E<sub>1</sub>-Kontrollflüsse auf dem PC implementiert der (A)PIC die Strategie






- Kontrollflüsse können die Ebene wechseln
  - Mit cli wechselt ein E<sub>0</sub>-Kontrollfluss explizit auf E<sub>1</sub>
    - er ist ab dann nicht mehr unterbrechbar
    - andere E<sub>1</sub>-Kontrollflüsse werden verzögert
  - Mit sti wechselt ein E₁-Kontrollfluss explizit auf E₀
    - er ist ab dann (wieder) unterbrechbar
    - anhängige E<sub>1</sub>-Kontrollflüsse "schlagen durch"


(← Sequentialisierung)

(← Sequentialisierung)





- Verallgemeinerung für mehrere Unterbrechungsebenen:
  - Kontrollflüsse auf E<sub>1</sub> werden
    - jederzeit unterbrochen durch Kontrollflüsse von E<sub>m</sub>
    - 2. nie unterbrochen durch Kontrollflüsse von E<sub>k</sub>
    - 3. sequentialisiert mit weiteren Kontrollflüssen von E,
  - Kontrollflüsse können die Ebene wechseln
    - durche spezielle Operationen (hier: Modifizieren des Statusregisters)





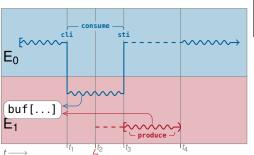
(für m > l) (für  $k \le l$ )

### Prioritätsebenenmodell: Konsistenzsicherung

- Jede Zustandsvariable ist (logisch) genau einer Ebene E<sub>I</sub> zugeordnet
  - Zugriffe aus E<sub>1</sub> sind implizit konsistent (← Sequentialisierung)
  - Konsistenz bei Zugriff aus h\u00f6heren / tieferen Ebenen muss explizit sichergestellt werden
- Maßnahmen zur Konsistenzsicherung bei Zugriffen:
  - "von oben" (aus  $E_k$  mit k < I) durch harte Synchronisation
    - explizit die Ebene auf E, wechseln beim Zugriff (Verzögerung)
    - damit erfolgt der Zugriff aus derselben Ebene (→ Sequentialisierung)
  - "von unten" (aus  $E_m$  mit m > I) durch weiche Synchronisation
    - algorithmisch sicherstellen, dass Unterbrechungen nicht stören
    - erfordert unterbrechungstransparente Algorithmen



### Agenda


Prioritätsebenenmodell
Harte Synchronisation
Ansatz
Bewertung
Weiche Synchronisation
Prolog/Epilog-Modell
Zusammenfassung



### Bounded Buffer – Lösung mit harter Synchronisation

Zugriff "von oben" wird hart synchronisiert: Für die Ausführung von consume() wechselt der Kontrollfluss auf E<sub>1</sub>

```
char consume() {
  cli();
    ...
  char result = buf[nextout++];
    ...
  sti();
  return result;
  void produce(char data) {
```



// hier nichts zu tun
...
buf[nextin++] = data;
...
//hier nichts zu tun
}

Zustand liegt (logisch) auf E<sub>1</sub>



### Harte Synchronisation: Bewertung

#### Vorteile

- Konsistenz ist sicher gestellt
  - auch bei komplexen Datenstrukturen und Zugriffsmustern
  - unabhängig davon, was der Compiler macht
- einfach anzuwenden, "funktioniert immer"
  - im Zweifelsfall legt man einfach sämtlichen Zustand auf die höchstpriore Ebene

#### Nachteile

- Breitbandwirkung
  - Es werden pauschal alle Unterbrechungsbehandlungen (Kontrollflüsse) auf und unterhalb der Zustandsebene verzögert
- Prioritätsverletzung
  - Es werden Kontrollflüsse höherer Priorität verzögert
- prophylaktisches Verfahren
  - Nachteile werden in Kauf genommen, obwohl die Wahrscheinlichkeit, dass tatsächlich eine relevante Unterbrechung eintrifft, sehr klein ist.



