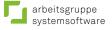
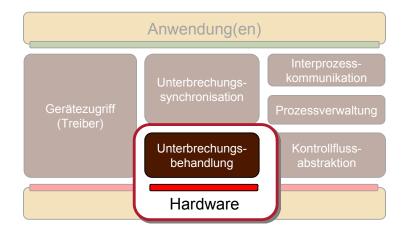
Betriebssystembau (BSB)

VL 3 – Unterbrechungen, Hardware


Alexander Krause

Lehrstuhl für Informatik 12 – Arbeitsgruppe Systemsoftware / IRB Technische Universität Dortmund


https://sys.cs.tu-dortmund.de/de/lehre/ws25/bsb

WS 25 - 21. Oktober 2025

Überblick: Einordnung dieser VL

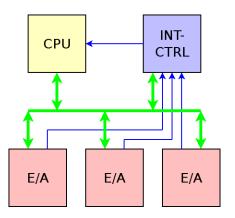
Agenda

Einordnung Grundlagen Hardware-Architekturen Zusammenfassung

Agenda

Einordnung

Grundlagen Hardware-Architekturen Zusammenfassung


Sinn und Zweck von Unterbrechungen

Ein Blick zurück in die Historie von Betriebssystemen...

- Überlappte Ein-/Ausgabe:
 - Eingaben: Verschwendung von anderweitig nutzbaren Prozessorzyklen bei (oft nicht vorhersagbar langem) aktivem Warten
 - Ausgaben: selbständiges Agieren der E/A-Geräte (z.B. durch DMA) entlastet die CPU
- Timesharing Betrieb:
 - Zeitgeber-Unterbrechungen geben dem Betriebssystem die Möglichkeit
 - zur Verdrängung von Prozessen
 - Aktivitäten zeitgesteuert zu starten

Interrupt-Hardware

Interrupt-Controller ist im einfachsten Fall ein "Oder"-Gatter...

Agenda

Einordnung

Grundlagen

Priorisierung

Verlust von IRQs

Behandlungsroutine

Zustandssicherung

Multiprozessorsysteme

Gefahren

Hardware-Architekturen

Zusammenfassung

Priorisierung

- Mehrere Unterbrechungsanforderungen können gleichzeitig signalisiert werden. Welche ist wichtiger?
- Während die CPU auf die wichtigste Anforderung reagiert, können weitere Anforderungen signalisiert werden.

Priorisierung

- Mehrere Unterbrechungsanforderungen können gleichzeitig signalisiert werden. Welche ist wichtiger?
- Während die CPU auf die wichtigste Anforderung reagiert, können weitere Anforderungen signalisiert werden.
- Lösung: ein Priorisierungsmechanismus ...
 - in Software: die CPU hat nur einen IRQ (interrupt request) Eingang und fragt die Geräte in bestimmter Reihenfolge ab
 - in Hardware: eine Priorisierungsschaltung ordnet Geräten eine Priorität zu und leitet immer nur die dringendste Anforderung zur Behandlung weiter
 - mit festen Prioritäten: jedem Gerät wird statisch eine Priorität zugeordnet
 - mit variablen Prioritäten: Prioritäten sind dynamisch änderbar oder wechseln zum Beispiel zyklisch

Verlust von IRQs

- während der Behandlung oder Sperrung von Unterbrechungen, kann die CPU keine neuen Unterbrechungen behandeln
- die Speicherkapazität für Unterbrechungsanforderungen ist endlich.
 - i.d.R. ein Bit pro Unterbrechungseingang

Verlust von IRQs

Problem:

- während der Behandlung oder Sperrung von Unterbrechungen, kann die CPU keine neuen Unterbrechungen behandeln
- die Speicherkapazität für Unterbrechungsanforderungen ist endlich.
 i.d.R. ein Bit pro Unterbrechungseingang

Lösung: in Software

- die Unterbrechungsbehandlungsroutine sollte möglichst kurz sein (zeitlich!), um die Wahrscheinlichkeit von Verlusten zu minimieren
- Unterbrechungen sollten nicht unnötig lange gesperrt werden
- jeder Gerätetreiber sollte davon ausgehen, dass eine Unterbrechung mehr als eine abgeschlossene E/A Operation anzeigen kann