### Harte Synchronisation: Bewertung (Forts.)

- Ob die Nachteile erheblich sind, hängt ab von
  - Häufigkeit,
  - durchschnittlicher Dauer,
  - maximaler Dauer

der Verzögerung.

- Kritisch ist vor allem die maximale Dauer
  - hat direkten Einfluss auf die anzunehmende Latenz
  - Wird die Latenz zu hoch, können Daten verloren gehen
    - edge-triggered Unterbrechungen gehen verloren
    - Daten werden zu langsam von EA-Gerät abgeholt

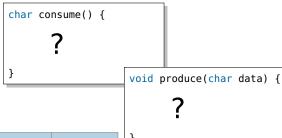
#### **Fazit**

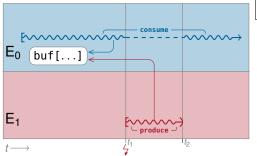
Harte Synchronisation ist eher **ungeeignet** für die Konsistenzsicherung **komplexer Datenstrukturen** 

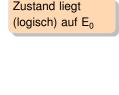


### Agenda

Einleitung Prioritätsebenenmodell Harte Synchronisation


Weiche Synchronisation
Ansatz
Implementierungsbeispiele
Bewertung

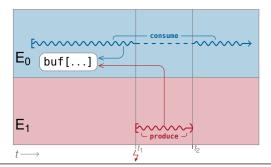

Prolog/Epilog-Modell Zusammenfassung Referenzen




### Bounded Buffer – Ansatz mit weicher Synchronisation

Zugriff "von unten" wird weich synchronisiert: consume() liefert ein korrektes Ergebnis, auch wenn während der Abarbeitung produce() ausgeführt wurde.










### Bounded Buffer – Konsistenzbedingungen, Annahmen

- Konsistenzbedingung
  - Ergebnis einer unterbrochenen Ausführung soll äquivalent sein zu dem einer sequentiellen Ausführung der Operation
    - entweder consume() vor produce() oder consume() nach produce()
- Annahmen
  - produce() unterbricht consume()
    - alle anderen Kombinationen kommen nicht vor
  - produce() läuft immer durch (run-to-completion)





5-22

### Bounded Buffer - Implementierung aus der letzten VL

### Kritisch ist der gemeinsam verwendete Zustand

```
// Pufferklasse in C++
class BoundedBuffer {
 char buf[SIZE]; int occupied; int nextin, nextout;
public:
 BoundedBuffer(): occupied(0), nextin(0), nextout(0) {}
 void produce(char data) { // Unterbrechungsbehandlung:
   int elements = occupied; // Elementzaehler merken
   if (elements == SIZE) return; // Element verloren
   occupied = elements + 1; // Zaehler erhoehen
                    // normaler Kontrollfluss:
 char consume() {
   int elements = occupied;  // Elementzaehler merken
   if (elements == 0) return 0; // Puffer leer, kein Ergebnis
   char result = buf[nextout]; // Element lesen
   nextout++; nextout %= SIZE; // Lesezeiger weitersetzen
   occupied = elements - 1; // Zaehler erniedrigen
                              // Ergebnis zurueckliefern
   return result:
} };
```



### Bounded Buffer - Implementierung aus der letzten VL

### Kritisch ist der gemeinsam verwendete Zustand

```
Insbesondere Zustand, auf den
// Pufferklasse in C++
                                         von beiden Seiten schreibend
class BoundedBuffer {
                                         zugegriffen wird.
  char buf[SIZE]; int occupied; int nextin, measure,
public:
 BoundedBuffer(): occupied(0), nextin(0), nextout(0) {}
  void produce(char data) { // Unterbrechungsbehandlung:
    int elements = occupied: // Elementzaehler merken
    if (elements == SIZE) return; // Element verloren
    buf[nextin] = data;  // Element schreiben
    nextin++; nextin %= SIZE; // Zeiger weitersetzen
    occupied = elements + 1;
                                 // Zaehler erhoehen
                           // normaler Kontrollfluss:
  char consume() {
    int elements = occupied; // Elementzaehler merken
    if (elements == 0) return 0: // Puffer leer, kein Ergebnis
    char result = buf[nextout]; // Element lesen
    nextout++; nextout %= SIZE; // Lesezeiger weitersetzen
    occupied = elements - 1;
                                 // Zaehler erniedrigen
    return result:
                                 // Ergebnis zurueckliefern
} };
```



### Bounded Buffer - Alternative Implementierung

Diese alternative Implementierung kommt ohne gemeinsam beschriebenen Zustand aus.

```
// Pufferklasse in C++ (alternativ)
class BoundedBuffer {
  char buf[SIZE]; int nextin, nextout;
public:
  BoundedBuffer(): nextin(0), nextout(0) {}
  void produce(char data) {
    if ((nextin + 1) % SIZE == nextout) return;
    buf[nextin] = data;
    nextin = (nextin + 1) % SIZE;
  char consume() {
    if (nextout == nextin) return 0;
    char result = buf[nextout];
    nextout = (nextout + 1) % SIZE;
    return result;
} };
```



### Bounded Buffer – Alternative Implementierung

```
// Pufferklasse in C++ (alternativ)
class BoundedBuffer {
  char buf[SIZE]; int nextin, nextout;
public:
  BoundedBuffer(): nextin(0), nextout(0) {}
  void produce(char data) {
    if ((nextin + 1) % SIZE == nextout) return;
    buf[nextin] = data;
    nextin = (nextin + 1) % SIZE;
  char consume() {
    if (nextout == nextin) return 0;
    char result = buf[nextout]:
    nextout = (nextout + 1) % SIZE;
    return result;
} };
```

Allerdings gibt es hier jetzt Zustand, der von einer Seite gelesen und von der jeweils anderen beschrieben wird.

### Bounded Buffer – Alternative Implementierung

```
// Pufferklasse in C++ (alternativ)
class BoundedBuffer {
  char buf[SIZE]; int nextin, nextout;
public:
  BoundedBuffer(): nextin(0), nextout(0) {}
  void produce(char data) {
    if ((nextin + 1) % SIZE == nextout) return;
    buf[nextin] = data;
    nextin = (nextin + 1) % SIZE;
  char consume() {
    if (nextout == nextin) return 0;
    char result = buf[nextout]:
    nextout = (nextout + 1) % SIZE;
    return result;
} };
```

Allerdings gibt es hier jetzt Zustand, der von einer Seite gelesen und von der jeweils anderen beschrieben wird.

An genau diesen Stellen müssen wir prüfen, ob die Konsistenzbedingung gilt.

### Bounded Buffer – Analyse der neuen Implementierung

buf[nextin] = data;

nextin = (nextin + 1) % SIZE;

- Angenommen, die Unterbrechung von consume() erfolgt:
  - aus der Sicht von consume ()
    - vor dem Lesen von nextin
    - nach dem Lesen von nextin
  - aus der Sicht von produce ()
    - vor dem Schreiben von nextout
    - nach dem Schreiben von nextout

```
⇔ consume() nach produce()
⇔ consume() vor produce()
```

```
·
```

```
⇔ produce() vor consume()
⇔ produce() nach consume()
```

Konsistenzbedingung ist in jedem Fall erfüllt!

```
char consume() {
  if (nextout == nextin) return 0;
  char result = buf[nextout];
  nextout = (nextout + 1) % SIZE;
  return result;
}
void produce(char data) {
```



if ((nextin + 1) % SIZE == nextout) return;

### Systemzeit – Implementierung aus der letzten Vorlesung

```
/* globale Zeitvariable */
                   extern volatile time_t global_time;
         /* Systemzeit abfragen */
                                         /* Unterbrechungs-
                                          * behandlung
           time_t time () {
                                         void timerHandler () {
             return global_time;
                                           global_time++;
h8300 - hms - q++ (16-Bit-Architektur)
       time:
                                             Problem:
         mov global_time, %r0; lo
         mov global_time+2, %r1; hi
                                             Daten werden nicht
         ret
                                             atomar gelesen.
```