Zuordnung einer Behandlungsroutine

- die Software soll mit möglichst wenig Aufwand herausfinden können, welches Gerät die Unterbrechung ausgelöst hat
 - eine sequentielle Abfrage der Geräte kostet nicht nur Zeit, sondern verändert die Zustände von E/A Bussen und unbeteiligten Geräten

Zuordnung einer Behandlungsroutine

Problem:

- die Software soll mit möglichst wenig Aufwand herausfinden können, welches Gerät die Unterbrechung ausgelöst hat
 - eine sequentielle Abfrage der Geräte kostet nicht nur Zeit, sondern verändert die Zustände von E/A Bussen und unbeteiligten Geräten

Lösung:

- jeder Unterbrechung wird eine Nummer zugeordnet, die als Index in eine Vektortabelle verwendet wird
 - die Vektornummer hat nicht zwangsläufig etwas mit der Priorität zu tun
 - es kommt in der Praxis leider vor, dass Geräte sich eine Vektornummer teilen müssen (interrupt sharing)
- der Aufbau der Vektortabelle variiert je nach Prozessortyp
 - meist enthält sie Zeiger auf Funktionen
 - seltener sind die Einträge selbst bereits Instruktionen

Zustandssicherung

- nach der Ausführung der Behandlungsroutine soll zum normalen Kontext zurückgekehrt werden können
- die Behandlung soll quasi unbemerkt ablaufen (*transparency*)

Zustandssicherung

Problem:

- nach der Ausführung der Behandlungsroutine soll zum normalen Kontext zurückgekehrt werden können
- die Behandlung soll quasi unbemerkt ablaufen (transparency)

Lösung:

- Zustandssicherung durch Hardware
 - nur das Notwendigste: z.B. Rücksprungadresse u. Prozessorstatuswort
 - Wiederherstellung durch speziellen Befehl, z.B. iret, rte, ...
- Zustandssicherung durch Software
 - da Unterbrechungen jederzeit auftreten k\u00f6nnen, muss auch die Behandlungsroutine Zust\u00e4nde sichern und wiederherstellen

Geschachtelte Behandlung

- um auf sehr wichtige Ereignisse schnell reagieren zu können, soll auch eine Unterbrechungsbehandlung unterbrechbar sein
- eine unbegrenzte Schachtelungstiefe muss aber vermieden werden

Geschachtelte Behandlung

Problem:

- um auf sehr wichtige Ereignisse schnell reagieren zu können, soll auch eine Unterbrechungsbehandlung unterbrechbar sein
- eine unbegrenzte Schachtelungstiefe muss aber vermieden werden

Lösung:

- die CPU erlaubt immer nur Unterbrechungen mit h\u00f6herer Priorit\u00e4t
- die aktuelle Priorität wird im Prozessorstatuswort gespeichert
- die vorherige Priorität wird auf einem Stapel abgelegt

Interrupt-Ablauf

HW: E/A-Gerät signalisiert Interrupt an Interrupt-Controller

HW: Interrupt-Controller signalisiert Interrupt an CPU

HW: CPU sichert einige Register (PC, IE, ...)

W: CPU disabled Interrupt-Eingang (IE = 0)

HW: CPU holt sich von Interrupt-Controller IRQ-Nummer

HW: CPU lädt Vektor aus Interrupt-Vektor-Tabelle in PC

SW: Interrupt-Handler sichert weitere Register

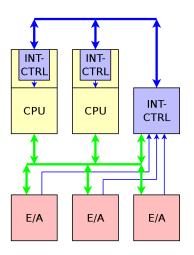
SW: Interrupt-Handler behandelt Interrupt

SW: Interrupt-Handler restauriert Register

SW: Interrupt-Handler ruft iret auf

HW: CPU restauriert PC, IE, ...