### Systemzeit – Konsistenzbedingungen, Annahmen, Ansatz

#### Konsistenzbedingung

- Ergebnis einer unterbrochenen Ausführung soll äquivalent sein zu dem einer sequentiellen Ausführung der Operation
  - entweder time() vor timerHandler() oder umgekehrt

#### Annahmen

- timerHandler() unterbricht time()
  - alle anderen Kombinationen kommen nicht vor
- timerHandler() läuft immer durch (run-to-completion)
- Lösungsansatz: In time() optimistisch herangehen
  - lese Daten unter der Annahme nicht unterbrochen zu werden
  - 2. überprüfe, ob Annahme zutraf wurden wir unterbrochen?
  - 3. falls unterbrochen, setze neu auf ab Schritt 1



### Systemzeit – Neue Implementierung

```
/* globale Zeitvariable */
          extern volatile time_t global_time;
          extern volatile bool interrupted;
/* Systemzeit abfragen */
                               /* Unterbrechungsbehandlung >
time t time () {
                               void timerHandler () {
  time_t res;
                                 interrupted = true;
  do {
                                 qlobal_time++;
    interrupted = false;
    res = global_time;
  } while (interrupted);
  return res;
```



Konsistenzbedingung ist nun in jedem Fall erfüllt!

### Weiche Synchronisation: Bewertung

#### Vorteile

- Konsistenz ist sichergestellt (durch Unterbrechungstransparenz)
- Priorität wird nie verletzt
  - Kontrollflüsse der höherprioren Ebenen kommen immer durch
- Kosten entstehen entweder gar nicht oder nur im Konfliktfall
  - gar nicht
    - im Konfliktfall

- → Beispiel Bounded Buffer
- optimistische Verfahren, Beispiel Systemzeit (zusätzliche Kosten durch Wiederaufsetzen)

#### Nachteile

- Lösungen häufig sehr komplex
  - Wenn man überhaupt eine Lösung findet, ist diese in der Regel schwer zu verstehen – und noch schwieriger zu verifizieren
- Lösungen häufig sehr fragil (bezüglich Randbedingungen)
  - Kleinste Änderungen können die Konsistenzgarantie zerstören
  - Codegenerierung des Compilers ist zu beachten
- Bei größeren Datenmengen steigen die Wiederaufsetzkosten



### Weiche Synchronisation: Bewertung (Forts.)

#### **Fazit**

- Weiche Synchronisation durch Unterbrechungstransparenz ist grundsätzlich erstrebenswert!
- Es handelt sich bei den Algorithmen jedoch immer um Speziallösungen für Spezialfälle.
- Als allgemein verwendbares Mittel für die Sicherung beliebiger Datenstrukturen ist sie nicht geeignet.

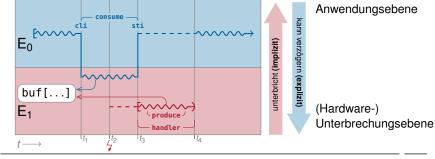


# Agenda

Einleitung Prioritätsebenenmodell Harte Synchronisation Weiche Synchronisation

Prolog/Epilog-Modell Ansatz Implementierung Bewertung

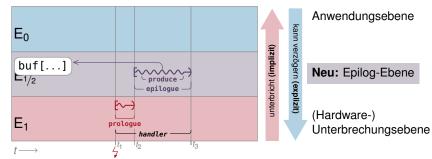
Zusammenfassung Referenzen




# Prolog/Epilog-Modell – Motivation

- Reprise: Harte Synchronisation
  - einfach, korrekt, "funktioniert immer"
- /

Hauptproblem ist die hohe Latenz


- X
- Verzögerung bei Zugriff auf den Zustand aus höheren Ebenen
- Verzögerung bei Bearbeitung des Zustands in der UB selbst
- letztlich dadurch verursacht, dass der Zustand (logisch) auf der/einer Hardwareunterbrechungsebene E<sub>1 n</sub> liegt.





### Prolog/Epilog-Modell – Ansatz

- Ansatz: Latenzverbergung durch zusätzliche Ebene
  - Wir fügen eine weitere logische Ebene ein: E<sub>1/2</sub>
    - $E_{1/2}$  liegt zwischen der Anwendungsebene  $E_0$  und den UB-Ebenen  $E_{1...n}$
  - Unterbrechungsbehandlung wird zweigeteilt in Prolog und Epilog
    - Prolog arbeitet auf Unterbrechungsebene E<sub>1...n</sub>
    - Epilog arbeitet auf der neuen (Software-)Ebene E<sub>1/2</sub> (Epilogebene)
  - Zustand liegt (so weit wie möglich) auf der Epilogebene
    - eigentliche Unterbrechungsbehandlung wird nur noch kurz gesperrt





## Prolog/Epilog-Modell — Ansatz (Forts.)

Unterbrechungsbehandlungsroutinen werden zweigeteilt (vgl. VL6)

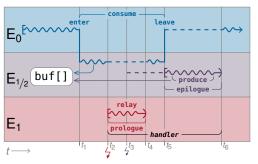
beginnen im Prolog (fast immer)

werden fortgesetzt im Epilog (bei Bedarf)

- Prolog ( Hardwareunterbrechung, vgl. VL4)
  - läuft auf Hardwareunterbrechungsebene
    - hat damit Priorität über Anwendungsebene und Epilogebene
  - ist kurz, fasst wenig oder gar keinen Zustand an
    - Üblicherweise wird nur der Hardware-Zustand gesichert und bestätigt
    - Unterbrechungen bleiben nur kurz gesperrt (→ Latenzminimierung)
    - kann bei Bedarf einen Epilog für die weitere Verarbeitung anfordern
- **Epilog** (→ Softwareunterbrechung, vgl. SoftIRQ, VL6)
  - läuft auf Epilogebene E<sub>1/2</sub> (zusätzliche Kontrollflussebene)
    - Ausführung erfolgt verzögert zum Prolog
    - erledigt die eigentliche Arbeit (→ Latenzverbergung)
  - hat Zugriff auf größten Teil des Zustands
    - Zustand wird auf Epilogebene synchronisiert



### Prolog/Epilog-Modell – Epilogebene


- Die Epilogebene wird (ganz oder teilweise)
   in Software implementiert
  - trotzdem handelt es sich um eine ganz normale
     Prioritätsebene des Ebenenmodells
  - es müssen daher auch dieselben Gesetzmäßigkeiten gelten
- Es gilt: Kontrollflüsse auf der Epilogebene E<sub>1/2</sub> werden
  - 1. jederzeit unterbrochen durch Kontrollflüsse der Ebenen E<sub>1...n</sub>
    - → Prologe (Unterbrechungen) haben Priorität über Epiloge
  - 2. nie unterbrochen durch Kontrollflüsse der Ebene E<sub>0</sub>
    - → Epiloge haben Priorität über Anwendungskontrollflüsse
  - 3. sequentialisiert mit anderen Kontrollflüssen von  $E_{1/2}$ 
    - → Anhängige Epiloge werden nacheinander abgearbeitet.
    - → Bei Rückkehr zur Anwendungsebene sind alle Epiloge abgearbeitet.



- Benötigt werden Operationen, um
  - 1. explizit die Epilogebene zu betreten: enter()
    - entspricht dem cli bei der harten Synchronisation
  - 2. explizit die Epilogebene zu verlassen: leave()
    - entspricht dem sti bei der harten Synchronisation
  - 3. einen Epilog anzufordern: relay()
    - entspricht dem Hochziehen der IRQ-Leitung beim PIC



### Prolog/Epilog-Modell – Ablaufbeispiel



E<sub>1</sub>-Unterbrechungen werden nie gesperrt.

Aktivierungslatenz der Unterbrechungsbehandlung ist minimal.