Rücksprung in das unterbrochene Haupt-Programm, Interrupt-Eingang wieder enabled



Multiprozessorsysteme

- Unterbrechungen können immer nur von einer CPU behandelt werden. Aber welche?
- es gibt eine weitere Kategorie von Unterbrechungen: die Interprozessor-Unterbrechungen
- **Lösung**: Unterbrechungsbehandlungshardware komplexer auf Multiprozessorsystemen. Viele Entwurfsvarianten ...
 - feste Zuordnung
 - zufällige Zuordnung
 - programmierbare Zuordnung
 - Zuordnung unter Berücksichtung der Prozessorlast
 - ... und Kombinationen davon.

Interrupt-Hardware (SMP)

Interrupt-Controller sind selbständige, konfigurierbare Einheiten...

Gefahr: "unechte Unterbrechungen"

("spurious interrupts")

- Problem: ein technischer Mechanismus zur Unterbrechungsbehandlung birgt die Gefahr von fehlerhaften Unterbrechungsanforderungen, z.B. durch ...
 - Hardwarefehler
 - fehlerhaft programmierte Geräte
- Lösung:
 - Hardware- und Softwarefehler vermeiden
- $\stackrel{\bigcirc}{\circ}$
- Betriebssystem "defensiv" programmieren
 - mit unechten Unterbrechungen rechnen

Gefahr: "Unterbrechungsstürme"

("interrupt storms")

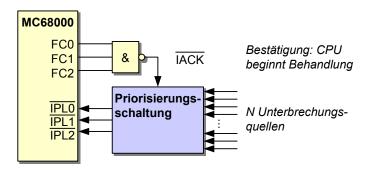
- hochfrequente Unterbrechungsanforderungen können einen Rechner lahm legen
- es handelt sich entweder um unechte Unterbrechungen oder der Rechner ist mit der E/A Last überfordert
- kann leicht mit Seitenflattern (thrashing) verwechselt werden
- Lösung: durch das Betriebssystem
 - Unterbrechungsstürme erkennen
 - das verursachende Gerät deaktivieren

Agenda

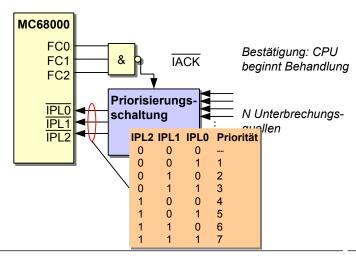
Einordnung Grundlagen

Hardware-Architekturen Motorola/Freescale 68k Intel x86

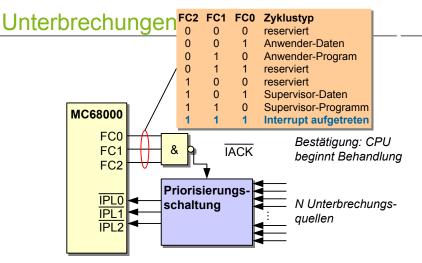
Zusammenfassung



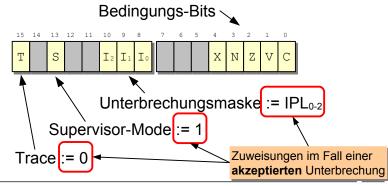
Unterbrechungen beim MC68000



Unterbrechungen beim MC68000

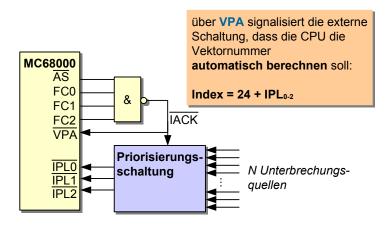


Unterbrechungen beim MC68000



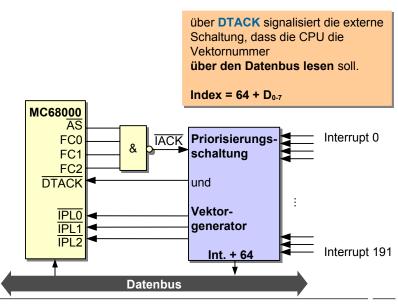
Das Statusregister (SR) des MC68000

- enthält u.A. die aktuelle Unterbrechungsmaske
 - bei einer Unterbrechung wird geprüft, ob IPL₀₋₂ > I₀₋₂ ist. Wenn nein, wird der Anforderung (noch) nicht stattgegeben.
 - eine Unterbrechung mit IPL₀₋₂ = 7 wird aber immer bearbeitet (NMI)