- $t_1$  Anwendungskontrollfluss betritt Epilogebene  $E_{1/2}$  (enter()).
- t₂ Unterbrechung ⅓ auf Ebene E₁ wird signalisiert → Prolog wird ausgeführt.
- $t_3$  Prolog fordert Epilog für die nachgeordnete Bearbeitung an (relay()  $\frac{1}{2}$ ).
- $t_4$  Prolog terminiert, unterbrochener  $E_{1/2}$ -Kontrollfluss läuft weiter.
- t₅ Anwendungskontrollfluss verlässt die Epilogebene E<sub>1/2</sub> (leave()) zwischenzeitlich aufgelaufene Epiloge werden nun abgearbeitet.
- t<sub>6</sub> Epilog terminiert, Anwendungskontrollfluss fährt auf E<sub>0</sub> fort.



- Benötigt werden Operationen, um
  - 1. explizit die Epilogebene zu betreten: enter()
    - entspricht dem cli bei der harten Synchronisation
  - 2. explizit die Epilogebene zu verlassen: leave()
    - entspricht dem sti bei der harten Synchronisation
  - 3. einen Epilog anzufordern: relay()
    - entspricht dem Hochziehen der IRQ-Leitung beim PIC
- Außerdem Mechanismen, um
  - 4. anhängige Epiloge zu "merken": queue (z. B.)
    - entspricht dem IRR (Interrupt-Request-Register) beim PIC
  - 5. sicherzustellen, dass anhängige Epiloge abgearbeitet werden
    - entspricht bei der harten Synchronisation dem Protokoll zwischen CPU und PIC



- Benötigt werden Operationen, um
  - 1. explizit die Epilogebene zu betreten: enter()
    - entspricht dem cli bei der harten Synchronisation
  - 2. explizit die Epilogebene zu verlassen: leave()
    - entspricht dem sti bei der harten Synchronisation
  - 3. einen Epilog anzufordern: relay()
    - entspricht dem Hochziehen der IRQ-Leitung beim PIC
- Außerdem Mechanismen, um
  - 4. anhängige Epiloge zu "merken": queue (z. B.)
    - entspricht dem IRR (Interrupt-Request-Register) beim PIC
  - 5. sicherzustellen, dass anhängige Epiloge abgearbeitet werden
    - entspricht bei der harten Synchronisation dem Protokoll zwischen CPU und PIC

Dieser Punkt muss etwas genauer betrachtet werden!



- 5. sicherzustellen, dass anhängige Epiloge abgearbeitet werden
  - entspricht bei der harten Synchronisation dem Protokoll zwischen CPU und PIC

#### Wann müssen anhängige Epiloge abgearbeitet werden?

#### Immer unmittelbar, bevor die CPU auf E<sub>0</sub> zurückkehrt!

- 1. bei explizitem Verlassen der Epilogebene mit leave()
  - während der Anwendungskrontrollfluss auf E<sub>1/2</sub> gearbeitet hat könnten Epiloge aufgelaufen sein (← Sequentialisierung).
- 2. nach Abarbeitung des letzten Epilogs
  - während der Epilogabarbeitung könnten weitere Epiloge aufgelaufen sein (← Sequentialisierung).
- 3. wenn der letzte Unterbrechungsbehandler terminiert
  - während der Abarbeitung von E<sub>1...n</sub>-Kontrollflüssen könnten Epiloge aufgelaufen sein (← Priorisierung).



- Implementierungsvarianten
  - rein softwarebasiert

(→ Übung) (→ [1, 2])

- mit Hardwareunterstützung durch einen AST
- Ein AST (asynchronous system trap) ist eine Unterbrechung, die (nur) durch Software angefordert werden kann.
  - z. B. durch Setzen eines Bits in einem bestimmten Register
  - ansonsten technisch vergleichbar mit einer Hardware-Unterbrechung
    - AST wird (im Gegensatz zu Traps/Exceptions) asynchron abgearbeitet
    - AST läuft auf eigener Unterbrechungsebene zwischen der Anwendungsebene und den Hardware-UBs (→ unsere E<sub>1/2</sub>)
    - Gesetzmäßigkeiten des Ebenenmodels gelten
       (AST-Ausführung ist verzögerbar, wird automatisch aktiviert, ...)
- Sicherstellung der Epilogabarbeitung wird damit sehr einfach!

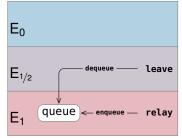
  - bleibt nur noch die Verwaltung der anhängigen Epiloge



- Beispiel TriCore: Implementierung mit AST
  - AST hier als Unterbrechung der E<sub>1</sub> konfiguriert (⇔ unsere E<sub>1/2</sub>)
  - Geräteunterbrechungen laufen auf E<sub>2...n</sub>

```
void enter() {
 CPU::setIRQL(1);
                         // betrete E1, verzoegere AST
void leave() {
 CPU::setIRQL(0);
                         // erlaube AST (anhaengiger
                         // AST wuerde jetzt abgearbeitet)
void relay(<Epilog>) {
 <haenge Epilog an queue an>
 CPU_SRC1::trigger(); // aktiviere Level-1 IRQ (AST)
void __attribute__((interrupt_handler)) irg1Handler() {
 while(<Epilog in gueue>) {
    <entferne Epilog aus queue>
   <arbeite Epilog ab>
```

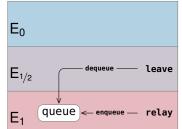



- Beispiel TriCore: Implementierung mit AST
  - AST hier als Unterbrechung der E<sub>1</sub> konfiguriert (⇔ unsere E<sub>1/2</sub>)
  - Geräteunterbrechungen laufen auf E<sub>2...n</sub>

```
Bietet die Hardware (wie z. B. IA-
void enter() {
                                 32) kein AST-Konzept, so kann
                           // be man dieses in Software nachbil-
  CPU::setIRQL(1);
                                 den.
void leave() {
  CPU::setIRQL(0);
                            // As Näheres dazu in der Übung.
void relay(<Epilog>) {
  <haenge Epilog an queue an>
  CPU_SRC1::trigger(); // aktiviere Level-1 IRQ (AST)
void __attribute__((interrupt_handler)) irg1Handler() {
  while(<Epilog in gueue>) {
    <entferne Epilog aus queue>
    <arbeite Epilog ab>
```



## Prolog/Epilog-Modell – Ziel erreicht?


- Kernzustand kann jetzt auf Epilogebene verwaltet und synchronisiert werden.
  - Hardware-UBs müssen nicht (mehr) gesperrt werden!
- Ein Problem bleibt noch: Die Epilog-Warteschlange
  - Zugriff erfolgt aus Prologen und der Epilogebene
    - muss also entweder hart synchronisiert werden (im Bild)
    - oder man sucht eine Speziallösung mit weicher Synchronisation





### Prolog/Epilog-Modell – Ziel erreicht?

- Kernzustand kann jetzt auf Epilogebene verwaltet und synchronisiert werden.
  - Hardware-UBs müssen nicht (mehr) gesperrt werden!
- Ein Problem bleibt noch: Die Epilog-Warteschlange
  - Zugriff erfolgt aus Prologen und der Epilogebene
    - muss also entweder hart synchronisiert werden (im Bild)
    - oder man sucht eine Speziallösung mit weicher Synchronisation



Harte Synchronisation erscheint hier akzeptabel, da die Sperrzeit (⇔ Ausführungszeit von dequeue()) kurz und deterministisch ist.

Eine Lösung mit weicher Synchronisation (z. B. [3]) wäre natürlich schöner!