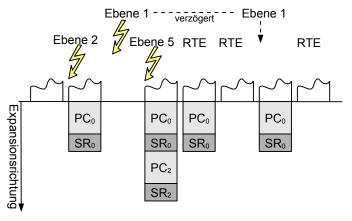


Vektortabelle des MC68000

Index	Adresse	Bedeutung
0	0x000	Reset: Supervisor-Stapelzeiger
1	0x004	Reset: PC
2	800x0	Busfehler
3	0x00c	Adressfehler
4	0x010	Illegaler Befehl
5	0x014	Division durch Null
24	0x060	unechte Unterbrechung
25	0x064	autovektorielle Unterbrechung, Ebene 1
26	0x068	autovektorielle Unterbrechung, Ebene 2
30	0x078	autovektorielle Unterbrechung, Ebene 6
31	0x07c	autovektorielle Unterbrechung, Ebene 7 (NMI)
32-47	0x080	TRAP-Befehlsvektoren
48-63	0x0c0	reserviert
64-255	0x100	Anwender-Unterbrechungsvektoren


Autovektorielle Unterbrechungen

Problem: Es stehen nur 6 Vektoren für Geräte bereit. Bei mehr Geräten ist "*sharing*" nicht zu vermeiden.


Nicht-autovektorielle Unterbrechungen

Zustandssicherung beim MC68000

- der vorherige SR Inhalt und der PC werden bei einer Unterbrechung auf dem Supervisor-Stapel gesichert
- der RTE Befehl macht den Vorgang rückgängig

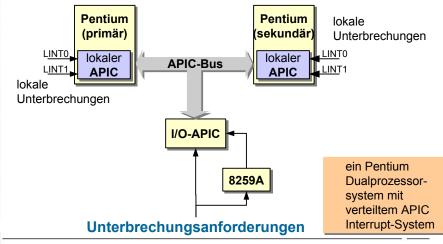


MC68000 - Zusammenfassung

- 6 Prioritätsebenen für Hardware-Unterbrechungen + NMI
 - Unterbrechungsebene 1-6, NMI Ebene 7
 - "Maskierung" über I₀₋₂ im Statusregister möglich
- Unterbrechung laufender Behandlung nur durch höhere Priorität oder NMI
 - Statusregister wird automatisch angepasst
- Automatische Zustandssicherung auf dem Supervisor-Stapel
 - Geschachtelte Behandlung möglich
- Vektornummern werden enzeugt...
 - autovektoriell: Index = Priorität + 24
 - nicht-autovektoriell (durch externe Hardware): Index = 64 ... 255
- Keine Multiprozessorunterstützung

Unterbrechungen bei x86 CPUs

Unterbrechungen bei x86 CPUs


- bis einschließlich i486 hatten x86 CPUs nur einen IRQ und einen NMI Eingang
- externe Hardware sorgte für die Priorisierung und Vektornummerngenerierung
 - durch einen Chip namens PIC 8259A
 - 8 Interrupt-Eingänge
 - 15 Eingänge bei Kaskadierung von zwei PICs
 - keine Multiprozessorunterstützung
- heutige x86 CPUs enthalten den weit leistungsfähigeren "Advanced Programmable Interrupt Controller" (APIC)
 - notwendig für Multiprozessorsysteme
 - inzwischen aber auch in allen Einprozessorsystemen aktiv
 - natürlich gibt es den PIC 8259A noch immer

Die APIC Architektur

 ein APIC Interrupt-System besteht aus lokalen APICs auf jeder CPU und einem I/O APIC