## Prolog/Epilog-Modell: Bewertung

#### Vorteile

- Konsistenz ist sichergestellt (durch Synchronisation auf Epilogebene)
- Programmiermodell entspricht dem (einfach verständlichen) Modell der harten Synchronisation
- Auch komplexer Zustand kann synchronisiert werden
  - ohne das dabei Unterbrechungsanforderungen verloren gehen
  - ermöglicht es, den gesamten BS-Kern auf Epilogebene zu schützen

#### Nachteile

- Zusätzliche Ebene führt zu zusätzlichem Overhead
  - Epilogaktivierung könnte länger dauern als direkte Behandlung
  - Komplexität für den BS-Entwickler wird erhöht
- Unterbrechungsperren lassen sich nicht vollständig vermeiden
  - Gemeinsamer Zustand von Pro- und Epilog muss weiter hart oder weich synchronisiert werden



# Prolog/Epilog-Modell: Bewertung (Forts.)

#### **Fazit**

- Das Prolog/Epilog-Modell ist ein guter Kompromiss für die Synchronisation des Kernzustands.
- Es ist auch für die Konsistenzsicherung komplexer Datenstrukturen geeignet



## Agenda

Einleitung
Prioritätsebenenmodell
Harte Synchronisation
Weiche Synchronisation
Prolog/Epilog-Modell
Zusammenfassung



#### Zusammenfassung: Unterbrechungssynchronisation

- Konsistenzsicherung im BS-Kern
  - muss anders erfolgen als zwischen Prozessen einseitig
  - Kontrollflüsse arbeiten auf verschiedenen Prioritätsebenen
- Maßnahmen zur Konsistenzsicherung
  - harte Synchronisation (durch Unterbrechungssperren)
    - einfach, jedoch negative Auswirkungen auf Latenz
    - Unterbrechungsanforderungen können verloren gehen
  - weiche Synchronisation (durch Unterbrechungstransparenz)
    - gut und effizient, jedoch nur in Spezialfällen möglich
    - Implementierung kann sehr komplex werden
  - Prolog/Epilog-basierte Synchronisation (Zweiteilung der Unterbrechungsbehandlung)
    - guter Kompromiss
    - Stand der Technik in heutigen Betriebssystemen



#### Nachtrag: Mehrkernsysteme

#### **Beachte:** Unterbrechungsbehandlung ≠ Parallelität

- Techniken funktionieren (so) nur bei echter Unterbrechungssemantik: A und UB werden auf demselben Prozessor ausgeführt
- Wird die UB "echt parallel" (auf einem weiteren Prozessor) ausgeführt, kommt es zu Problemen
  - Annahmen des Prioritätsebenenmodells gelten nicht mehr! (Sequentialisierung, Priorisierung, run-to-completion)
  - Asymmetrie (UB unterbricht A) ist nicht länger gegeben (weiche Synchronisation wird dadurch viel schwieriger)
- Zusätzlich erforderlich: Interprozessor-Synchronisation
  - "hart" → zweiseitig blockierend, z. B. mit Spin-Locks
- → Übung

■ "weich" → algorithmisch nichtblockierend (schwer!)



#### Referenzen

- Digital Equipment Corporation. VAX-11 Architecture Reference Manual. Document Number EK-VAXAR-RM-001. Digital Equipment Corporation. Maynard, MA, USA: Digital Press, Mai 1982.
- [2] Samuel J. Leffler, Marshall Kirk McKusick, Michael J. Karels u. a. The Design and Implementation of the 4.3 BSD UNIX Operating System. Addison-Wesley, Mai 1989. isbn: 0-201-06196-1.
- [3] Friedrich Schön, Wolfgang Schröder-Preikschat, Olaf Spinczyk u. a. "On Interrupt-Transparent Synchronization in an Embedded Object-Oriented Operating System". In: Proceedings of the 3rd IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC '00). Newport Beach, CA, USA: IEEE Computer Society Press, März 2000, S. 270–277. doi: http://doi.ieeecomputersociety.org/10.1109/ISORC.2000.839540.
- [BS] Peter Ulbrich. Betriebssysteme. Vorlesung mit Übung. Technische Universität Dortmund, Lehrstuhl für Informatik 12, 2021 (jährlich). url: https://sys-sideshow.cs.tu-dortmund.de/Teaching/SS2021/BS/.