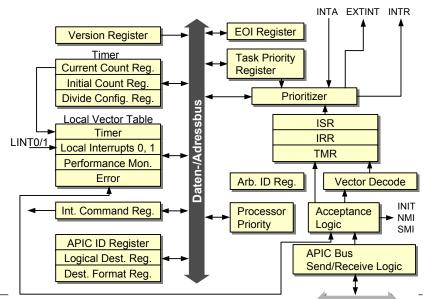
Der I/O APIC

- heute typischerweise in der Southbridge von PC Chipsätzen integriert
- normalerweise 24 *Interrupt*-Eingänge
 - zyklische Abfrage (Round-Robin Priorisierung)
- für jeden Eingang gibt es einen 64 Bit Eintrag in der Interrupt Redirection Table
 - beschreibt das Unterbrechungssignal
 - dient der Generierung der APIC-Bus Nachricht

Der I/O APIC

Aufbau (Bits) eines Eintrags in der Interrupt Redirection Table

63:56	Destination Field	 – R/W. 8 Bit Zieladresse.
	je nach Bit 11:	APIC ID der CPU (Physical Mode) oder
		CPU Gruppe (Logical Mode)
55:17	<reserviert></reserviert>	
16	Interrupt-Mask	 R/W. Unterbrechungssperre.
15	Trigger Mode	- R/W. Edge- oder Level-Triggered
14	Remote IRR	 RO. Art der erhaltenen Bestätigung
13	Interrupt Pin Polarity	 – R/W. Signalpolarität
12	Delivery Status	– RO. Interrupt-Nachricht unterwegs?
11	Destination Mode	 R/W. Logical Mode oder Physical Mode
10:8	Delivery Mode	 – R/W. Wirkung bei Ziel-APIC
	000 – Fixed:	Signal an alle Zielprozessoren ausliefern
	001 – Lowest Priority:	Liefern an CPU mit aktuell niedrigster Prio.
	010 – SMI:	System Management Interrupt
	100 – NMI:	Non-Maskable Interrupt
	101 – INIT:	Ziel-CPUs initialisieren (Reset)
	111 – ExtINT:	Antwort an PIC 8259A
7:0	Interrupt Vector	– R/W. 8 Bit Vektornummer (16 – 254)



Local APICs

- empfangen Unterbrechungsanforderungen vom APIC Bus
- führen die Auswahl und Priorisierung durch
- können zwei lokale Unterbrechungen direkt verarbeiten
- enthalten weitere Funktionseinheiten
 - Eingebauten *Timer*, *Performance Counter*
 - Command-Register
 - um selber APIC-Nachrichten zu verschicken
 - insbesondere Inter-Prozessor-Interrupt (IPI)
- programmierbar über 32 Bit Register ab 0xfee00000
 - memory mapped (ohne externe Buszyklen)
 - jede CPU programmiert "ihren" Local APIC

Local APICs - Register

APIC Architektur - Zusammenfassung

- flexible Verteilung an CPUs im x86 Multiprozessorsystem
 - fest, Gruppen, an die CPU mit der geringsten Priorität
 - Liegen mehrere IRQs an, so wird nach Vektornummer priorisiert
- Vektornummer 16-254 können frei zugeordnet werden
 - sollte (an sich) reichen, um "sharing" zu vermeiden
- Local APIC erwartet explizites EOI
 - dafür muss die Software sorgen
- Mit APIC unterstützt x86 prinzipiell auch Prioritätsebenen
 - Systemsoftware muss jedoch entsprechend agieren (Unterbrechungen freigeben, evtl. Task-Priority-Register verwenden)

Agenda

Einordnung Grundlagen Hardware-Architekturen

Zusammenfassung

Zusammenfassung und Ausblick

- Unterbrechungsbehandlungshardware befasst sich mit ...
 - Priorisierung
 - Zuordnung und Ausführung einer Behandlungsroutine
 - Zustandssicherung und geschachtelter Ausführung
- moderne Unterbrechungsbehandlungshardware kann ...
 - Unterbrechungsvektoren frei zuordnen
 - "sharing" von Unterbrechungsvektoren vermeiden
 - Unterbrechungen im Multiprozessorsystem flexibel zuordnen
- das Betriebssystem muss ...
 - Probleme wie "spurious interrupts" und "interrupt storms" einkalkulieren.
 - das eingetretene Ereignis aus der Behandlungsroutine an die höheren Ebenen und letztendlich zum Anwendungsprozess weiterleiten.

